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Abstract—Increasing the modal share of bicycle traffic to
reduce carbon emissions, reduce urban car traffic, and to improve
the health of citizens, requires a shift away from car-centric
city planning. For this, traffic planners often rely on simulation
tools such as SUMO which allow them to study the effects
of construction changes before implementing them. Similarly,
studies of vulnerable road users, here cyclists, also use such
models to assess the performance of communication-based road
traffic safety systems. The cyclist model in SUMO, however, is
very imprecise as SUMO cyclists behave either like slow cars
or fast pedestrians, thus, casting doubt on simulation results for
bicycle traffic. In this paper, we analyze acceleration, velocity,
and intersection left-turn behavior of cyclists in a large dataset of
real world cycle tracks. We use the results to derive an improved
cyclist model and implement it in SUMO.

Index Terms—Urban planning, Motion sensor data, Sensor
data analysis, Traffic simulation

I. INTRODUCTION

Active transportation modes such as cycling provide health
benefits, alleviate traffic congestion, and reduce air pollution [1].
In practice, however, cyclists often face a car-centric traffic
infrastructure which has a significant impact on their (perceived)
safety and also affects the attractiveness of cycling routes [2]–
[4]. Changing this infrastructure to better accommodate cyclists
and pedestrians requires significant planning efforts of city
planners and traffic engineers. Similarly, road traffic safety
systems for vulnerable road users are often assessed using
simulation. Particularly the interaction with cars is relevant
when it comes to V2X-based safety systems for cyclists [5].
Many of these studies rely on the open source simulation
platform SUMO1 (Simulation of Urban Mobility), which allows
them to study the effects of infrastructure changes before
implementing them on the streets.

In SUMO, vehicles and their dynamics are simulated indi-
vidually [6]. Unfortunately, the cyclist model is not particularly
realistic – cyclists can either be modeled to behave as slow
cars or as fast pedestrians. Several studies have already
improved the bicycle model of SUMO. For instance, Kaths
and Grigoropoulos [7] investigated the intersection behavior
of cyclists using camera traces and transferred findings into
SUMO. Also, Grigoropoulos et al. [8] improved modeling of
bicycle infrastructure at intersections while Heinovski et al. [9]
created a virtual cycling environment to import real bicycle
behavior directly into SUMO. Nevertheless, the current cyclist

1https://www.eclipse.org/sumo/

behavior in SUMO is still rather unrealistic; so far, researchers
have devoted much more effort to car models, e.g., [10]–[17].
One reason for this is that, until recently, not enough data
on real-world cyclist behavior have been available. Today,
crowdsourced data collection approaches such as SimRa2 [2]
have made thousands of cycle tracks available as open data.

In this paper, we analyze the SimRa dataset regarding
acceleration and velocity of cyclists as well as their left-turn
behavior in four-way intersections. We then use our findings to
improve the cyclist model in SUMO. In this regard, we make
the following contributions:

• We show that SUMO’s default bicycle simulation is not
realistic (Section IV),

• we improve bicycle simulation in SUMO by deriving new
parameters for that vehicle type in SUMO (Section V),

• we develop an intersection model which captures cyclists’
left-turn behavior at intersections in a more realistic way
(Section V), and

• we compare our improvements to SUMO’s default bicycle
simulation, using the SimRa dataset as a ground truth
(Section VI).

II. BACKGROUND

In this section, we give an overview of SUMO (see Sec-
tion II-A) and SimRa (see Section II-B), which provided the
dataset we used in our work.

A. SUMO

SUMO is an open source traffic simulation tool that offers
macroscopic as well as microscopic simulation of vehicle
mobility [6]. SUMO includes models for different types of
“vehicles”, including, among others, cars, bicycles, and even
pedestrians. Due to its large feature set, it has become the de-
facto standard for traffic simulation and is used even beyond
the transport community, e.g., [18].

Traffic scenarios are, among other things, defined by road
networks and vehicle traffic. The road network includes roads
and their (sub-)lanes as well as exclusive lanes for cyclists and
pedestrians, or road-side infrastructure such as traffic lights.
Furthermore, connections between these lanes and traffic lights
can be configured.

