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ABSTRACT
The age of information (AoI) has been proposed as a metric for eval-
uating freshness of information; recently also within the context of
intelligent transportation systems (ITS). The most frequently used
definition of age of information (AoI), however, does only account
for the generation time of the data but not for application-specific
aspects. In intelligent transportation systems (ITS), for example,
the distance of vehicles is not considered and nodes farther away
may experience an increased age of information (AoI) due to effects
of the wireless communication channel. We propose a new way of
interpreting the age of information (AoI) in such a context, also
considering the location of the transmitting vehicle as a metric
of importance to the information. In particular, we introduce a
weighting coefficient used in combination with the peak age of
information (PAoI) metric to describe the age of information (AoI)
requirement, emphasizing on packets from more important neigh-
bors. As an example, we characterize such importance using the
orientation and the distance of the involved vehicles. We use the
derived model to focus on timely updates of relevant vehicles for
meeting a given age of information (AoI) requirement, which can
save resources on the wireless channel while keeping the age of
information (AoI) minimal.
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1 INTRODUCTION
Intelligent transportation systems (ITS) are becoming more feasible,
and we see first deployments. Vehicles can now do real-time mon-
itoring of the surrounding environment to detect objects such as
other vehicles or pedestrians. Furthermore, vehicle-to-everything
(V2X) communication technologies such as IEEE 802.11p, which is
often referred to as distributed short-range communication (DSRC),
and celluar V2X (C-V2X) allow exchanging of information with
other vehicles or roadside infrastructure. This enables cooperative
driving applications such as, among others, Intersection Collision
Avoidance (ICA), cooperative perception, media sharing, or pla-
tooning, which bring a whole set of new features and services to
today’s driving [6].

For such applications to work correctly, fresh information from
and about surrounding vehicles is required (i.e., up-to-date). Due
to the inherent mobility of ITS, such information may become
outdated or even incorrect and eventually no longer relevant to
an application because of position changes. To ensure up-to-date
information, update messages (beacons) are typically sent at regular
intervals. An example is the transmission of cooperative awareness
messages (CAMs) [7], which are foreseen both in the IEEE 802.11p-
based ETSI ITS-G5 standard as well as in C-V2X.

In order to quantify and to characterize the freshness of such
information, a metric complementing raw delay, loss, and through-
put measures would be helpful. Recently, the concept of the age
of information (AoI) has been explored [11, 24] for this. The AoI
evaluates the freshness of information and balances the trade-off
between the timely information update and communication re-
sources. Thus, the AoI directly addresses the freshness of received
packets, which in turn accounts for the process of emission and
delays introduced in the communication chain, all-together [24].
Inherently, this distinguishes AoI metrics from conventional delay
metrics [13] allowing to optimize the network freshness as the best
balance between throughput and delay. In this context, often the
peak age of information (PAoI) is used as a measure to indicate
worst case situations.

In early work on AoI in the vehicular context, the average AoI
and the PAoI are used to find the best strategy for the emission rate
of beacon packets [10]. However, this approach does not focus on
the message content [23]; not all packets necessarily carry the same
information’s importance, thereby not introducing the same level of
freshness for the status update. Let us use the intersection depicted
in Figure 1 as an example. The status updates of the vehicles in
front of vehicle 1 (i.e., vehicles 2 and 3) are clearly more important
to avoid potential collisions than those from the other vehicles (i.e.,
vehicles 4, 5, and 6). Thus, for vehicle 1 to avoid collisions at this
intersection, it is preferable to collect updated information about
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Figure 1: Example scenario: Vehicles in the direction ofmove-
ment of vehicle 1 (vehicles 2 and 3) are more relevant than
others (vehicles 4, 5, and 6) when considering a safety appli-
cation such as Intersection Collision Avoidance (ICA).

vehicles 2 and 3. Correspondingly, an AoI-based metric should also
consider this application-dependent context. Some reported studies
address the information’s content when measuring the AoI. Exam-
ples include techniques to best predict Markovian sources in [9],
to better synchronize cache content with the remote source [25],
to account for only new arrived information [13, 15], and to use
information-theoretic approaches for reduced uncertainty about
the source [24].

In a different approach, we propose a newway of interpreting the
AoI for arrived packets, which is directly applicable in the context
of ITS. In this formulation, we consider the transmitting vehicle’s
location as a metric to quantify importance of the information. We
emphasize such importance in the form of weighting coefficients
that are used on the average PAoI metric as well as on the general
AoI requirement. These coefficients provide some level of selec-
tivity for the received packets, which allows for treating vehicles’
information more selectively. Thus, using our model allows focus-
ing on timely updates of relevant vehicles for meeting a given AoI
requirement instead.

Our contributions to this work can be summarized as follows:
• We propose a spatial model for interpreting the AoI of re-
ceived packets based on the spatial location of the transmit-
ting vehicle, making AoI context specific.

• We evaluate the AoI and the impact of our model on individ-
ual communication links.

• We show that using our model helps controlling the beacon
rate necessary for achieving a given AoI requirement.

2 AGE OF INFORMATION IN ITS
Following the standard IEEE 802.11p, we already see a number of
studies that address the use of AoI metrics for time-critical appli-
cations in vehicular networks [1–3, 10, 12, 14]. The AoI metric is

reported to update the network freshness for the exchange of vehi-
cles’ speeds and positions. Some of these works provide closed-form
expressions for the AoI metric [1–3, 14], while other works estimate
the average AoI metric numerically [10, 12].

