
Flexible Playout Adaptation for Low Delay AAC
RTP Communication

Jochen Issing∗, Stefan Reuschl†, Falko Dressler∗, Nikolaus Färber†
∗Dept. Computer Science 7, Computer Networks and Communication Systems, Friedrich-Alexander-University, Erlangen

†Multimedia Transport Group, Fraunhofer Institute for Integrated Circuits, Erlangen

Abstract—We present an integrated approach for flexible play-
out adaptation for high quality audio transmission over impaired
network connections. The key concept of our framework is a
continuous measurement of the transmission delay, the delay
variation, and packet loss. Based on these measurements, the
adaptive playout control employs audio time stretching using
audio concealment and frame dropping techniques to keep the
low delay requirements. In the literature, playout adaptation
techniques have mainly been considered for voice over IP, using
silence periods between talkspurts, or for high quality audio
transmission over dedicated network links. To the best of our
knowledge, our playout algorithm is the first achieving low delay
high quality audio streaming over impaired network connections
for both music and speech. We used a significant number of
network traces to estimate the variation of the network quality
in DSL, WLAN, UMTS and GPRS links and to update the
parameters of our playout adaptation technique. Experimental
results clearly indicate that our system provides very high
accuracy for the desired accepted late loss rate and achieves
a fast playout adaptation, even for rapidly changing network
conditions.

Index Terms—RTP, Playout Adaptation, Low Delay, Advanced
Audio Coding, Audio Communication Engine

I. INTRODUCTION

Starting with the migration of the public switched telephone
network (PSTN) to voice over IP (VoIP), the audio bandwidth
has been continuously increased. While PSTN is limited
to narrow band (300 Hz to 3400 Hz) speech codecs, voice
over IP is dominated by wide band (30 Hz to 7000 Hz) audio
codecs like G.722.2 [1]. Full band (22 kHz) audio codecs find
application in enterprise level communication systems and are
on their way to be integrated into standard VoIP clients as
well. With full band audio communication, the conversation
is not only more immediate, but the participants are able to
include signals like music or environmental sounds during the
conversation as well.

While many professional conference systems require a
dedicated network link, consumer oriented or mobile systems
often have to compensate network impairments like delay
jitter, bandwidth limitation and packet loss. To maintain low
delay during the whole conversation, several playout adaptation
schemes have been developed for VoIP (see Section II). For
high quality audio communication, however, these schemes are
either too aggressive or are based on adaptation during silence
periods, which do not appear in music in general.

In this paper, we therefore present a new flexible playout

adaptation, which is applicable for continuous and high quality
audio communication and can be parameterized by window
size and accepted late loss.

The Audio Communication Engine (ACE) [2], a low delay
audio communication system from Fraunhofer IIS with rate
adaptation support [3], is used as the basis for our implemen-
tations. It supports flexible playout adaptation using AAC-
ELD (Advanced Audio Coding-Enhanced Low Delay) [4][5],
not only to maintain low bit rate, low delay, and quality
robustness. The ACE also exploits the structure of AAC and
its excellent error concealment to provide fast and efficient
playout adaptation. ACE playout adaptation and flexible playout
adaptation are used as synonyms and both refer to the playout
adaptation techniques introduced in this paper.

The paper is structured as follows: existing playout adaption
schemes are introduced and discussed in section II. Section III
provides some general information about the network trace
files, which are used to evaluate the introduced mechanisms.
The AAC fundamentals with importance for playout adaptation
are presented in section IV and the flexible playout adaptation
techniques are described and evaluated in detail in section V.

II. RELATED WORK

First promising playout adaptation techniques have been
introduced in 1994 [6]. This paper compares four different
algorithms of playout adaptation for speech communication.
The spike-like structure of packet delays in the Internet has
already been discovered. As shown by measurements [7],
this structure can still be found. Three of the four described
Algorithms are based on weighted moving averages, similar
to the one defined in the RTP specification [8], but with
different tunings towards increasing/decreasing delays and spike
detection. The other algorithm has been taken from a tool called
NeVoT [9] and estimates the delay by calculating the minimum
delay of the last talk spurt.

