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Abstract—Cooperative adaptive cruise control presents an
opportunity to improve road transportation through increase
in road capacity and reduction in energy use and accidents.
Clever design of control algorithms and communication systems
is required to ensure that the vehicle platoon is stable and meets
desired safety requirements. In this paper, we propose a cen-
tralized model predictive controller for a heterogeneous platoon
of vehicles to reach a desired platoon velocity and individual
inter-vehicle distances with driver-selected headway time. In our
approach, we allow for interruption from a human driver in
the platoon that temporarily takes control of their vehicle with
the assumption that the driver will, at minimum, obey legal
velocity limits and the physical performance constraints of their
vehicle. The finite horizon cost function of our proposed platoon
controller is inspired from the infinite horizon design. To the
best of our knowledge, this is the first platoon controller that
integrates human-driven vehicles. We illustrate the performance
of our proposed design with a numerical study.

Index Terms—Platooning, Cooperative Adaptive Cruise Con-
trol, Model-Predictive Control, Human-Driver Interaction, Hy-
bridized Cyber-Physical Systems.

I. INTRODUCTION

Autonomous vehicle platooning with inter-vehicle commu-
nication permits road vehicles to travel close together increas-
ing road capacity while reducing energy use and associated
vehicle emissions [1]. This cooperative connected cruise con-
trol technology can reduce the incidence of so-called ghost
traffic jams [2] and highway accidents [3]. The autonomous
cruise control problem was first posed as a centralized platoon
design approach in [4], and has seen recent attention with
several survey papers [2], [5], [6].

Adaptive Cruise Control (ACC) systems use on board
sensors to measure the distance and velocity of a predeces-
sor vehicle to operate an autonomous cruise control system.
However, these systems are prone to string stability issues
resulting in ghost traffic jams [7]. To ensure stability of the
platoon, either a large, velocity-based inter-vehicle distance
is required using a headway time [8] or more than just the
preceding vehicle’s state is required. By utilizing inter-vehicle
communication systems, Cooperative Adaptive Cruise Control
(CACC) systems can reduce the inter-vehicle distance and
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Figure 1. CACC concept: a platoon controller regulates the velocity and inter-
vehicle distances utilizing the vehicles’ position p, velocity v, and acceleration
a, exchanged via inter-vehicle communications.

avoid string stability issues by sharing the desired control
actions from other vehicles. Figure 1 illustrates a potential
CACC design of a coordinated platoon of vehicles driving with
small inter-vehicle distances with a platoon communication
network.

Many platoon control designs have focused on the technical
aspects of algorithm design, communication constraints, or
experimentation isolated from real traffic [9]. However, studies
of driver behavior have found that human drivers maintain
small inter-vehicle distances below safety margins [10], even
to less than one second when near autonomous platoons
[11]. During implementation of vehicle platooning systems,
it will be important to incorporate legacy vehicles that are
unable to integrate with a platoon communication system
and human-driver interaction for passenger comfort and well-
being, e.g., some passengers feel uncomfortable with too
small safety gaps, as well as motion sickness. This is in
line with research integrating human behavior and Cyber-
Physical System (CPS), moving from CPS to Hybridized
Cyber-Physical System (H-CPS) which is also called Cyber-
Physical-Social System (CPSS) [12].

In this paper, we present a novel constrained Model Pre-
dictive Control (MPC) approach for the centralized control
of a platoon of heterogeneous vehicles with reconfiguration
under temporary human-driver control. The desired inter-
vehicle distance is based on driver-selected headway times
which are variable between individual vehicles in the platoon,
and can change over time [13]–[15]. Figure 2 illustrates the
control loop of our proposed centralized platoon controller.
The exogenous inputs to our controller are the desired platoon
velocity and individual inter-vehicle distances, and the desired
safety constraints on the inter-vehicle distance, velocity, and
acceleration. The output from our controller is the desired
control action for every vehicle in the platoon.