Using analytic methods, the resulting average AoI metric is for-
mulated mainly in two different approaches. On one hand, Lyamin
et al. [14] straightly formulate the average AoI as the average of the
time duration between two consecutive received packets. They as-
sume that the time duration distributes according to the joint event
where two transmissions do not collide in the channel. The chan-
nel collision probability is evaluated according to the formulation
provided by Vinel et al. [22].

On the other hand, the average AoI is evaluated using the formula
for the remaining service time in a queue [1, 2] and considering
the hidden [1, 2] and non-hidden node problem scenario [3]. In the
hidden node scenario, the time duration of message transmissions
is expanded, assuming that hidden nodes transmit independently
with a random phase between 0 and the transmission duration
parameter. In the non-hidden scenario, Andrea et al. [3] also derive
a formula for node and network levels. The node-level accounts for
the average AoI at any arbitrary node, assuming they only transmit
the most recent packet. The network level evaluates the case where
nodes do not transmit new packets till the current one is sent. In this
case the network is modeled according to a Markov chain model,
the transition probabilities can be derived as described in [22].

In a different direction, based on simulation results, the existence
of a unique beacon period minimizing the average AoI is illustrated
for a certain number of vehicles, and contention window (CW) sizes
[10]. Following these results, a rate control algorithm is derived
from adapting the broadcast period based on local measurements
of the average AoI. The vehicle reduces or increases the beacon
period by comparing it to the estimated average AoI metric looking
for the maximum network freshness.

All the above studies conduct simulations based on the IEEE
802.11p standard for single-hop [1, 1, 2, 10, 14] and multi-hop [1,
10, 12, 12] networks. Besides, a variety of scenarios for the traffic of
vehicles have been studied. Examples include four lane roads [10],
platooning [12, 14], the more artificially Manhattan Grid [1, 2], the
TapasCologne scenario [1, 2], and open environments [3].

However, these reported solutions are only addressing protocol
parameters (e.g., beacon rate, CW size) and the channel impact like
collisions and noise to formulate the average AoI metric. Minor fo-
cus is formulated in terms of the contextual meaning of information
[16]. In this direction, Michalopoulou et al. [16] seek to minimize
the information aging in the spatial dimension when evaluating
the product of the speed of the vehicle and the time duration be-
tween received packets. The information age is reduced by stating
the optimization problem in the spatial domain to minimize the
predicted-location error.

In a different approach, we introduce a degree of importance in
the AoI metrics concerning the intended direction of the vehicle and
its surrounding. In the form of weighting coefficients as formulated
by Sorkhoh et al. [20], we incorporate into the average PAoI metric
the vehicular context (direction, surrounding), looking for some
meaning of received beacon packets [11]. In doing so, we study
the PAoI metric weighting as more critical for those vehicles in
the direction of movement (cf. Figure 1) and with less importance



A Spatial Model for Using the Age of Information
in Cooperative Driving Applications MSWiM ’22, October 24–28, 2022, Montreal, QC, Canada

−600 −400 −200 0 200 400 600

lateral distance [m]

−400

−200

0

200

400

600

lo
n
g
it

u
d
in

a
l

d
is

ta
n
c
e

[m
] ~vi

~di,j

θi,j

vehicle i

vehicle j

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: Visual representation of our spatial model for cal-
culating the weighting coefficient used for the AoI interpre-
tation with an example configuration of 𝛼 = 0.75, 𝛽 = 0.005.

otherwise, when considering a safety application such as ICA [5] as
an example use case. We use this modified PAoI metric and compare
it to a similarly modified AoI requirement of 100ms, which is often
used in literature as desired update interval [8, 17]. We thus identify
how many vehicles have fresh information, similar to using the
original AoI definition.

3 A SPATIAL MODEL FOR THE AOI
Typically, the AoI metrics are measured per user irrespective of
their location. All the packets received from surrounding vehicles
are treated with equal importance. However, the level of impor-
tance is application dependent: E.g., while in platooning only the
members of the platoon itself are relevant, it is the surrounding
vehicles within the direction of movement that are important for
safety-related applications such as ICA. As one example use case,
Figure 1 thus shows such an intersection scenario. Here, the most
valuable information for vehicle 1 will be located in the direction of
its movement (shadowed area). Thus, vehicles within this area (i.e.,
vehicles 2 and 3) should be assigned a higher level of importance
than other vehicles in the surrounding. Beacon packets coming
from vehicles in the rear of the intended direction will not be that
informative about the traffic in the intended direction of vehicle
1. Therefore, vehicles in front will be more demanded to reduce
the corresponding AoI metrics than the vehicles in the rear. Since
all vehicles are equal in the standard AoI, frequent beacon trans-
missions from the less important vehicles can lead to unnecessary
channel load in this case. If the communication protocol was aware
of this application-specific level of importance, it could update the
periodicity of the beacons in accordance and eventually reduce the
load on the wireless channel.