A follow-up study by Moon et al. [10] proposed three
algorithms for playout adaptation, of which two are based
on linear filters as well. One algorithm follows a different
approach for delay jitter estimation: When a talk spurt starts,
the algorithm calculates a percentile point in a distribution
function (the index in a preallocated array) for the last w
packets, where w denotes the number of packets in a sliding
time window. The algorithm detects spikes and proceeds as
follows: once a spike is detected, it stops collecting packet
delays and follows the spike until it detects the end of a spike.978-1-4244-8953-4/11/$26.00 © 2011 IEEE



Another approach for jitter estimation has been proposed
in [2]. It calculates the mean and variance of packet delay
over a sliding window and estimates the network jitter using
the variance and an empirically chosen factor to calculate the
confidence interval.

Scaling audio and speech signals without modifying the
pitch is always a difficult matter and, therefore, most of the
playout adaptation algorithms schedule only the first frame of
a talk spurt and maintain fixed playout delay until the end of
the talk spurt. A study by Liang et al. [11] proposed audio
scaling based on a tailored WSOLA (Waveform Similarity
Overlap-Add) algorithm, which searches for a similar segment
using a template audio frame in the time domain. If a similar
frame is found, the two audio frames are cross-faded without
algorithmic delay by a symmetric window.

In contrast to voice communication, for which most of
the previously mentioned methods have been created, music
signals are much more continuous in nature than speech. While
talk spurts and silence periods can be used to schedule the
playout of each talk spurt individually for speech, scaling music
signals is much more critical and must be accomplished with
caution to limit time stretching artifacts. To support continuous
audio signals, the flexible playout adaptation therefore uses
a redesigned time stretching technique, which exploits the
structure of AAC and is described in detail in the following
sections.

III. NETWORK TRACES

To evaluate the mechanisms introduced in this paper towards
stability and functionality as well as to compare them to existing
techniques, a set of more than 500 network trace files has
been collected. The traces cover different network scenarios
(e.g. WLAN over DSL, GPRS, UMTS, LAN) and have been
recorded using a custom network tracer.

The nettracer simulates real RTP/UDP streams using pseudo
audio payloads with random data of the specific size and
framing interval, corresponding to AAC-ELD with 128 kbit/s
and to HE-AAC(v2) with 24 kbit/s at 4800 Hz. Both codecs are
configured to use constant bit-rate (CBR) audio streams. The
constant rate coder is regarded as the default audio coder [12]
and assures low delay over e.g. fixed rate channels and MPLS
connections.

For AAC-ELD, a frame length of 512 samples is used, which
results in a framing interval of 10.7 ms and a payload size of
171 B. HE-AAC(v2) is simulated with a frame length of 2048
samples, a framing interval of 42.7 ms, and a payload size of
149 B.

The nettracer client establishes an RTP/UDP connection
to the nettracer server, which is located at Fraunhofer IIS.
The server collects all relevant data, e.g. the network route,
network configuration, round trip time (rtt), etc. into one
trace file per configuration run. The client starts with the
first codec configuration (e.g. AAC-ELD) and switches to the
next configuration after 120 s. This process is repeated until
the user cancels the application. In the resulting trace file, the
sequence number, RTP timestamp and arrival time is recorded

for each RTP packet. The measurements have been conducted
by colleagues from Fraunhofer IIS from different locations
including both stationary and mobile network connections. The
set of traces comprises very lossy (about 40 %) as well as loss-
free channels with different characteristics towards jitter and
available bit-rate. All presented techniques have been analyzed
with other network simulators and have been tested in real
network scenarios in which they have shown similar behavior,
as with the network trace files.

IV. AAC FUNDAMENTALS

In the following, we briefly introduce AAC fundamentals
of importance to playout adaptation. We first describe the
internal structure of AAC and then continue with time scaling
techniques. The fundamentals are however not only specific to
AAC, but to transform-based audio codecs in general. Thus,
if the codec uses overlap-add and the audio codec’s conceal-
ment provides comparable audio quality as the concealment
technique described here, the flexible playout adaptation can
be applied as is.

A. AAC Framing

AAC is, like many audio codecs, a transform-based
codec [13][14][15]. To cancel aliasing, each frame of audio
samples (access unit) is overlapped partly by each of its
neighbors using a window function, e.g. a sine window. Hence,
AAC provides an implicit cross fade between adjacent access
units as shown in Figure 1.

   0 1 2 3 4 5

   

0

1

Access Unit No.