To ensure convergence of the vehicle positions and ve-
locities to the desired references over a finite horizon, we
design a time-varying reference for all vehicles in the platoon.
We consider a Multiple-Input Multiple-output (MIMO) model
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Figure 2. Platoon control architecture. The exogenous inputs to the controller
are the desired inter-vehicle distances and platoon velocity to form the platoon
reference. The output is the control action for all vehicles in the platoon. The
controller reconfigures when a human-driver temporarily takes control. The
block connected by the dashed lines engages predicting a minimum control
action of the human-driver.

of the platoon of individual vehicle dynamics to predict the
motion of the vehicles from the control inputs. Inspired by the
infinite horizon optimal control algorithm [16], we propose
a finite horizon cost function. Our cost function penalizes
the quadratic error of the inter-vehicle distances to desired
inter-vehicle distances, as well as the positions, velocities,
and accelerations to our time-varying reference. The use of
a quadratic cost function allows for simple application of
hard constraints on the cost function in a quadratic program
optimizer to guarantee minimum and maximum inter-vehicle
distances, velocities, and accelerations of all vehicles in the
platoon.

In our design, we include a switch to reconfigure our con-
troller for a vehicle temporarily under human driver control,
shown as the dashed line in Figure 2. Our approach accom-
modates a human driver to make an emergency brake, reduce
speed, or travel at a different inter-vehicle distance, or could
be utilized to incorporate legacy vehicles. The switch adjusts
our time-varying reference to return the platoon to the desired
reference and removes the vehicle from the platoon control
while still incorporating the vehicle states such that the control
actions for the platoon still ensure the inter-vehicle distance
constraints. We predict the control actions of the human driver
by assuming that the driver will only change their control
action to obey a minimum set of constraints of the legal
road speed limits and their vehicle performance constraints.
More complex predictive approaches, such as economic cost
functions [17] or inter-vehicle interactions, could be utilized
to predict a human driver.

The key contributions of this paper are

• proposal of a constrained MPC algorithm for centralized
platoon control of heterogeneous vehicles,

• with finite horizon quadratic cost function inspired by
works in infinite horizon optimal control [16],

• inclusion of driver-selected headway time, and
• reconfiguration under temporary human-driver control.

II. RELATED WORK

In this section we review the relevant literature on CACC
from the perspective of both communication systems and
control design, as well as human driver integration, before
formulating our problem.

A. CACC Communication

In order to work reliably and with small safety gaps, CACC
requires periodic updates of vehicles’ data (e.g., acceleration,
speed, position). Typically, the data from at least the vehicle
in front and often also the first vehicle (i.e., the platoon
leader) is necessary. If the updates arrive with a high enough
frequency for the control system to react properly, string-
stability, i.e., keeping the desired gaps without accumulating
control errors throughout platoon members, can be achieved
[18]. If the updates are delayed, “string-stability is seriously
compromised” [19].

1) IEEE 802.11p: Up to a few years ago, the main
Vehicle-to-Everything (V2X) technology considered was
IEEE 802.11p as a basis for quite advanced protocol families
such as ETSI ITS-G5 [1].

The most simple approach for exchanging the vehicle up-
dates is to use static beaconing, where vehicles broadcast their
information in regular, periodic intervals. Yet, static beaconing
can lead to a congested channel, especially in highly dense
scenarios, e.g., with long or many platoons, thus reducing the
stability of a platoon. Thus, Segata et al. [15] proposed to use
slotted beaconing, which splits the time for the leader beacon
into transmission slots for all platoons members. The authors
show that this can greatly improve the beaconing performance
in crowded scenarios, especially when combined with transmit
power control, thus, reducing the load and improving the
reliability.