3.1 Weighted Peak AoI
To consider the location of the transmitting vehicle as a metric of
importance to the information, we propose a new way of inter-
preting the AoI. To that end, we introduce a weighting coefficient

that is applied to the PAoI metric as well as to an AoI requirement,
emphasizing on packets from important vehicles. Thereby, we in-
troduce some level of selectivity for the received packets which
allows to treat vehicles’ information differently according to the
importance to the application. Our model can be easily adjusted to
the requirement of a specific application through parameters and
does not modify the underlying AoI metric itself.

We choose the weighting coefficient as a raised-cosine function
with a decay factor as

𝜔𝑖, 𝑗 =
1
2
(
1 + cos(𝛼𝜃𝑖, 𝑗 )

)
𝑒−𝛽 ∥

®𝑑𝑖,𝑗 ∥ (1)

where 𝜃𝑖, 𝑗 is the angle between the transmitting vehicle 𝑗 and the
direction of movement of vehicle 𝑖 and ∥ ®𝑑𝑖, 𝑗 ∥ is the distance
between both vehicles, while 𝛼 and 𝛽 are two coefficients to select
the degree of selectivity in the spatial domain. The coefficient 𝛼
provides selectivity in the radial direction, while 𝛽 in the azimuth
direction. The larger the value of 𝛼 or 𝛽 is, the narrower is the beam
of vehicle 𝑖 . Figure 2 shows a visual representation of our weighting
coefficient with an example configuration of 𝛼 = 0.75, 𝛽 = 0.005.

To derive the angle and the distance between vehicles, we assume
that vehicles are equipped with global positioning system (GPS)
receivers, and that this information is exchanged between vehicles
in periodic beaconing messages. Using the configuration in Figure 2,
𝜔𝑖, 𝑗 is close to 1 whenever vehicle 𝑗 is in the direction of movement
of vehicle 𝑖 . Otherwise, it is close to 0 whenever vehicle 𝑗 is away,
being 0 when vehicle 𝑗 is located at the rear of vehicle 𝑖 .

With this coefficient, we measure the importance of the intro-
duced age per received packet using the average PAoI metric as

Δ
(𝜔 )
𝑖, 𝑗

= 𝜔𝑖, 𝑗Δ
(𝑝 )
𝑖, 𝑗

, (2)

where Δ
(𝑝 )
𝑖, 𝑗

denotes the average PAoI metric for a link between
vehicles 𝑖 and 𝑗 . Correspondingly, the combined PAoI per vehicle 𝑖
will be calculated after averaging the perceived Δ

(𝑝 )
𝑖, 𝑗

as

Δ
(𝜔 )
𝑖

=
1

𝑁 − 1

𝑁−1∑︁
𝑗=1

𝜔𝑖, 𝑗Δ
(𝑝 )
𝑖, 𝑗

. (3)

Finally, we account for the network operation after averaging for
the total of nodes as

Δ(𝜔 ) =
1

𝑁 (𝑁 − 1)

𝑁∑︁
𝑖=1

𝑁−1∑︁
𝑗=1

𝜔𝑖, 𝑗Δ
(𝑝 )
𝑖, 𝑗

. (4)

The average PAoI (Δ(𝑝 )
𝑖, 𝑗

) can be derived by analytical or nu-
merical means through simulators. Analytically, it can be obtained
after calculating the expected average of the inter-arrival (𝑌𝑛) and
system time (𝑇𝑛) as Δ

(𝑝 )
𝑖, 𝑗

= E{𝑌 } + E{𝑇 } when all packets emitted
are received [23]. However, some packets will not be successfully
received due to the system and channel conditions (e.g., collisions,
replacement of the old beacon frames, low reliability during their
reception, etc.) [22]. Taking into account the impact of the system
and channel effects in the packet reception process, as given by the
successful probability 𝑃𝑠𝑑 , the average PAoI can be calculated as

Δ
(𝑝 )
𝑖, 𝑗

=
1
𝑃𝑠𝑑
E{𝑌 } + E{𝑇 }, (5)
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where the value for 𝑃𝑠𝑑 in Equation (5) can be directly computed
considering the impact of noise and collisions using the closed-form
expressions in [22, Eq. (7)], or through simulations.

The Equation (5) can be directly computed by recalling the use
of the negative binomial distribution as described in [21]. However,
it can be intuitively derived based on the meaning of the related
variables in Equation (5). 𝑃𝑠𝑑 can be interpreted as the ratio of
successfully transmitted packets; thus, its inverse will provide the
total of attempts to have a successful transmission. Therefore, the
first term in Equation (5) will provide the waiting period before a
packet is successfully transmitted. Adding the average time spent
on the system (E{𝑇 }) will thus provide the average PAoI.

3.2 Remarks
The introduced coefficients in Equation (3) provide a mean to “filter”
packets according to their relevance. For instance, in the intersec-
tion scenario depicted in Figure 1, the average PAoI of packets
from the vehicles 4, 5, and 6 will be lowered as less relevant, thus
emphasizing those packets from vehicles at the front side of vehicle
1 (vehicles 2 and 3). In this way, the resulting average PAoI will be
characterized the most by those links of interest according to the
application context.

Equation (3) is also useful in different ITS scenarios, and, also
with a different dependency for the coefficients other than Equa-
tion (1). Overall, the Equation (3) comprises a mean to emphasize
some communication links in contrast to others. Once the links of
interest are determined, they will shape the resulting average PAoI
whenever their corresponding coefficients are close to 1. In contrast,
those links whose coefficients are close to 0 will not contribute to
the age of information metric.