A
m

pl
itu

de

1 2 3 4

Fig. 1. Overlap add of adjacent access units in AAC

This implicit cross fade permits arbitrary access unit concate-
nation without clippings at the cost of aliasing artifacts. These
artifacts, however, are not critical in general if the dropping
rate is kept low.

B. AAC Concealment

For audio stretching, the ACE exploits the excellent conceal-
ment technique of AAC. Figure 2 shows a simplified example
of how AAC decoders can handle audio concealment. In this
example, the AAC decoder duplicates the spectrum of the last
audio frame shown in graph (a). The audio spectrum is flattened
afterwards to suppress the tonal parts of the signal as shown in
graph (b), and attenuated to fade out for longer concealment
periods as shown in graph (c). The phase of the audio signal
is additionally randomized in its algebraic sign to make the
concealed frame more noisy. Thus, AAC concealment could
be addressed as shaped noise concealment with attenuation. It
supports low delay, because the audio frame can be concealed
immediately, and requires low additional complexity compared
to other concealment methods, e.g. as introduced in [16].



(a) audio spectrum last frame

(b) flattened audio spectrum

(c) attenuated, flattened audio spectrum

ω

ω

ω

am
pl

itu
de

am
pl

itu
de

am
pl

itu
de

Fig. 2. AAC concealment example

V. ACE PLAYOUT ADAPTATION

Common mechanisms for playout adaptation are based on
the a priori playout scheduling of each audio frame. Our flexible
playout adaptation, however, increases playout delay implicitly
where late loss occurs and becomes active only when the
playout delay may be reduced according to the jitter estimation
result. The playout adaptation combines separate techniques,
starting with the estimation of packet delay jitter, which is
introduced in section V-A. The estimation result is then used
to control the buffer size. The buffer is stretched and shrunken
using mechanisms introduced in V-B. The adaptation process
is then further improved using loss to drop conversion in
section V-C and surplus dependent dropping in section V-D.

A. ACE Jitter Estimation

The ACE observes the incoming packet delay jitter con-
tinuously, to determine the maximum amount of packets to
be buffered, which are necessary to compensate the current
network jitter.

1) Absolute Delay vs. Interarrival Delay: To describe
absolute and interarrival delay, the following quantities are
defined:
• si: send time of packet with index i, which is conveyed

from sender to receiver using the RTP timestamp.
• ri: the reception time of packet with index i, measured

on the receiver side, e.g. using the system clock.
• pi: playout time of packet with index i, e.g. the receiver’s

system time at playout.
As shown in Figure 3, each send time si represents the offset
from a reference send time s0. The reference receive time
ri represents the elapsed time since r0. Thus, the absolute
values of si and ri depend on the reference times. The delay
variation, however, which is used for our jitter estimation does
not depend on the reference times.

sender

receiver

i-2 i
ts

tr

i-1s0

r0

si-2 si-1 si

ri-2 ri-1
ri

Fig. 3. Absolute packet delay example

The absolute delay is calculated as

di = ri − si. (1)

In contrast to the absolute delay, the interarrival delay is
based on the send and receive intervals from packet i to packet
i+ 1 on both the sender and the receiver side. Figure 4 shows
the sender time intervals ∆si and ∆ri. Using (1), the time
intervals can be expressed as

∆si = si − si−1 (2)
∆ri = ri − ri−1 (3)

and the interarrival delay as

d′i = ∆ri −∆si . (4)

The absolute delay can be derived from the interarrival delay,
as shown in Figure 4 (∆si + di = di−1 + ∆ri):

di = ∆ri −∆si + di−1. (5)

Note that d0 must be chosen in advance. It reflects the
delay offset of the first packet and is propagated through
all subsequent delay measurements. As the jitter estimation
assesses the delay variation only and neglects any arbitrary
offset, d0 can be set to 0 for simplicity.

sender

receiver

i-1 i

ts

tr

Δsi

Δri

di

di-1

Fig. 4. Absolute delay vs interarrival delay

2) Jitter Estimation Algorithm: Using Equation (5), the
absolute delay for each packet is calculated recursively. The
network jitter is then expressed by the dispersion of the packet
delays. Starting with delay values of a network trace, as
recorded using a custom network tracer, the absolute delay
is calculated using Equation (5) for each packet. The set of



delay values D and the normalized delay values D̂ are further
described as

D = {di}Mi=0 (6)