In order to reduce the channel load further, dynamic beacon-
ing schemes have been proposed. Sommer et al. [20] presented
the Adaptive Traffic Beacon (ATB) protocol, which adaptively
adjusts the beaconing period according to the current channel
quality and the message utility. Following up on this, ETSI
standardized Decentralized Congestion Control (DCC) [21]. It
uses a simple final state machine to adjust, among others, bea-
con interval and transmit power based on the current observed
channel busy ratio. Sommer et al. [22] proposed DynB to
avoid overloading the wireless channel and allow low-latency
communication by using very short beaconing intervals. The
protocol continuously observes the channel load and considers
detailed radio shadowing effects, even by moving vehicles, that
block the transmission and the number of neighboring vehicles
to calculate the best beacon interval. Focusing specifically on
platooning, Segata et al. [23] proposed a dynamic approach
called jerk beaconing, which exploits vehicle dynamics to
share data only when needed by the controller. Here, the
beacon interval is computed dynamically based on changes
in acceleration over time, i.e., the jerk. This approach shows
huge benefits in terms of network resource saving and is able
to keep inter-vehicle distance close to the desired gap even in
highly demanding scenarios.
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Going beyond IEEE 802.11p, Segata et al. [24] proposed the
Distributed EDCA Bursting (DEB) protocol, which extends
the frame busting mechanism of IEEE 802.11p such that
only the platoon leaders content for the channel. In case
of successful channel reservation, all vehicles in the platoon
transmit a coordinated burst of frames, thus, sharing the pla-
toon leader’s transmission opportunity. This helps overcoming
channel limits by reducing the number of nodes contending
for the channel and improving spatial reuse. Amjad et al. [25]
extend IEEE 802.11p by adding a full-duplex relaying system,
which enables platoon members to simultaneously receive and
relay the leader beacons.

2) Cellular V2X (C-V2X): Albeit all of the above proto-
cols and modifications, IEEE 802.11p alone seems not to be
sufficient for meeting the strict requirements of CACC (i.e.,
ultra-low reliability and latency) [26]. The most prominent
alternative for enabling V2X communication is C-V2X, which
uses 3GPP standardized 5G cellular networks. Radio resources
are scheduled by either the base station if vehicles are in-
coverage (operation mode 3) or by a distributed resource
allocation scheme if vehicles are out-of-coverage (operation
mode 4). The latter allows vehicles to select resources in
a stand-alone fashion with semi-persistent scheduling. While
mode 3 in general allows for high packet receptions ratios,
mode 4 produces lower beacon update delays [27], which are
also required for platooning.

For example, Vukadinovic et al. [28] compare IEEE 802.11p
to 3GPP C-V2X based on LTE in both operation modes for
truck platooning. Results show that C-V2X in both modes
allows for shorter inter-truck distances than IEEE 802.11p
due to more reliable communication in a congested wireless
channel. However, short communication distances and large
vehicle densities seem to be covered better with IEEE 802.11p
instead of C-V2X [29]. Therefore, general modifications for
improving the scheduling of sidlelink radio resources in mode
4 have been proposed [30], [31]. In order to reach the
performance required for CACC, Hegde et al. [32] propose to
schedule the sidelink radio resources for the platoon members
by the platoon leader. Similarly, the radio resource coordi-
nation method by Campolo et al. [33] fulfills the ultra-low
latency requirements of CACC and is able to provide spatial
reuse of LTE resources among platoon members.

3) RADCOM: Complementary to IEEE 802.11p and
C-V2X, joint communication and sensing approaches, also
known as Radar-based Communication (RADCOM), have
been proposed. Following the trend of using higher communi-
cation frequencies for radio communication, Millimeter Wave
(mmWave) technologies have recently become interesting to
the V2X research community. mmWave technology promises
high bitrates and low delays due to its wide channel bandwidth
and dynamic beam-forming [34]. However, using it as a single
communication technology may be difficult due to its highly
volatile transmission channel, especially in an automotive
environment [34], [35]. Nevertheless, initial works indicate
that mmWave can be very valuable when complementing the
other alternatives [36], [37].

B. CACC Controller

Control design for vehicle platooning has focused on meet-
ing string stability conditions with several definitions in the
literature [38]. In addition to stability requirements, the control
design also needs to consider the information flow topology
arising from the available communication links, formation
geometry or spacing policy, vehicle dynamics, and desired
platoon convergence.