Besides, we selected the dependency of the coefficients with the
spatial coordinates in Equation (1) as a two-dimensional function
in two separable terms. One dimension for the azimuth direction
defines the raised-cosine function [4], which conveniently allows
multiplying by 0 to those packets coming from the rear side of ve-
hicle 𝑖 . The second dimension is in the radial direction and defines
a decay factor, which decrements as long as the distance increases.
Overall, both terms let to a function that is also all-orders differen-
tiable, which accounts for its mathematical tractability.

3.3 Weighted Target AoI
The derived weighted PAoI metric can be used to fairly evaluate the
freshness of the status updates with a given target, i.e., when the age
of received packets is less than a given threshold. This approach is
particularly relevant when we want to save resources looking at the
PAoI metric just performing below a given threshold 𝑇𝑖, 𝑗 (target).
In this way, we avoid the network to operate on the minimum
average where demanding resources are higher. We compare the
derived average PAoI with a given threshold, after applying the
same weighting coefficients (cf. Equation (1)) as well, yielding

Δ
(𝜔 )
𝑖

≤ 1
𝑁 − 1

𝑁−1∑︁
𝑗=1

𝜔𝑖, 𝑗𝑇𝑖, 𝑗 . (6)

Correspondingly, we account for the network operation after aver-
aging for the total of nodes as

Δ(𝜔 ) ≤ 1
𝑁 (𝑁 − 1)

𝑁∑︁
𝑖=1

𝑁−1∑︁
𝑗=1

𝜔𝑖, 𝑗𝑇𝑖, 𝑗 . (7)

Further discussions on the utility of these expressions and their
interpretation are given within Section 4.

4 EVALUATION
In this section, we evaluate the PAoI as well as the impact of the
weighting coefficient from our spatial model in simulative experi-
ments using the Veins simulator [19]. First, we provide an initial
analytical assessment of our model. After that, we consider sim-
ulative results and discuss the impact of the link distance on the
standard PAoI. We continue selecting two specific link distances
(i.e., a short and a long one) and analyze the combined PAoI without
and with our spatial model. Next, we show the impact of our spatial
model on the network PAoI. Finally, we analyze the impact of the
model parameters on the network PAoI.

4.1 Initial Analytical Assessment
Providing further intuition on the impact of the coefficient 𝜔𝑖, 𝑗 ,
we now perform an initial analytical assessment of the perceived
average PAoI given by Equation (3). We compute it for a given link
between 200 vehicles that are all moving randomly in a free-space
grid. The corresponding communication parameters are listed in
Table 1. To compute Δ(𝑝 )

𝑖, 𝑗
, we use Equation (5) where the probability

of successful beacon reception 𝑃𝑠𝑑 is obtained from simulation (cf.
Sections 4.2 and 4.3). We consider a contention-based communica-
tion system according to IEEE 802.11p, where vehicles broadcast
beacon messages following a collision avoidance mechanism with-
out retransmissions. Frames are emitted after verifying free channel
access during the arbitration inter-frame space (AIFS) and CW time
windows. We assume that only the most updated message is queued
at the emitter side waiting for a free slot to be transmitted [1].

Figures 3 and 4 plot analytical results for the impact of the model
parameters 𝛼 and 𝛽 , which define the degree of selectivity for com-
puting the PAoI metric. The case 𝛼 = 0, 𝛽 = 0 results in 𝜔𝑖, 𝑗 = 1,
i.e., no spacial selectivity at all, which corresponds to highest PAoI
metric (standard definition from Equation (5)). However, as 𝛼 and 𝛽
increase, the perceived PAoI metrics are reduced due to the reduced
importance of those vehicles not in the direction of movement and
not that close to the moving vehicle (cf. link 1-5 in Figure 1). In this

Table 1: Parameters used for analytical evaluation

Parameter Value

Scenario Size 550m × 550m
Simultaneous Vehicles 𝑁 200
Beacon Size 𝐿 512 Byte
Bitrate 𝑅 6Mbit/sec
CW size𝑊 4–8
Preamble duration𝑇P 32 µ sec
PLCP duration𝑇PLCP 8 µ sec
Propagation delay 𝛿 1 µ sec
AIFS 58 µ sec
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Figure 3: Average PAoI for different angle coefficients when
𝛽 = 0. The spatial model only focuses on the angle.
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Figure 4: Average PAoI for different distance coefficients
when 𝛼 = 0. The spatial model only focuses on the distance.

case, the contribution of the given link to the total PAoI in Equa-
tion (3) will become less, thus less critical. Comparing both figures
indicates that the distance has a higher impact on the calculation
of the weighting coefficient than the angle.

4.2 Simulation Setup
After the initial analytical assessment of our model, we now move
on and consider simulative results. For our simulation, we use the
well-known vehicular network simulation framework Veins [19] to
enable a realistic evaluation. In particular, we use OMNeT++ 5.6.2,
SUMO 1.6, and Veins 5.1. Tables 1 and 2 together summarize the
most important parameters used in our simulations.