D̂ =
{
d̂i

}M

i=0
(7)

d̂i = di −min(D) (8)

where M is the total number of packets of the trace.
Some of our traces show heavy clock drift, because they

are recorded on different machines over the network. The
virtual playout adaptation of the percentile based method, as
described later, is error prone to such clock drift. Thus, before
further processing, the clock drift is compensated as described
below. Network packet delay is randomly distributed with
a common minimum baseline in general. The slope of the
baseline indicates the clock drift. To pick well matching anchors
for the linear regression, each trace is split into chunks using
the following equations:

P =

⌊
M

C

⌋
(9)

v = {0, 1, . . . P} (10)

cv =
{
d̂j

}(v+1)C

j=vC
(11)

where P is the number of chunks of size C and cv is the chunk
of index v. A chunk size of 1000 is used throughout the paper,
which covers around 11 seconds of audio. The minimum delay
value of each chunk is then used as an anchor point and is
calculated as

c′v = min
0≤j<C

(d̂vj ) (12)

where d̂vj denotes all normalized delay values in chunk cv . The
clock drift of the trace is now detected by linear regression
using all minimum delays c′v . The prototype function for linear
regression is represented by

f(x) = a · x+ b. (13)

The factor a is estimated as â and the offset b estimated as b̂
using standard regression:

â =

∑
c′v · v − 1

P

∑
c′v
∑
v∑

v2 1
P (
∑
v)

2 , (14)

b̂ = c̄′v − âv̄, (15)

where P corresponds to the number of minimum values c′v.
Clock drift is then compensated from the normalized delay
values using f̂(x), which uses the estimated values in equation
13 instead of a and b. The result is defined as

d̂′i = d̂i − f̂(i). (16)

After that, the actual percentile based algorithm is applied.
The normalized and compensated delay values are traversed
using the windows W :

W =

{{
d̂′m

}l+N

m=l

}M−N

l=0

, (17)

where N denotes the window size. Each window in W ′ contains
the sorted delay values of the windows W

W ′ =
{
d̂′m| d̂′m < d̂′m+1

}
. (18)

The playout delay necessary to receive a given percentage of
packets in time is expressed as the percentile p. It can be read
from the sorted window W ′ by calculating the index of the
percentile packet using

u = b p ·N c . (19)

(19) must be extended by a phase value, which propagates
the error of the index calculation to the next window:

φl = p ·N − ul (20)
ul = b p ·N + φl−1 c . (21)

The estimated jitter is now calculated as

ĵ = W ′[ul]−W ′[0]. (22)

3) Algorithm Comparison: To compare our percentile
method to the different playout adaptation algorithms, a virtual
playout scheduling algorithm is defined for the percentile based
jitter estimation. To test the best theoretical performance of
the algorithm, no restrictions are made to time shrinking and
stretching for the evaluation, thus, the playout schedule base
is re-defined in every window W to the minimum delay in the
window. The buffer time is set to the difference between the
entry with index ul and the first entry in window W ′. This
results in the following playout scheduling:

pl = ĵ +min(W ) (23)
= W ′[ul]−W ′[0] +min(W ) (24)
= W ′[ul] (25)

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

5

6
x 10

−3

packet sequence number

p
a
ck

e
t 
d
e
la

y 
in

 s
e
co

n
d
s

 

 

packet delay

alg 1

alg 2

std ⋅ conf

percentile

Fig. 5. Overview of jitter estimation algorithms (window size: 100 packets)

In Figure 5, algorithms 1 and 2 from [6], the variance
based method (std · conf ) from [3], and a 99 % percentile
based algorithm are plotted over the normalized packet delay.
Algorithms 1 and 2 follow delay variations very slowly, which



is a result of the weighted moving average method used.
The variance based method follows changes in packet delays
very fast, but overestimates packet delay jitter. The percentile
method, on the other hand, follows the packet delay almost
instantly and is therefore used for network jitter estimation
by the ACE. We used a window size of 100 packets for the
percentile based method. Details of the effect of the window
size will be discussed later in this section. The method takes
delay spikes into account for jitter estimation as well, in contrast
to the algorithm introduced in [10].