2https://github.com/simra-project/
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When modeling vehicle traffic, users specify demand for
a specific road segment per vehicle type and can adjust
vehicle-specific parameters of SUMO’s simulation model to
control their respective behavior. In general, vehicle parameters
are usually specified in the vehicle type declaration (vType),
applying the changes to all instances of the respective vType,
e.g., to all cars. An alternative, however, is to obtain multiple
vType realizations which typically differ in at least one
parameter by using so-called vTypeDistributions. This way,
when spawning a new vehicle, SUMO randomly picks a specific
vType from the vTypeDistribution and instantiates the vehicle’s
parameters accordingly, e.g., cars can thus have individual
maximum velocities.

In SUMO, vehicle behavior is, among other things, defined
by Car Following (CF) models for the longitudinal kinematic
behavior, Lane Change (LC) models for the lateral kinematic
behaviour, and junction models for the behavior at junctions
and intersections.

Despite including several of these models for cars and trucks,
SUMO does not provide a dedicated movement model for
cyclists. Instead, cyclists are simulated by modeling them either
as slow cars or fast pedestrians. Both of these approaches
use movement models of the corresponding vehicle type and
adapt their respective shape and kinematic characteristics (e.g.,
velocity and acceleration profiles) to match cyclists. While this
is obviously a rough approximation, it is unlikely to reflect the
behavior of real-world cyclists [8].

B. SimRa

SimRa is an open source project started in 2019 which aims
to identify hotspots of near miss incidents in bicycle traffic [2],
[19]. For this, the project follows a crowdsourcing approach
in which cyclists record their daily rides using a smartphone
application available for both Android and iOS. Today, the
project has managed to record more than 65,000 rides, most
of them in Germany, approximately half of them in Berlin.

During the ride, SimRa records the GPS trace at 1/3Hz
and the motion sensors, i.e., (linear) accelerometer, gyroscope,
and rotation vector at 50Hz; the motion sensor readings are
aggregated by calculating a moving average with a window
size of 30 and then keeping only every fifth value. This was
done for saving memory, battery, and mobile data usage while
still being able to reconstruct the ride and detect near miss
incidents. After the ride, SimRa shows the recorded ride as a
route on the map which is then annotated, cropped (for privacy
reasons), and uploaded by the user. In this paper, we only use
measured data from the ride files and disregard user-annotated
data on near miss incidents.

III. RELATED WORK

In this section, we give an overview of related work on
improving intersection behavior (Section III-A) and longitudi-
nal (Section III-B) behavior of cyclists in SUMO’s simulation
models.

A. Intersection Behavior of Cyclists

Kaths and Grigoropoulos [7] aim to address the shortcomings
of SUMO’s intersection model for cyclists. For this, they record
video footage of an example intersection in Munich and derive
cyclist trajectories. From the set of trajectories, they select one
representative trajectory for each combination of start and end
points in the intersection and make it available to SUMO via an
external API. While this is a significant improvement in realism
over SUMO’s intersection model, it is hard to generalize to
other intersections and cannot cover the plurality of trajectories
chosen by real-world cyclists.

Similar to Kaths and Grigoropoulos [7], Grigoropoulos et al.
[20] analyze video footage of intersections with the goal of
better understanding the intersection behavior of cyclists. Their
focus, however, is not on deriving an improved intersection
model but rather on identifying best practices for traffic planners
working on intersections with high volumes or cycling traffic.
Grigoropoulos et al. [8] propose to adjust the default traffic
infrastructure inside SUMO to achieve more realistic cyclist
behavior at intersections. Here, they focus on the number and
shape of bicycle lanes which, however, are highly specific and
differ from intersection to intersection.

B. Longitudinal Behavior of Cyclists

Twaddle and Grigoropoulos [21] examine four models for the
longitudinal kinematic behavior of cyclists, i.e., acceleration
and velocity. The first, called Constant Model, is the most
simple one and is the SUMO default: Cyclists accelerate and
decelerate at a constant rate until the desired velocity is reached.
This model works well when breaking to a full stop but leads
to frequent acceleration jumps between a fixed positive or
negative value and zero, which is not realistic cyclist behavior.
In the Linear Decreasing Model, maximum acceleration is
reached, when starting the acceleration maneuver and then
linearly declines until the desired velocity is reached. This
model is outperformed by all other models. In the third and
fourth models, Polynomial and Two Term Sinusoidal Model,
acceleration or deceleration start at zero and then gradually
grow over time. In their paper, Twaddle and Grigoropoulos [21]
analyze the video recordings of 1030 rides in four intersections
in Munich, Germany and conclude that the Polynomial Model
has overall the most realistic cyclist behavior but is, however,
not trivial to implement in SUMO.