We focus on an urban simulation environment and, for simplic-
ity, chose a 550m × 550m Manhattan grid scenario (see Figure 5).
The scenario contains 200 vehicles that depart at random positions

Table 2: Additional parameters used for simulations

Parameter Value

Scenario Type Manhattan Grid
Beacon Rates 1, 2, 5, 8, 10, 16, 20, 25, 40, 50, 100Hz
Carrier Frequency 5.89GHz
Access Category AC_VO
EDCA Queue Size 1
TX Power 20mW
Attenuation Model Free-space only (𝛼 = 2)

Figure 5: Manhattan grid with randomly distributed vehicles

and follow random trips. Vehicles are transmitting beacons such as
CAMs via IEEE 802.11p at a static beacon rate. Within our simula-
tion, we are able to switch off the attenuation effect of buildings by
disabling the obstacle shadowing [18]. Furthermore, we modified
the medium access control (MAC)-layer queue to replace the most
recent packet if the maximum queue size is reached and a new
beacon was generated from the application layer. Together with a
queue size of 1, this results in always transmitting the most recent
data in the beacon [1].

The data from the received packets including its generation and
reception times is stored in a simple 1-hop neighbor table on every
vehicle. We are thus able to calculate the standard AoI for a given
link by using this time stamp of the last successfully received update.
Whenever a new beacon from vehicle 𝑗 is received by vehicle 𝑖 , the
data as well as the time stamp is updated and we record the PAoI
as the current AoI value of this link at 𝑖 . Similarly, we calculate the
weighting coefficient according to Equation (1) for a particular link
upon successful packet reception by using the sender’s position
from within the packet. From our simulation, we obtain, on average,
a total of 1500 samples for PAoI and corresponding target AoI per
vehicle and simulated beacon rate, which we are going to use for
the following results.

4.3 Impact of Link Distance on Standard AoI
In order to underline the issues with the standard AoI, we first
have a look at the impact of the link distance on the AoI. The PAoI,
as defined in Equation (5), is influenced by the beacon rate (cf.
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Figure 6: Average PAoI based on the link distance (rounded
to 10m) with different beacon rates

E{𝑌 }), system delay (cf. E{𝑇 }), and probability of successful packet
reception (cf. 1

𝑃𝑠𝑑
). Thus, even if multiple vehicles use the same

beacon rate for beacon transmission, the observed PAoI metrics can
be very different due to the effects of the wireless communication
channel, especially over large distances. Since the longest possible
distance between two vehicles in our scenario is only about 780m,
we can neglect the system delay as an influencing factor.

The probability for successful reception of a packet, however, has
to be considered. It depends on the signal-to-noise-and-interference-
ratio (SNIR), which is, among others, influenced by scenario-related
effects such as attenuation of the signal as well as interference
from other vehicles. In our scenario, the signal is attenuated by
free-space path loss, which weakens its strength proportional to the
link distance. Also, at large distances, hidden nodes can introduce
additional interference and collisions, which further degrades the
SNIR. At some point, a packet cannot be received successfully
anymore and the AoI of the corresponding link increases further
until the next successful reception. Therefore, the link distance can
have a huge impact on the PAoI, especially for far away vehicles.

Figure 6 shows the average PAoI per link distance (rounded
to 10m) with different beacon rates that we obtained from the
simulation. Indeed, we see that the link distance has an impact on
the PAoI according to our hypothesis described previously.

For small link distances (less than 50m) and low beacon rates
(e.g., 1 Hz), the observed PAoI closely follows the beacon interval
(i.e., the multiplicative inverse of the beacon rate) as the signal
distortion due to the impact of the wireless communication channel
is minimal. However, at higher beacon rates (e.g., 16Hz), the effect is
increased and becomes visible more clearly. Latest at roughly 400m,
we start to see a massive increase in PAoI, which is way above the
beacon interval. Here, the probability for a successful reception of a
packet is so low that many updates are lost and the PAoI increases
a lot. For very high rates (e.g., 40Hz and above), the PAoI already
steeply rises at even low distances of below 100m. As a result, we
see that, even when using the same beacon rate, two links can have
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Figure 7: Average PAoI plotted for all as well as separated
for two specific node distances (i.e., short and long). The red
circle indicates the intersection of the average PAoI with the
(static) target AoI of 100ms.

a very different PAoI because of different node distances. Hence,
the freshness of the information from close vehicles is typically
much better than from those far away, as expected.

4.4 Combined Standard AoI
Consider an arbitrary cooperative driving application that requires
regular updates from surrounding vehicles (e.g., ICA, cf. Section 3).
This application will likely define a target AoI (i.e., maximum al-
lowed AoI) that is required by the application to work successfully
and reliably. In order to determine whether certain information
is fresh enough, the average PAoI can be evaluated against this
requirement. A typical update interval requirement that is often
found in literature is 100ms [8, 17]. Following the observation from
the previous section, far away vehicles will always suffer from a
weakened SNIR and thus have a higher PAoI compared to vehi-
cles that are close. Thus, when combining the PAoI values from
all surrounding vehicles using Equation (3), the far away vehicles
will increase the average and thus distort the view on the overall
information freshness.