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

delay in seconds

fr
a

c
ti
o

n
 o

f 
tr

a
c
e

s

 

 

rfc3550

alg 1

alg 2

std ⋅ conf

percentile

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

late loss percentage

fr
a

c
ti
o

n
 o

f 
tr

a
c
e

s

 

 

rfc3550

alg 1

alg 2

std ⋅ conf

percentile

Fig. 6. CDF of delay and late loss

To further analyze the performance of the different algo-
rithms, Figure 6 shows the empirical cumulative distribution
functions of the mean delay and the late loss rate for 492
different captured network traces. The mean delay is defined
as follows:

d̄p =
1

M −N

M∑
k=N

pk − rk. (26)

The graph annotated with rfc3550 shows the jitter estimation
as it is carried in RTCP Receiver Reports as specified in [8].
Algorithm 1 and algorithm 2 have been taken from [10], stdv ·
conf is the older ACE variance method introduced in [2]
and percentile represents a (99.8 %) percentile based jitter

estimation as described earlier in this section. Regarding the
delay, only rfc3550 and std · conf perform better than the
percentile method. Taking a look at the late loss rate, however,
the two techniques suffer from very high late loss rates - they
appear both at the bottom of the lower graph and provide
unacceptable loss rates. Algorithm 2 provides a late loss close
to the late loss rate of the percentile method, however at a higher
delay. Our percentile method introduced in this paper shows
not only very low delay, it is also customizable towards the
accepted late loss and the window size of the jitter estimation.

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

window size in packets

m
e
a
n
 d

e
la

y 
ch

a
n
g
e
 [
%

]

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

window size in packets

la
te

 lo
ss

 r
a
te

Fig. 7. Window size versus mean delay and late loss from 213 traces

The effects of the window size of the percentile based jitter
estimation on mean delay and late loss are not obvious from
the algorithm alone and require further investigation. Figure 7
shows the relative change in the mean delay and the jitter
estimation window size for 213 network traces. We limited the
number of traces for the sake of clarity. The change in mean
delay, shown on the Y-axis, is always calculated relative to
the mean delay of the smallest window size. This allows the
comparison of many different traces within one graph. Window
sizes vary from 10 to 1000 packets in steps of 50 packets.
The resulting mean delay of each trace is plotted as a plus.
The mean over all traces is shown by a thick solid red line.
Although the mean delay is very stable, some traces exist with
increasing mean delay caused by increasing windows. This
effect is originated in the windowing itself: Small windows
adapt very quickly to small changes in packet delay without
adding much playout delay. Larger windows tend to require
more playout delay, especially where large delay spikes occur,
but they provide better results for the desired late loss rate.

For some traces, the packet delay shows periodic intervals
of high and low jitter. This can be caused for example by
interfering wireless devices. The late loss results of such traces
converge to the desired late loss rate as soon as the window
size reaches the period of the high and low jitter intervals.

Two traces in figure 7 show particularly bad late loss results,
reaching up to 30 % late loss instead of the desired 10 %. These
traces show varying long term slopes of network jitter, which



can not be predicted reliably by any shown algorithm here.
The correct window size depends on the desired adaptation

speed and audio quality of the playout adaptation, as well
as possible periodic network delay effects. Small windows
(e.g. 20 to 500) induce many audio scaling events, which
degrade subjective audio quality. This is not acceptable for
high quality audio communication. For the ACE, window sizes
of 800 to 1000 have proved useful, as they grant good late
loss results for most network conditions and react sufficiently
to changes in packet delay jitter.

B. ACE Time Scaling

The playout adaptation control of the ACE works separately
for stretching and shrinking. In spite of stretching the audio
signal pro-actively before a potential delay burst, the ACE
keeps the overall delay as low as possible and thus does not
maintain any surplus of packets in its buffer. Instead, it uses
late loss for re-buffering implicitly whenever a buffer under
run occurs. If the packet buffer of the receiver carries more
packets than required by the current jitter estimation, time
shrinking is accomplished. Both mechanisms are described in
the following.

1) ACE Time Stretching: Figure 8 depicts an example:
Frame 4 is received too late and has to be concealed due
to packet buffer under run. The frame is received nevertheless
before frame 5. The ACE then decodes frame 4 next, as if no
concealment occurred and thus stretches the audio signal by
one frame.