A different approach of achieving realistic cycling behavior
in SUMO is taken by Heinovski et al. [9]. The authors
simulate multiple traffic scenarios in which accidents between
cars and cyclists occur to investigate the effects of wireless
communication between cyclists and other road users in the
context of accident prevention. In order to obtain realistic
cycling behavior for SUMO, they set up a novel Virtual
Cycling Environment (VCE) featuring an actual bicycle that
is connected to the simulation via multiple sensors. The VCE
supports interactive empirical studies in a physically safe
environment and allows the authors to record the cyclists’
behavior in the form of trajectories. They use a set of recorded
trajectories from different cyclists for emulating realistic cycling



behavior inside SUMO to simulate accidents. Although their
approach produces trajectories from cyclists created with an
actual bicycle, it does only achieve limited realism, since no
other road users were present when recording the trajectories.
Furthermore, deriving a realistic set of trajectories requires a
large number of test persons.

IV. CYCLING BEHAVIOR IN SIMRA AND SUMO

In this section, we analyze real-world cyclists’ behavior
extracted from the SimRa dataset and compare it to the behavior
of SUMO’s default bicycle model. We analyze acceleration and
velocity behavior in Sections IV-A and IV-B before discussing
left-turn behavior at four-way intersections in Section IV-C.
We omit a detailed discussion of the right-turn behavior at
intersections, since SUMO’s default model does not deviate
much from the behavior observed from SimRa’s dataset. When
referring to SUMO’s bicycle model, we refer to the “slow car”
model of SUMO as the “fast pedestrian” model occasionally
leads to poor results and was therefore not considered further.

Aside from the public SimRa datasets [22], [23] and more
recent rides available on GitHub,3 we also used non-public
rides which have, for privacy reasons, not been published yet.
Table I summarizes the most important attributes of the dataset
that we used.

Since SimRa’s dataset stems from crowdsourced smartphone
data generation, it suffers from poor sensor quality [24], [25]
as well as heterogeneous hardware and users [26]. To achieve
the best possible data quality, we tested various pre-processing
techniques and filters. We also conducted an experiment in
which sample trajectories were recorded in parallel on several
SimRa client devices and compared to a ground truth trajectory
recorded by a stand-alone GPS receiver. In the end, we used a
Gaussian Kernel filter for improving location data and a Low
Pass filter for the velocity data. After filtering semantically and
syntactically defective files, we used data from 43 961 rides
as input for our analysis scripts.4

Since most of the data were recorded in Berlin, Germany, all
examples in the following focus exclusively on Berlin scenarios.

A. Acceleration

For analyzing cyclist acceleration, we extracted acceleration
maneuvers from the dataset. For this, we slightly adapted the
approach of [27] and found 140 736 acceleration maneuvers
in the cleaned dataset. Distribution fitting processes showed

3https://github.com/simra-project/dataset
4https://github.com/simra-project/SimRaXSUMO

Table I
MOST IMPORTANT ATTRIBUTES OF ENTITIES THE SIMRA DATASET

Total Used

Rides 57 662 43 961
Acceleration Maneuvers 1 922 087 140 736
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Figure 1. Histogram of the empirical maximum acceleration capabilities
of cyclists found in the SimRa dataset and the fitted EMG. The red scalar
represents the default value in SUMO.

that the Burr (Type XII) distribution [28] Burr(amax; Φ*) fits
the data best (see also Fig. 1).

Comparing the acceleration capability of actual cyclists (the
SimRa dataset) with the default SUMO bicycle model, differ-
ences become apparent. By default, SUMO specifies aSUMO

max

with 1.2m/s2. This deviates significantly from the findings in the
SimRa dataset where only 7.7% of the acceleration maneuvers
are executed with a maximum acceleration of 1.2m/s2 or higher.
Furthermore, the empirical distribution is rather wide, indicating
a broad variance across different cyclists and cycling situations,
which is in stark contrast to SUMO’s strategy of choosing a
fixed maximum value.