The information flow topology of how information is shared
between vehicles influences both the control algorithm design
and the required communication system. Many control designs
utilize a leader-follower approach where a lead vehicle sets the
platoon speed and each follower vehicle maintains their own
spacing to the predecessor, such as the sliding mode controller
in [39] and employed in [15]. Other designs consider bi-
directional information sharing from the neighboring vehicles
such that leader information is not required, e.g. [40] and
[41]. These distributed approaches consider that the lead or
reference vehicle is exogenous to the platoon controller [42],
either controlled by a human driver or by a separate ACC
system [15]. Many designs focus on Vehicle-to-Vehicle (V2V),
also of interest are V2X where infrastructure can monitor
and coordinate a platoon [5], as well as interactions with
other platoons [43]. Recent works have included unreliable
communication channels in the control design using time
delays [44] and packet loss [45].

A key design factor is the formation geometry of the inter-
vehicle distances [8], which was considered fixed in early
works [4] but caused string instability for ACC [38]. To
achieve string stability for ACC, [46] proposed a velocity
based spacing policy following the concept that a human driver
should follow a preceding car with a certain headway time,
with refinements in [47] and [48]. To account for the slower
braking performance of heavy vehicles, a variable spacing
policy with the headway a function of the difference in velocity
[49]. The authors note that if lead vehicle information is
shared, then the headway is able to be reduced to zero [50].
Often a common (non-unique) and constant headway time is
utilized [51]. Alternative spacing policies have also included
use of the traffic density [52], as constant time headway can
result in unstable traffic flow [53].

The vehicle dynamics used for control design of vehicle
platoons have included complex models that model torque
output of the engine with variable gear ratios as well as
simplified linear models. In reference to the nonlinear engine
and gearbox models, it is noted in [39] that a first order lag
model is suitable for higher level control of the vehicle, such as
for platooning applications. This simplifies the vehicle, engine,
and braking systems into a single constant. In [15], [39] the
mechanical lag coefficient for a standard passenger vehicle is
assumed to be τi = 0.5 [s], with a heavy vehicle having a
larger coefficient. Alternative modeling approaches have used
the energy based port-Hamiltonian system model [40], [54].
While use of a homogeneous platoon with identical dynamics
makes the control design and tuning simpler, it is unrealistic to
real world heterogeneous platoons of different vehicles [55].
Certain controller stability properties can change with different
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types of vehicles such as platoons of heavy vehicles [56], and
environment effects including changes in road slope [57] and
wind [55].

A variety of control design approaches have been proposed
in the literature including the classic Linear Quadratic Reg-
ulator (LQR) [4], [41], [58], Proportional Integral Derivative
[59], H-infinity [55], sliding mode control [39], and MPC.
MPC algorithms optimize a finite horizon cost function at
each time step, and allow for the inclusion of hard constraints
[60], such as road speed limits and minimum safe inter-vehicle
distances. The desired control actions from a constrained MPC
controller will not exceed a vehicle’s performance limit or
control vehicles into situations that could lead to an accident.
Additionally, so-called economic MPC [61], that assigns real
values, such as fuel costs, to the weights in the cost function,
has been utilized [62] to link vehicle performance to an energy
or financial metric.

Distributed MPC algorithms in the leader-follower approach
have been applied to platoons with poor communications [42],
with extension to heterogeneous platoons [63], and string
stability was enforced using constraints [64]. A more complex
approach was employed in [65] to include network information
as a delay on the desired control action in the dynamics.

Most control designs for the platooning of vehicles consider
a distributed approach with the use of a lead or ego vehicle
that provides an input reference to the platoon. This is a
flexible approach as it allows for control designs to break
apart and reform platoons [5] However, distributed policies
have been introduced that slow front vehicles and speed up
later vehicles to form a platoon, while observing that this may
be in conflict with the lead driver’s goal of reaching their
destination quickly [66]. Additionally, [49] noted that the use
of a variable headway and ACC controller introduced a “group
conscience” such that the leading vehicles were designed with
reduced performance to take into account later vehicles in the
platoon. A centralized control design would utilize all platoon
information and a platoon reference to design the control
actions for the vehicles as a collection.

The original work on the control of vehicular platoons is [4].
The authors designed a centralized LQR controller that took
a target reference velocity for the platoon and desired inter-
vehicle spacing, to generate the control action for all vehicles
in the platoon, which was furthered in [67]. However, in [16]
it was shown that the original cost function in [4] is not string
stable as the length of the platoon goes to infinity, such that
as more vehicles are added the convergence time expands,
and the initial control action increases. The authors posed an
alternative state representation and cost function that penalized
both the absolute position error to the reference as well as the
inter-vehicle distances to achieve finite convergence [16].