ACE time stretching therefore relies on the quality of the
AAC error concealment and that the quality degradation due
to playing out late audio frames is negligible if a buffer under
run and thus concealment occurs.

1 2 3 4 5

1 2 3 C 4 5

Fig. 8. Access unit decoding order for time stretching

2) ACE Time Shrinking: To reduce the buffer size, the ACE
exploits the implicit cross fade of AAC as already explained
in Section V. By simply discarding one access unit, the buffer
fullness is reduced by one frame length, e.g. 21.3 ms for 1024
samples at 48 000 Hz sample rate. Figure 9 shows the two
access unit sequences before and after dropping takes effect.

1 2 3 4 5

1 2 4 5

Fig. 9. Access unit decoding order for time shrinking

The amount of dropping is controlled in the ACE receiver by
calculating a specific dropping rate. The receiver also decides
which access units are dropped and can base this decision on

signal properties, like the amount of energy in the frame or
other more sophisticated correlations. For the sake of simplicity,
we start with a constant dropping rate here. The associated
dropping distance (1/drop rate) specifies the adjacent number
of audio frames, after which a drop takes place. The dropping
control, however, provides some additional features, which will
be explained in the following.

C. Loss to Drop Conversion (LDC)

Frames that are lost on the network are concealed using AAC
concealment in general. In lossy networks with varying network
delay, however, the audio quality can be strongly impaired by
frequent drops due to playout adaptation and concealments due
to network loss. Instead of concealing the lost packets, they
are interpreted as drops and the total number of concealments
is reduced depending on the drop rate. Algorithm 1 is used to
convert packet loss to drops.

Algorithm 1 Dropping Instead of Concealment
if pkt cnt = drop dist then

if dropped early then
dropped early ← 0
pkt cnt← 0

else
drop()
pkt cnt← 0

end if
end if
pkt cnt← pkt cnt+ 1
if loss then

if dropped early then
conceal()

else
drop()
dropped early ← 1

end if
end if

The concealment reduction due to loss to drop conversion
heavily depends on the network loss. Thus only some traces
show significant improvements. To avoid additional conceal-
ments, all lost packets can be re-interpreted as drops as long
as the buffer contains too many packets according to the jitter
estimation.

Figure 10 shows the difference in the number of conceal-
ments and mean delay of 212 network traces. All other traces
do not show loss and thus have been discarded for this plot.
The result is charted in a violin plot, which is a combination
of a box plot and a kernel density plot. The width of the shape
indicates the density of the traces, like a vertical density plot.
The box inside the shape covers the second and third quartiles
in solid black and a solid grey dot marks the samples’ median.

The mean delay reduction ∆dldc is defined as the relative
change in mean delay over all traces between active (dldc) and



inactive (dnrm) loss to drop conversion:

∆dldc =
dnrm − dldc
dnrm.

(27)

The resulting ∆dldc is shown on the left and indicates a
maximum mean delay reduction of 80 %. The first and third
quartile are close to the median at the bottom of the graph.
This confirms the assumption that the improvements occur for
certain network conditions only. The cost in terms of late loss
∆lldc as shown in the right plot remains below 2 %. ∆lldc is
defined as follows:

∆lldc = lldc − lnrm, (28)

where lnrm denotes the loss rate without loss to drop conversion
and lldc the loss rate with loss to drop conversion for each
trace. The shape of the violin plot, however, is much more
narrow compared to the delay reduction and thus indicates low
late loss costs.

0
20

40
60

80

de
la

y
re

du
ct

io
n

[%
]

0.
0

0.
5

1.
0

1.
5

2.
0

la
te

lo
ss

co
st

[%
]

Fig. 10. Loss to drop conversion results (212 real network traces)

To ensure that the late loss to drop conversion never costs late
loss without reducing the delay, we need to compare the change
in delay to the additional cost due to late loss. Therefore, we
introduce another quantity Rldc, expressing the relative delay
reduction per concealment for each trace:

Rldc =
∆dldc
∆lldc

. (29)

Figure 11 shows the delay reduction per late loss for all traces
where late loss is increased by the algorithm. The violin plot
contains positive values only and hence proves this assumption.
The reduction of delay is up to 1700 ms per concealed audio
frame.