B. Velocity

To gain insights into cyclists’ behavior regarding their
velocities, we calculate the maximum velocity for each ride
file in the cleaned SimRa dataset. Using distribution fitting,
we found that the SU distribution Johnson [29] JSU(vmax; Φ*)
fits the empirical data best (see also Fig. 2) and is therefore a
valid fit for the specification of the empirical distribution of
vSimRa
max .

On the other hand, SUMO sets vSUMO
max at 5.56m/s by default.

This deviates significantly from the findings in the SimRa
dataset where 86.7% of the rides have a higher maximum
velocity. Bringing this together with the acceleration findings,
real-world cyclists often (but not always) cycle much faster
than SUMO cyclists and vary much more in their acceleration
behavior.

C. Left-turn Behavior at Intersections

According to the SimRa dataset, cyclists either behave like
cars (using the normal road) or pedestrians (using the pedestrian
crossing) to take left-turns at intersections. We call the former
a direct left turn and the latter an indirect left turn.

SUMO’s default model only provides cyclists with the direct
left turn behavior, thus significantly limiting the simulation’s
degree of realism (see also Fig. 3).

Taking a closer look at real world intersections in the SimRa
dataset revealed that there are two distributions of left-turn
behavior in practice. In the first, the indirect path is chosen with
a probability of 57 ±7%, while on intersections following the
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Figure 2. Histogram of the empirical maximum velocity data and the fitted
JSU. The red scalar represents the default value in SUMO.

Figure 3. Qualitative comparison between the SUMO default intersection
model and real world data given by SimRa for the intersection between
Alexanderstraße and Karl-Marx-Allee in Berlin. SimRa shows two distinct
left-turn paths (i.e., a direct and an indirect one) whereas SUMO default only
models the direct path.

second, almost all cyclists choose the indirect path. Randomly
investigating intersections of both types revealed that the first
type has no specific characteristics while the second type
actively encourages cyclists to indirect turns through the design
of the intersection, e.g., by having a traffic island in the center.
Since such information cannot be identified in Open Street Map
(OSM) data reliably and in an abstract way, we will consider
only the first distribution in the following.

SUMO and real world data differ decisively in all metrics
considered, namely acceleration, velocity, and left-turn behavior
at intersections. However, these three metrics are crucial for
realistically simulating bicycle traffic. In the following, we try
to adapt SUMO to simulate a more realistic cyclist behavior.

V. IMPROVING SUMO’S BICYCLE SIMULATION

To improve the simulation, we propose two changes to
SUMO’s bicycle model: First, the longitudinal kinematic param-
eters of SUMO’s default bicycle model are (re-)parameterized
based on the findings from the SimRa dataset. Second, a
novel simulation model is derived from SimRa trajectories
to exclusively simulate realistic left-turn bicycle behavior at
intersections based on the findings in Section IV. The latter
model is referred to as the intersection model in the following.

A. Longitudinal Kinematic Behavior

In Section IV, we derived maximum acceleration and
maximum velocity characteristics from the SimRa dataset.
We now use them to improve the longitudinal kinematic
behavior of the default SUMO bicycle model. Contrary to
the default parameterization, we use theoretical distribution
functions instead of scalar values for the exposed kinematic
parameters. This enables the model to produce more realistic
bicycle simulation results since the heterogeneity of real world
cycling styles is reflected.

We derive the theoretical distributions by aggregating the
respective features from Sections IV-A and IV-B. For this, we
rely on the law of large numbers which states that the average
of the results obtained from a large number of trials of the same
experiment eventually converges to its true expected value [30].
In the context of this work, this means that individual rides
do not matter but that the aggregates of multiple rides will
converge towards their actual expected value given a sufficiently
large number of rides.

In our analysis, we found no correlation between amax and
vmax and, hence, decided to use both independently in our
kinematic model. For the implementation, we used vTypeDis-
tributions following the results of our previous analysis and
sample both distribution independently.

It should be noted that through the parameterizations with
theoretical probability density functions SUMO’s speedDev
parameter becomes obsolete as variance between the kinematic
preferences among cyclists are already represented by the
distribution function.