However, this approach is criticized in [68] which shows
that an infinite length platoon is not equivalent to a large but
finite platoon. In [69] it is shown that the optimal control
design fails for certain initial conditions with large control
values resulting from the static gain computed from the LQR
such that desired control action could be larger than the
maximum allowable control. The poor performance of large
platoons also occurs in decentralized designs where the state

feedback control gain reduced for vehicles further away [70].
This reduction in state feedback gain was used to argue that
for an M length vehicle platoon, there should M independent
controllers with M separately tuned gains [71].

III. PLATOON ARCHITECTURE

In this section, we state the single vehicle dynamics and de-
velop the centralized platoon MIMO model of heterogeneous
vehicles. We then state our human driver model.

A. Vehicle Dynamics

Consider the commonly utilized linear dynamics for lon-
gitudinal motion of a vehicle-i from [39] of ṗ(i) = v(i),
v̇(i) = a(i), and

ȧ(i) = − 1

τi
a(i) +

1

τi
u(i)

where p(i) [m] is a point at the front bumper, v(i) [m/s] the
velocity, a(i) [m/s2] acceleration, u(i) [m/s2] control input or
desired acceleration, and τi [s] the mechanical actuation lag.

We write the state vector of a single vehicle-i as x(i) =
[p(i), v(i), a(i)]T, which gives the standard state space form

ẋ(i) = A(i)
c x(i) +B(i)

c u(i), (1)

where A
(i)
c and B

(i)
c are the dynamics and control input

matrices with the mechanical lag term for vehicle-i and are
given in Appendix VIII-A.

Following [72], a continuous-time system (1), can be dis-
cretized with sampling interval ∆t [s] to

x
(i)
k+1 = A(i)x

(i)
k +B(i)u

(i)
k + w

(i)
k

where the subscript k is discrete-time, w(i)
k is i.i.d. process

noise representing error in the discrete-time prediction model,
modeled as zero mean normally distributed with covariance
W(i) > 0, w(i)

k ∼ N (0,W(i)) and the dynamics matrices are
discretized using

A(i) = exp(A(i)
c ∆t) and B(i) =

∫ ∆t

0

exp(A(i)
c m)dm B(i)

c

and are given in Appendix VIII-A.
Following [4], [67] and [16], we consider a MIMO model

of the platoon. For M vehicles, we define the centralized
multiple-output state and multiple-input control vectors as

Xk = [p
(1)
k , . . . , p

(M)
k , v

(1)
k , . . . , v

(M)
k , a

(1)
k , . . . , a

(M)
k ]T (2)

Uk = [u
(1)
k , . . . , u

(M)
k ]T (3)

such that the MIMO platoon dynamics are

Xk+1 = AMXk +BMUk +Wk (4)

where AM and BM are block diagonal matrices of the col-
lection of single-vehicle dynamics and control input matrices,
Wk is a vector of the i.i.d. process noise acting on each vehicle
which can be modeled as Wk ∼ N (0,W). The matrices AM
and BM are given in Appendix VIII-B.

In MPC design, instead of directly computing the platoon
control action Uk, we optimize for the change in control
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actions ∆Uk from the previous control action such that the
applied control (3) to the platoon dynamics (4) is

Uk = Uk−1 + ∆Uk (5)

where ∆Uk = [∆u
(1)
k , . . . ,∆u

(M)
k ]T and ∆u

(i)
k is the change

in control action for vehicle-i. This optimization is computed
over a finite horizon of N time steps into the future. We use
the platoon model (4) with (5) to predict the value of the state
over the next N time steps. We introduce the predicted state
value of the platoon at time k + j for j ∈ {1, . . . , N} from
the measured state value at time k using the model denoted
as X̂k+j|k, with the prediction window defined as

Xk = [X̂T
k+1|k, . . . , X̂

T
k+N |k]T

for the predicted value of the change in control from the
platoon controller as

∆Ûk = [∆ÛT
k|k, . . . ,∆Û

T
k+N−1|k]T

where from the measurement at time k the predicted applied
control at time k is Ûk|k = Uk−1 + ∆Ûk|k and the predicted
control at time k + j is Ûk+j|k = Ûk+j−1|k + ∆Ûk+j|k for
j = {1, . . . , N − 1}.