D. Surplus Dependent Dropping

Buffer Surplus Dependent Dropping (SDD) can be applied,
if delay jitter changes rapidly over time. Figure 12 shows the
principles of buffer SDD. The key concept of SDD is to change
the dropping rate on the fly, depending on the surplus of the
packet buffer. The surplus s of the packet buffer represents
the difference between buffered time tb and jitter estimation ĵ
using Equation (22):

s = tb − ĵ (30)

0
50

0
10

00
15

00

de
la

y
re

d.
/

co
nc

ea
l.

Fig. 11. Loss to drop conversion results (212 real network traces)

The dropping rate δmax indicates the upper limit of dropping,
δmin the lower limit. SDD is active between a minimum surplus
smin and a maximum surplus smax. The dropping rate is
calculated as

δ =

 δmin if s ≤ smin

β(s− smin) + δmin if smin < s < smax

δmax if s ≥ smax

(31)

β =
δmax − δmin

smax − smin
(32)

time

de
la

y

playout

packet delay

δmax

δmin

Fig. 12. Buffer Surplus Dependent Dropping

Using SDD, the receiver can catch up faster to heavily
decreased jitter while still preserving smooth adaptation for
small s. Figure 13 shows the mean delay reduction ∆dsdd
for SDD (δmax = 50%, δmin = 1%, smax = 100ms and
smin = 0ms) compared to a fixed dropping rate (δ = 1%) in
a violin plot on the left side. ∆dsdd indicates the relative delay
reduction between the mean delay using standard adaptation
dnrm and SDD dsdd for each trace:

∆dsdd =
dnrm − dsdd

dnrm
. (33)

The ∆dsdd median is at 20 % and 75 % of the traces lies
between 12 % and 28 %, thus covering a significant number
of traces. The delay reduction reaches up to 88 % for single
traces. The cost in late loss ∆lsdd shown on the right hand
does not reach 7 %. ∆lsdd is defined as the difference between
the late loss rate with SDD lsdd and the late loss rate without
SDD lnrm:

∆lsdd = lsdd − lnrm. (34)

75 % of the traces lie clearly below 1 %. The graphs are
sampled from 48 out of 212 network traces, which are selected
for a network loss rate below 10 % and a maximum normalized



delay above 100 ms. Traces with maximum normalized delay
below 100 ms showed very little difference in both delay and
number of concealed audio frames.

0
20

40
60

80

de
la

y
re

du
ct

io
n

[%
]

0
1

2
3

4
5

6

la
te

lo
ss

co
st

[%
]

Fig. 13. SDD results taken from 48 out of 212 real network traces

To show that SDD never causes late loss without reducing
the mean delay, we express the relative delay reduction per
concealment for each trace Rsdd:

Rsdd =
∆dsdd
∆lsdd

. (35)

Figure 14 depicts the resulting Rsdd over all traces where
late loss occurs. The violin plot shows only positive values,
thus confirming our hypothesis. The mean is close to 100 ms
per concealment, which shows that the delay reduction with
SDD strongly depends on the changes of the stationary jitter
during the network connection. For some traces, however, the
delay reduction per concealment reaches a significant gain of
4000 ms per late loss.

0
10

00
20

00
30

00
40

00

de
la

y
re

d.
/

co
nc

ea
l.

Fig. 14. SDD delay gain per concealment

VI. CONCLUSION

Adaptive playout is an efficient mechanism to combat
network delay variations, also known as jitter. In this pa-
per, we introduced a parametric playout adaptation for high
quality audio transmission, which we designed for network
connections with varying delay. The framework is based on
continuously monitoring network jitter using a percentile based
jitter estimator and full band audio time stretching techniques.
The percentile based jitter estimator has been compared to
existing jitter estimation algorithms using a significant number
of network traces and reduces the mean delay by about 20 %

to comparable algorithms. The evaluation of the window size
and accepted loss rate towards average delay and measured late
loss showed robust results with different window sizes without
affecting both parameters. The measured loss rate follows the
accepted loss rate closely for most traces.

The time scaling mechanisms exploit the structure of the
underlying audio codec like overlap-add and shaped noise
concealment with particular low complexity. A mechanism to
convert network loss to frame drops improved the audio quality
considerably and showed a gain in delay reduction of up to
1700 ms per additional concealment percentage point. Surplus
Dependent Dropping has been introduced to follow long term
delay changes quickly and thus reducing the mean delay
significantly reaching up to 4000 ms per additional concealment
percentage point.