B. Left-turn Behavior at Intersections

To improve the degree of realism in cyclists’ left-turn
behavior at signaled intersections, we use an adapted version
of the external intersection model (a Python script that steers
cyclists via SUMO’s Traffic Control Interface) as proposed
by Kaths and Grigoropoulos [7] which is based on previously
recorded real-world trajectories as their guidelines for cyclists
across a single predefined intersection. Our approach algorithmi-
cally synthesizes the cyclists’ trajectories (i.e., their respective
guidelines across the intersection) for any regular four-way
intersection and can therefore be seen as a step towards a more
universal solution.

The left-turn maneuver distribution, as we call it, specifies
the probability of the cyclists choosing either the direct or
the indirect path to cross the intersection. For this, we use
the distribution derived in Section IV-C as the default for our



Figure 4. Excerpt from the Mehringdamm scenario in SUMO. The scenario
was created using OSM data only.

intersection model. Users, however, can adjust the distribution
if desired or needed for their specific purposes (see also the
exception cases in Section IV-C).

VI. EVALUATION

In this section, we evaluate our new approach from Section V
by comparing it to SUMO’s default simulation model and the
real-world data taken from the SimRa data set. We start by
analyzing acceleration (Section VI-B), velocity (Section VI-C),
and left-turn behavior at intersections (Section VI-D) before
evaluating the combination of all model extensions (Sec-
tion VI-E). Please note: While it may appear obvious that using
the SimRa data set for both parameterization and evaluation
should lead to perfect results, this is not the case as our
extensions are subject to the design restrictions imposed by
SUMO

A. Simulation Setup

As SUMO users can import real-world scenarios from
OSM data, simulation results can be compared to real-world
data and thus be evaluated. For our evaluation, we chose
specific traffic scenarios that are representative and likely to
showcase both strengths and weaknesses of our extensions.
For evaluating the longitudinal behavior (acceleration and
velocity), we chose urban traffic scenarios with long straight
sections. As an example location, we use Oranienstraße in
Berlin. For evaluating left-turn behavior, we chose compact
scenarios around signaled intersections. For this, we study
three intersections in Berlin, namely at Mehringdamm (see
also Fig. 4), Warschauer Straße, and Alexanderstraße.

For our evaluation, we use SUMO version 1.7.0 and a
step size of 1 s in simulations. The SUMO default results
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Figure 5. Histogram of SUMO’s, SimRa’s, and our approach’s observed
maximum accelerations inside the example Oranienstraße scenario. While
the maximum accelerations are heterogeneously distributed in the real-world
data and our approach, the default values are clustered. Here, the observed
accelerations deviate from the configured default value (1.2m/s2) due to traffic
effects inside the simulation.
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Figure 6. Histogram of SUMO’s, SimRa’s, and our approach’s observed
maximum velocities inside the example Oranienstraße scenario. While the
maximum velocities are heterogeneously distributed in the real-world data and
our approach, the default values are clustered.

are obtained with SUMO’s vType Bicycle for cyclists. Thus,
the maximum acceleration and maximum veocity are scalars
and set to 1.2 m s−2 and 5.6 m s−1 respectively.

B. Acceleration

Fig. 5 shows the empirical distributions of the maximum
acceleration among cyclists inside a specific simulation scenario
and the corresponding real world data. It is evident that real-
world acceleration maneuvers show heterogeneous maximum
rates of acceleration. Apparently, the default parameterization
is not suitable to describe this acceleration behavior among
cyclists, as it provides homogeneous maximum acceleration
rates within the simulation. Our new parameterization is
significantly closer to the real-world behavior in the SimRa
data set with its highly heterogeneous behavior across cyclists.
That our new parameterization is not a perfect fit indicates
that there are probably additional influence factors, e.g., the
traffic density or the the weather situation, not covered in our
kinematic model which aggregates data from all SimRa rides.