We note that ∆Uk is the change in control applied at time
k, while ∆Ûk is the predicted change in control over the finite
horizon of length N . The actual applied control action is not
necessarily equal to the prediction.

Using algebraic manipulation as illustrated in MPC texts
(e.g. [60]) the state prediction of the platoon Xk can be written
as a linear combination of the current state Xk, the previous
applied control Uk−1 and the predicted change in control ∆Ûk

Xk = ΦXk + λUk−1 + Γ∆Ûk (6)

where Φ is the propagation of the state through the dynamics
matrix AM , λ and Γ are the propagation of the control inputs
through the dynamics and control matrices, and are given in
Appendix VIII-B.

We utilize this state prediction model to design a centralized
MPC for the coordinated control of a platoon of vehicles.

B. Human Driver Model

We consider during operation of the platoon that a human
driver temporarily takes control of their vehicle and desire
our platoon controller to reconfigure to this human driver. We
assume that the human driver is solely focused on the state of
their own vehicle, does not interact with any other vehicles in
the platoon, and issues control actions that are consistent with
physical (engine limit) and legal (road speed limit) constraints.

Consider a vehicle-` has temporarily left the platoon and
has the change in control action ∆u

(`)
k from the human driver

replacing the platoon control ∆u
(`)
k such that the control action

is u(`)
k = u

(`)
k−1 + ∆u

(`)
k . For ease of notation we modify the

platoon change in control action (5) with a switch

Uk = Uk−1 + αk∆Uk + ᾱk∆Uk (7)

where ∆Uk is the control action applied from a human driver,
a binary switch αk as a diagonal square matrix of size M

that takes ones on the diagonal for the vehicles controlled by
the platoon and zero in the i, ith element when vehicle-i is
not controlled by the platoon controller, and ᾱk = IM − αk.
When the platoon is fully controlled by the centralized platoon
controller αk ≡ IM and ᾱk ≡ 0M , and (7) reduces to (5). The
dynamics of the platoon (4) are now

Xk+1 = AMXk+BMUk−1+BMαk∆Uk+BM ᾱk∆Uk. (8)

Based on the applied control at time k − 1, the platoon
controller is aware if every vehicle has utilized the centralized
platoon controller or an alternative control value. As such,
αk is known to the controller at time k. If a vehicle has
temporarily left the platoon, we assume that the vehicle will
continue to be human controlled until informed otherwise, and
αk is constant for the finite prediction horizon. The finite
horizon prediction for the state of the platoon is expanded
from (6) to

Xk = ΦXk+λUk−1+Γ(IN⊗αk)∆Ûk+Γ(IN⊗ᾱk)∆Ûk (9)

where ∆Ûk = [∆ÛT
k|k, . . . ,∆Û

T
k+N−1|k]T are future change in

controls from the human driver, ⊗ is the Kronecker product
and IN is the identity matrix of size N .

In the following, we design a finite horizon cost function to
find the optimal change in control ∆Uk for the platoon, which
requires knowledge of any human driver control action ∆Uk.
Ideally for the platoon controller, the future human driver
change in control actions ∆Uk are known exactly, however,
this is unlikely to be the case. This motivates the use of a
predicted control action for the human driver control values.
For a finite prediction horizon of length N , the human-driver
model can be written as

X (`)
k = Φ̄x

(`)
k + λ̄u

(`)
k−1 + Γ̄∆Û (`)

k , (10)

where Φ̄, λ̄ and Γ̄ are given in Appendix VIII-B and ∆Û (`)
k =

[∆û
(`)
k+1|k, . . . ,∆û

(`)
k+N−1|k]T is the prediction of the human

driver change in control of vehicle-`.
We utilize (10) to compute a basic prediction of the human

driver’s control action, which we can utilize in the platoon
prediction model (9) to design a centralized MPC for the
coordinated control of a platoon of vehicles