Therefore, our flexible adaptive playout can significantly
increase the reliability of the service under difficult network
conditions and is therefore an essential component for high
quality audio communication over IP networks.

ACKNOWLEDGMENT

The authors especially would like to thank Sebastian Vogel
for the development and deployment of the nettracer applica-
tion.

REFERENCES

[1] ITU-T, “G.722.2: Wideband coding of speech at around 16 kbit/s
using Adaptive Multi-Rate Wideband (AMR-WB),” Telecommunication
Standardization Sector, July 2003.

[2] J. Issing, N. Färber, and M. Lutzky, “Adaptive Playout for VoIP Based on
the Enhanced Low Delay AAC Audio Codec,” in 124th AES Convention,
Amsterdam. Audio Engineering Society, May 2008.

[3] J. Issing, S. Reuschl, N. Färber, and R. German, “RTCP based Bit-Rate
Adaptation for AAC Audio Communication,” in Proceedings of NEM
Summit 2009, St.Malo, 2009, p. 6.

[4] M. Schnell, R. Geiger, J. Herre, M. Jander, M. Multrus, M. Schmidt, and
G. Schuller, “Enhanced Mpeg-4 Low Delay AAC - Low Bitrate High
Quality Communication,” in 122th AES Convention, Munich. Audio
Engineering Society, May 2007.

[5] “ISO/IEC 14496-3 – MPEG-4 Standard: Information technology – Coding
of audiovisual objects – Part 3: Audio,” International Organization
for Standardization, Geneva, Switzerland International Electrotechnical
Commission, 2008.

[6] R. Ramjee, J. Kurose, D. Towsley, and H. Schulzrinne, “Adaptive
Playout Mechanisms for Packetized Audio Applications in Wide-Area
Networks,” in INFOCOM ’94. Networking for Global Communications.,
13th Proceedings IEEE, Toronto, June 1994, pp. 680–688.

[7] A. P. Markopoulou, F. A. Tobagi, and M. J. Karam, “Assessing the
Quality of Voice Communications over Internet Backbones,” IEEE/ACM
Transactions On Networking, vol. 11, pp. 747–760, 2003.

[8] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP:
A Transport Protocol for Real-Time Applications,” RFC 3550
(Standard), jul 2003, updated by RFC 5506. [Online]. Available:
http://www.ietf.org/rfc/rfc3550.txt

[9] H. Schulzrinne, “Voice communication across the Internet: a network
voice terminal,” University of Massachusetts, Tech. Rep. UM-CS-1992-
050, 1992.

[10] S. B. Moon, J. Kurose, and D. Towsley, “Packet audio playout delay
adjustment: performance bounds and algorithms,” Multimedia Systems,
vol. 6, no. 1, pp. 17–28, 1998.

[11] Y. J. Liang, N. Faerber, and B. Girod, “Adaptive playout scheduling
and loss concealment for voice communication over IP networks,” IEEE
Transactions on Multimedia, vol. 5, pp. 532–543, 2003.



[12] J. Herre, “Temporal Noise Shaping, Quantization and Coding Methods
in Perceptual Audio Coding: A Tutorial Introduction,” in Proceedings of
the 17th International AES Conference on High Quality Audio Coding,
Signa, Italy, September 1999.

[13] “ISO/IEC 13818-3 – MPEG: Information technology – generic coding
of moving pictures and associated audio – Part 3: Audio,” International
Organization for Standardization, Geneva, Switzerland International
Electrotechnical Commission, 1994.

[14] K. Brandenburg and G. Stoll, “ISO-MPEG-1 Audio: A Generic Standard

for Coding of High Quality Digital Audio,” in Collected Papers on
Digital Audio Bit-Rate Reduction. Audio Engineering Society, May
1996.

[15] K. Tsutsui, H. Suzuki, O. Shimoyoshi, M. Sonohara, K. Akagiri, and R. M.
Heddle, “ATRAC: Adaptive Transform Acoustic Coding for MiniDisc,”
in 93rd AES Convention, San Francisco. Audio Engineering Society,
October 1992.

[16] C. Perkins, RTP - Audio and Video for the Internet. Addison-Wesley,
2003.