C. Velocity

Fig. 6 shows the empirical distributions of the cyclists’
maximum velocities in the same simulation and the real-world



Figure 7. Qualitative comparison between the results of our approach for the
intersection model and real-world data given by SimRa for the intersection
between Alexanderstraße and Karl-Marx-Allee in Berlin. SimRa shows two
distinct left-turn paths (i.e., a direct and an indirect one), which are also
modeled by our approach.

scenario. As with maximum acceleration rates, maximum ve-
locities vary widely among real-world cyclists. Once more, the
default parameterization is not able to reflect this characteristic.
Our new parameterization is thus significantly closer to the
real-world behavior of cyclists. As for acceleration behavior,
the fact that our new parameterization is not a perfect fit to the
real-world data indicates that there are likely to be additional
influence factors not captured in our model.

D. Left-turn Behavior at Intersections

As shown in Fig. 7, which shows the intersection between
Alexanderstraße and Karl-Marx-Allee in Berlin, the 2D tra-
jectories produced by the new intersection model converge
towards the trajectories of the SimRa data set. While the
trajectories produced by SUMO’s default bicycle model only
offer direct turns (we omit those in the figure), the new model
is significantly closer to real-world intersection behavior of
cyclists.

E. Combining Intersection Model and Kinematic Extensions

To achieve a holistic comparison between SUMO’s default
bicycle model and our new approach, we measure the durations
of left-turn maneuvers at multiple intersections and compare the
empirical distributions of these measurements. To specifically
monitor the impact of our changes, we do not include any ride
time before or after the intersection in the measurements.

Based on this, we identified the following three findings:
First, our new approach outperforms the default at most

intersections, as its measured durations converge with real data,
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Figure 8. ECDFs of the measured durations for crossing the scenario
Warschauer Straße. It is apparent that our approach outperforms SUMO’s
default as the measured durations converge towards the real-world data.
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Figure 9. ECDFs of the measured durations for crossing the scenario
Mehringdamm. The results when using our new approach are only slightly
more realistic than when using the standard SUMO model. However, when
the direct path is blocked for cyclists, the simulation results outperform the
default approach.

see for example Fig. 8. Especially when given the option to use
the indirect path, cyclists take longer to cross an intersection
as they need to stop at an additional traffic light. This is
consistent with real-world data as we find it in the SimRa
dataset at multiple intersections.

Second, in some cases, we were able to improve our results
by adjusting the left-turn behavior distribution following the
second distribution discussed in Section IV-C. The “lane
only” results in Fig. 9 were achieved by prohibiting cyclists
from using the direct path. Obviously, it takes much longer
for cyclists to cross the intersection than SUMO’s default
simulation model suggests. When examining SimRa trajectories
at this particular intersection, almost all cyclists chose the
indirect path as the infrastructure guides cyclists to do so.
Hence, manually adjusting the left-turn behavior distribution
for such intersections is crucial.

Third, at a few intersections, the results of our approach
do not yet sufficiently reflect real-world bicycle behavior (see
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Figure 10. ECDFs of the measured durations for crossing the scenario
Alexanderstraße. Here, our new approach is not more precise than SUMO
default behavior.

Figure 11. Intersection Mehringdamm/Gneisenaustraße: a traffic island
obstructs the direct turn path (dashed line) and, thus, makes the indirect
path (solid line) more likely to be used.

Fig. 10). We discuss possible reasons for this in Section VII.

VII. DISCUSSION

Overall, the results presented in this paper show a significant
improvement over the state-of-the-art. Nevertheless, they still
have a number of shortcomings. In this section, we discuss the
inherent limitations of our approach in general (Section VII-A)
as well as problems resulting from the SimRa dataset as our
ground truth data (Section VII-B).

A. Methodological Challenges

Our initial assumption was that the behavior of cyclists in a
single intersection cannot be generalized to all intersections [7]
but that the average behavior across a large number of
intersections will be close enough to cyclists’ behavior at
arbitrary intersections. This seems to be true only for a
(relatively large) subset of intersections – apparently, the
intersection behavior of cyclists is more heterogeneous than
expected. We believe that this is due to the fact that we
averaged across all intersections in our dataset whereas there
are apparently different classes of intersections that we did not
account for.

Primarily, the intersection design is likely to have a strong
impact: Consider the example in Fig. 11 where a traffic
island partially blocks direct left turns and where markings
on the ground suggest indirect turns. As another example, the
intersection Bismarckstraße/Leibnizstraße had no direct left
turns in the SimRa dataset. In this intersection, the reason
would be that cyclists legally have to use a bike lane. When
using that bike lane, a direct left turn would require cyclists
to first pass through a row of parked cars, then to cross four
car lanes of a major street before being able to turn left.