Figure 7 shows the average standard PAoI of short (i.e., 10m)
and long (i.e., 500m) distant links for several beacon rates. It also
shows a static target AoI of 100ms as well as the average of the
PAoI values from the two links (cf. Equation (3)). As expected, the
average PAoI of the short link distance (i.e., 10m) continuously
decreases proportional to the increasing beacon rate. Here, the
minimum value, which indicates the best information freshness,
is reached at the highest simulated beacon rate (i.e., 100Hz. At
this distance, the static target AoI of 100ms is already reached at
a beacon rate close to 10Hz. This is expected, since 10Hz is the
multiplicative inverse of the target AoI and the PAoI is not distorted
at these short distances (cf. Section 4.3).

When looking at the long link distance (i.e., 500m), the situation
is different: First, the average PAoI is decreasing similarly to the
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short link distance, following the increase of the beacon rate. But it
never reaches the target AoI of 100ms. Instead, after reaching its
minimum at 20Hz, the average PAoI increases when beacons are
transmitted at higher rates. That is due to effects of the wireless
communication channel described in Section 4.3.

When looking at the combination (i.e., average) of the two link
distances, we can observe some interesting effects as well. First, the
average PAoI value decreases as expected, but when increasing the
beacon rate further, also its value decreases further, thus reaching
the static target AoI of 100ms at roughly 20Hz (red circle). The
continuous decrease even at higher beacon rates (i.e., above 20Hz)
is due to less received packets for the long distant link. Thus, the
combined PAoI contains a lot more low values which have been
observed from the short link distance.

When we now compare the beacon rates at which the static
target AoI of 100ms is met, we see that twice the beacon rate of the
short distant links is required when combining the PAoI metrics
from both distances. Hence, in order to keep the combined freshness
of the information from all surrounding vehicles below the given
AoI requirement, beacons need to be transmitted at a higher rate
than required for close vehicles only. If vehicles now have different
levels of relevance to the application, e.g., close vehicles are more
important than far ones (cf. Section 3), the non-relevant vehicles
(i.e., the far ones) will weaken the perceived combined information
freshness. In order to meet the AoI requirement, all vehicles need to
transmit their beacons at a higher rate, which leads to unnecessary
transmissions and channel load.

4.5 Combined Weighted AoI
In order to cope with the issues of the standard AoI (i.e., effects of
the wireless communication channel and equal importance of all
nodes), we now apply the proposed spatial model from Section 3 to
the AoI. Using Equation (1), we calculate the weighting coefficient𝜔
for every PAoI value that is observed for an arbitrary link between
two vehicles 𝑖, 𝑗 , producing a weighted PAoI. Additionally, we also
apply the weighting coefficients to the static target AoI of 100ms on
a per link bases, producing aweighted target AoI. Within this section,
we use one exemplary parameterization (i.e., 𝛼 = 0, 𝛽 = 0.01) of
our spatial model that uses only the distance between vehicles for
calculating the weighting coefficient. This focusses on the issue
described in Section 4.3.

Figure 8 shows the average weighted PAoI of short (i.e., 10m)
and long (i.e., 500m) distant links over several beacon rates. It also
shows an average weighted target AoI as well as the average PAoI
values from the two links, which can be used by application as a
view on the overall information freshness. Since we selected fixed
distances, the calculated weighting coefficient will be the same for
all links of the same distance. The resulting average weighted PAoI
is just a multiplication of the average standard PAoI from Figure 7
with a constant factor and thus follows a similar trend.

Due to the selected parameterization of our spatial model, a high
(i.e., close to 1) and a low (i.e., close to 0) weighting coefficient is
calculated for values of the short and long distant links, respectively.
As a result, the average PAoI for the short distant links is very close
to the one of the standard AoI from Figure 7, whereas it is reduced a
lot for the long distant links. Therefore, and due to less observations
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Figure 8: Average weighted PAoI for two specific link dis-
tances (i.e., short and long) and their combination (i.e., aver-
age). The red circle indicates the intersection of the combined
PAoI with the weighted target AoI.

for the long distant links in general, the combination (i.e., average)
of all PAoI values from both distances is, in comparison to Figure 7,
much closer to the average PAoI of the short distant links. Thus, the
overall view on the information freshness is not distorted much by
the long distant and (in our parameterization) less relevant links.

The average weighted target AoI is constructed by combining all
weighted target AoI values from the two link distances, similarly to
the average weighted PAoI. Since the same weighting coefficients
are applied to the PAoI and the target AoI, the target faces similar
effects: For the short distance, the target is close to the static target
AoI of 100ms, whereas for the long distance, it is close to 0 due to
the weighting coefficient being close to 0. The average weighted
target AoI thus is close to the static target AoI of 100ms as it is
mostly influenced by short distant links. Note that the individual
weighted target AoI for both distances is constant for all beacon
rates as the link distance does not change and the beacon rate is
not considered when calculating the weighting coefficient. The
average weighted target AoI, in contrast, is not constant due to the
increasing number of lost packets and thus less values for the long
link distance with high beacon rates. The average therefore tends
towards the value of the short link distance, when using a beacon
rate ≥ 20Hz.