Aside from that, other possible influence factors include
the amount and velocity of traffic (higher numbers of cars or
faster cars can be expected to lead to more indirect turns),
gender and age group distributions of cyclists in the respective
intersections, as well as weather and light conditions or the
grade of the street. In future work, we plan to explore these
possible influence factors, focusing on the intersection design
which we deem to have the strongest impact.

Another problem results from inaccuracy in the dataset used:
GPS and motion sensors of smartphones provide only imprecise
insights into actual “micro”-behavior of cyclists. Using a broad
group of cyclists as input will always result in this limitation
which we tried to overcome based on preprocessing and filtering
of the SimRa dataset. Alternatives would be additional sensors
(especially cameras) on bicycles or on intersections as in [7].
These, however, have the inherent limitation that they will either
limit the number of bicycles producing data or the number of
intersections covered.

B. Dataset Choice as Ground Truth

In this paper, we used the SimRa datasets as input for
our analysis as it is, to the best of our knowledge, the first
public dataset comprising a large number of rides that actually
publishes individual rides in an anonymized but non-aggregated
form. We need to keep in mind, however, that SimRa was
designed for a different purpose: For example, the SimRa
app records motion sensors at 50Hz but only persists every
fifth value of a moving average over 30 values. While this
suffices for detecting near miss incidents [2], it further limits
the resolution of motion data (and thus any conclusions we
can draw from that). Furthermore, the SimRa data which
we used were recorded over a period of 1.5 years. During
such as long period of time, physical changes to the bicycle
infrastructure (both temporary and permanent) will occur, thus,
adding additional noise to the data.

Finally, SimRa relies on crowdsourcing as a data collection
method which often leads to participation inequality. As a result,
individual users will be overrepresented in some intersections
and street segments and not represented in others. Furthermore,
based on the data collection method using smartphones, the
user group of SimRa is likely to have a slight gender bias
towards males and an age group bias towards cyclists between
the ages 20 and 50. These biases will, of course, be reflected
in our analysis results and cannot be compensated unless other
cycling datasets become available in non-aggregated form.



C. Generalizability

Although the SimRa dataset contains rides from almost 100
regions, we only considered rides from Berlin for our data
analysis and the development of cyclists’ left turn behavior. The
main reason for this is that almost half the rides are from the
Berlin region [31]. To derive both turn model and acceleration
behavior, however, we need data from "dense" street segments
with many rides which are hence only available for Berlin at
the moment. This is further aggravated by the fact that the
preprocessing step (see Section IV) further reduces the number
of eligible rides and with that the number of intersections
with sufficient left-turn maneuvers. Nevertheless, this does not
pose a threat to the generalizability of our findings – at least
for Germany – as traffic infrastructure guidelines throughout
Germany are standardized. Furthermore, adjacent countries
such as Austria often also have comparable infrastructure. We
hence believe that our findings also apply to at least these
countries.

VIII. CONCLUSION

Increasing the modal share of cyclists to provide health
benefits, alleviate traffic congestion, and reduce air pollution
requires significant planning efforts of city planners and traffic
engineers towards an improved cycling infrastructure. For this,
city planners often rely on the open source simulation platform
SUMO to study the effects of infrastructure changes before
implementing them on the streets. Likewise, research on V2X-
based safety systems for cyclists often relies on SUMO for
evaluation. Unfortunately, SUMO cyclists are either modeled
as slow cars or as fast pedestrians, neither of which is overly
realistic.

In this paper, we used the recently published SimRa dataset,
which to our knowledge is the first public dataset providing
detailed insights into a large number of individual cyclists’
rides, to improve SUMO’s cyclist model. For this, we derived
acceleration and velocity behavior and reparameterized the
SUMO cyclist model. As a SUMO extension, we also developed
a new intersection model describing left-turn behavior of
cyclists in four-way intersections. While our work significantly
improved the existing cyclist model, it is not as realistic as we
wanted it to be. We, hence, discussed a number of research
directions which we plan to explore in the near future.
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