When comparing the average PAoI with the target AoI, we see
that now both link distances as well as their combination intersect
with the target AoI at some point. The short distant links meet the
target at a beacon rate close to 20Hz. The average PAoI of the long
distant links is below the weighted target AoI even for all beacon
rates. This is due to the average weighted target AoI mainly begin
influenced by the short distant links, thus, tending towards the
static target AoI of 100ms. Additionally, the weighting coefficient
for the long distant links are close to 0. The combined weighted
PAoI reaches the weighted target AoI at a beacon rate close to 10Hz,
as indicated by the red circle. This is a smaller beacon rate than
required for only the short distant links due to the impact of the



MSWiM ’22, October 24–28, 2022, Montreal, QC, Canada Julian Heinovski, Jorge Torres Gómez, & Falko Dressler

100 101 102

Beacon Rate [Hz]

0.0

0.2

0.4

0.6

0.8

1.0

B
e
lo

w
T

a
rg

e
t

A
o
I

R
a
ti

o

Case

Standard

Weighted

Link Distance [m]

10

500

∆

Figure 9: Ratio of vehicle updates that are below the target
AoI for the standard case (blue) and when applying our spa-
tial model (orange) – two specific link distances (i.e., short
and long) and their combination (i.e., average).

long distant links on the average. However, we actually need to
compare this situation with the values from using the standard
PAoI and the static target AoI in Section 4.3: With the spatial model,
we only need half of the previous beacon rate to reach the target
AoI when combining all link distances. Using our model allows to
focus on timely updates of relevant vehicles for meeting a given
AoI requirement instead, which saves channel resources.

4.6 Ratio of Links Reaching the Target AoI
The weighted coefficient which we introduced in Equation (6) al-
lows interpreting the weighted PAoI in the way we interpret the
standard one. To illustrate the validity of our approach, Figure 9
comparatively depicts the ratio of PAoI values fulfilling the con-
dition in Equation (6) and the case using the standard approach,
i.e., Δ𝑖, 𝑗 ≤ 𝑇𝑖, 𝑗 without using the weighting coefficient. Without
the spatial model, the target AoI is static at 100ms, whereas when
applying the spatial model, it is calculated by using the weighting
coefficient (cf. Equation (6)).

The ratio for both cases is at 0 for all beacon rates ≤ 10Hz.
This is expected since the target AoI of 100ms cannot be reached
when the inter-arrival time of the beacons is larger than this value.
When increasing the beacon rate further (above 10Hz), all ratios
are increasing as well. The ratios for the short link distance almost
immediate reach 1 and stay there since these links have a very
good SNIR and thus almost all transmitted beacons are received
successfully, leading to a small PAoI. For the long link distance,
the ratio grows as well but not as strongly as for the close links.
Again, this is due to the weighted PAoI being impacted by the large
distance of the link (cf. Figure 6), thus leading to many PAoI values
being above the target AoI. Beyond 25Hz beacon rate, the ratio
for the long link distance decreases again due to a high PAoI (cf.
Figure 8).

As expected, the combination of both link distances lies in be-
tween the short and the long distant links. After reaching roughly
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Figure 10: Average PAoI (solid) and corresponding target AoI
(dashed) of the entire network for the standard case (blue)
and when applying our spatial model (orange). The arrows
indicate the intersection with the corresponding target AoI.

0.75 at 16Hz, its value increases until it reaches almost 1 at 100Hz.
This is due to the high number of lost packets for the long distant
links, which leads to a value similar to the value of the short link
distance.

It is visible that the ratio is very similar for both cases (i.e.,
standard and weighted). This reflects that the perceived status
update on the network is the same irrespective of the weighting
coefficients. Thus, using the formulation in Equation (7) will not
introduce any artifact on the perceived network status; instead, it
will just emphasize the relevant links.

4.7 Weighted Network AoI
So far, in order to show how our spatial model can influence the
perceived average PAoI when combining different links, we have
been looking at two specific link distances only. Now, we combine
all available links from within the simulation scenario to analyze
the average PAoI of the entire network. Again, we are evaluating
the freshness of the information by comparing the average PAoI
against the AoI requirement. This time, however, the goal is to
determine the overall information quality of the entire network.

Figure 10 shows the average network PAoI (solid, cf. Equation (4))
as well as the corresponding network target AoI (dashed) for the
standard case (blue) and when applying our spatial model (orange).
We use the same parameterization of the spatial model as we did
already in Section 4.5 (i.e., 𝛼 = 0, 𝛽 = 0.01). The standard PAoI
(blue) behaves as expected. It follows the beacon rate inversely
proportional as the interval between beacons decreases with higher
beacon rates. It intersects with the static target AoI of 100ms at ap-
proximately 13Hz (not simulated) and reaches its minimum value
at 20Hz. Since the average PAoI here contains the values from all
available link distances (i.e., 0–600m), there is indeed a minimum,
which we can not observe in Figure 7. This is due enough success-
fully received packets with high PAoI values (mostly from long
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distant links) such that they can weaken the perceived average
PAoI.

When looking at the weighted case (orange), the situation is
similar but the absolute values of the average PAoI and target AoI
are smaller due to the applied weighting coefficient. Note, that
the minimum PAoI value is achieved at the same beacon rate in
both cases, which underlines the applicability of our model without
distorting the standard interpretation of the AoI. Similar to Figure 8,
the target is calculated by combining all available individual target
AoI values using the average function (see Equation (7)). It is almost
constant and lower in comparison to the static target AoI at beacon
rates ≤ 10Hz due to many medium and long distant links that
have a small weighting coefficient. At these low beacon rates, the
packets from large distances can still be received successfully.When
increasing the beacon rate beyond 10Hz, analog to the average
PAoI, the number of lost packets for medium and long distant
links increases and the average weighted target AoI therefore tends
towards the value of the short link distances. In the weighted case,
the intersection of the average PAoI with the target happens already
at approximately 11Hz (not simulated), which indicates that this
beacon rate is high enough to achieve the required AoI of the entire
network on average. This approximated beacon rate is roughly 2Hz
lower compared to the standard case. Using our model thus allows
to save channel resources by focusing on timely updates of relevant
vehicles for meeting a given AoI requirement.

4.8 Impact of Model Parameters
In our simulative results, so far we have only looked at one exem-
plary parameterization (i.e., 𝛼 = 0, 𝛽 = 0.01) of our spatial model
that uses only the distance between vehicles for calculating the
weighting coefficient. In fact, we used a very strict value for the
distance parameter 𝛽 , which was favouring very short link dis-
tances. In general, more relaxed configurations will lead to a higher
weighting coefficient, thus, producing higher PAoI (cf. Section 4.1),
especially for vehicles far away from the front of the receiver (i.e., in
distance and orientation). Thus, we now compare the resulting av-
erage PAoI as well as the target AoI for different parameterizations
of our spatial model.

Figure 11 shows the average PAoI (solid) and corresponding tar-
get AoI (dashed) of the entire network for different configurations
of our spatial model (different colors). Here, we focus only on 4
different configurations:

(1) 𝛼 = 0, 𝛽 = 0, which reflects the standard case by always
using a weighting coefficient of 1 (blue),

(2) 𝛼 = 0, 𝛽 = 0.01, which only focusses on the distance be-
tween vehicles for determining their relevance (orange, see
previous sections),

(3) 𝛼 = 1, 𝛽 = 0, which only focusses on the orientation (angle)
between vehicles for determining their relevance (green),

(4) 𝛼 = 1, 𝛽 = 0.01, which uses orientation (angle) and distance
between vehicles for determining their relevance (red).

As expected, all configurations that apply our spatial model (i.e.,
2–4) result in a decrease of the average PAoI and target AoI by
filtering less relevant vehicles. We can observe, however, that using
only the angle (2) results in a situation that is close to using the
standard PAoI and the static target AoI (1). In contrast, using only
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Figure 11: Average PAoI (solid) and corresponding target AoI
(dashed) of the entire network for different configurations
of our spatial model (different colors).

the distance (3) results in a situation that is close to using angle and
distance together (4). Configuration which behave similarly also
have a similar beacon rate at which the average PAoI is intersecting
with the target AoI, i.e., approximately 13Hz vs. 11Hz (not simu-
lated). This shows that the distance has more impact than the angle
when calculating the weighting coefficient, which is in line with
the theoretical results from Section 4.1. This is due to the effects
of the wireless communication channel (cf. Section 4.3), which im-
pact the PAoI quite heavily. Also, vehicles within the scenario are
distributed in space rather than in the close surroundings of single
vehicles.

4.9 Discussion
Within this work, we used a static target AoI of 100ms, since this
value is often used in literature as a desired update interval of data
used by cooperative driving applications. This value, however, is
arbitrary and can freely be configured dependent on the specific
needs of the application. Our proposed spatial model is independent
of the actual value for this target AoI, since the same weighting
coefficient is applied to both, the observed PAoI values as well as
the static target AoI. When modifying the value of the target AoI,
the intersection point with the average PAoI will be shifted along
the x-axes, leading to a different beacon rate that is sufficient for
meeting the target. When the target value is increased, this beacon
rate decreases and vice versa. In case both, a small target AoI and
a low beacon rate, is desired, it can be beneficial, to use a stricter
configuration of our spatial model (i.e., lager values for 𝛼 and 𝛽).
This will impose a greater selectivity in the importance of vehicles
and cope with effects of the wireless communication channel as
described in Section 4.3.

5 CONCLUSION
We explored the use of the age of information (AoI) in the context of
intelligent transportation systems (ITS). First approaches of using
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the AoI in ITS focused on the original definition only, i.e., tomeasure
the PAoIs for every received message and then to interpret the
resulting values as they are. We, however, observed that this is not
adequate in this application scenario as effects from the wireless
communication channel may lead to quite variable PAoI measures
for farther away vehicles – even though they play a less important
role in many ITS applications.

In this paper, we proposed a new way of interpreting the AoI
for arriving packets. We focus on the location of the transmitting
vehicle as a metric to assess the importance of the information.
Using a weighting coefficient applied to the PAoI and also to an
AoI requirement, we can add a priority measure. As an example for
ITS, we use the orientation and the distance of the corresponding
vehicles for this process. It should be noted that the underlying
PAoI metric is not changed in this procedure, i.e., compatibility with
other approach is maintained. Our resulting spatial model allows to
focus on timely updates of relevant vehicles for meeting a given AoI
requirement, which helps saving resources on the wireless channel.

In futurework, we plan further evaluation of our proposed spatial
model with respect to the model parameters. Introducing our spatial
model in different ITS applications can give further insights to the
advantages but also limits of the AoImetric in general. Theweighted
PAoI and target AoI could also be used to design new classes of
communication protocols, e.g., by adaptively adjusting the beacon
rate based on the importance of the information to other vehicles.
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