IV. PLATOONING PROBLEM

We desire to control the entire platoon to reach a target
velocity of vd [m/s] with the desired distance between vehicle-
i and its immediate predecessor vehicle-(i− 1) as

d̄
(i)
k , di + h

(i)
k v

(i)
k = li−1 + ri + h

(i)
k v

(i)
k (11)

where di = li−1 + ri is the constant inter-vehicle distance,
li−1 [m] is the length of vehicle-(i − 1), ri [m] the desired
standstill distance in front of vehicle-i, and h(i)

k [s] the desired
headway time. The desired distance ri and headway time h(i)

k

are vehicle specific and input by the respective driver, whereas
the desired velocity is platoon specified.

We consider a unique headway time for each vehicle, which
can be modified by the occupants of the vehicle. Commercially
available ACC systems allow for user selection of headway
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time [8], with increments at 1, 1.5 and 2 seconds [73]. We
write the individual headways, h(i)

k , as a function of time
k, to indicate that these can be modified but consider that
a reasonable driver would not be constantly changing their
headway.

Additionally, we desire to ensure the following constraints
for all vehicles i ∈ {1,M}
• p(i−1) − p(i) ≥ dmin, minimum safe distance between

vehicles to ensure that no vehicle impacts its predecessor,
• p(i−1)−p(i) ≤ dmax maximum distance between vehicles

to ensure (random) communications are maintained,
• vmin ≤ v(i), minimum velocity set to zero on the assump-

tion that no vehicle in the platoon reverses on the road,
• v(i) ≤ vmax, maximum velocity chosen based on the road

speed limit, or the performance limitation of a vehicle,
• amin ≤ a(i), minimum acceleration bounded based on the

performance of the braking systems, and
• a(i) ≤ amax, maximum acceleration chosen based on the

engine performance of the vehicles.

The acceleration bounds could be further limited for the
comfort of the vehicle occupants.

Finally, we also consider that our proposed controller can
accommodate a human driver taking temporary control of
their vehicle within the platoon. This could include a driver
initiating an emergency brake, reducing speed, or temporarily
maintaining a larger distance from the previous vehicle than
specified. This accommodation allows for a human driver to
drive within the bounds of the platoon to their own comfort.
Additionally, it may allow for the inclusion of legacy vehicles.
We make the minimum assumption that the vehicle and driver
will obey performance limits of the vehicle: the minimum
and maximum accelerations, and legal limits on velocity: non-
negative and not exceeding the road speed limit.

We consider the situation where it is more important for
the platoon to stay together, and an emergency brake for
one vehicle should be obeyed by the platoon. This is in
contrast to control policies in [5], [58] where each vehicle has
individual goals and platoons are allowed to split and reform.
We desire to ensure that our proposed controller yields a stable
closed-loop to temporary inputs from a human driver to their
individual vehicle within the minimum constraints.

V. CONTROLLER DESIGN

We now design our controller using the models given
above to achieve the desired platoon velocity and inter-
vehicle distances while guaranteeing the constraints and able
to reconfigure to a temporary human driver. First, we design
a time-varying reference for the platoon. Second, we design
our finite horizon cost function for the platoon inspired by the
infinite horizon cost function of [16]. We also apply the desired
constraints on the cost function to propose our constrained
MPC controller to centrally control the platoon to the desired
platoon velocity and inter-vehicle distances. Third, we propose
a simple finite horizon cost function to predict the human
driver control actions for use in the platoon controller.

A. Reference Design

Proportional state feedback controllers have used in several
platooning works [39], including LQR [4], [16], [58], [67],
[70]. However, for constant gain feedback regulators, the
control value increases the further the states are from the
desired reference [74]. In reasonable platooning scenarios [69],
such as zero initial velocity, the desired initial control actions
could exceed maximum allowable control action [75].

To avoid this issue with constant static references used in
regulators, we propose a time-varying reference for the desired
platoon states. Using a slowly increasing reference, all vehicles
in the platoon are able to converge to the desired reference
before the position and velocity references reach the desired
steady-state. This allows convergence to the reference from
any initial condition.

We consider a slowly increasing ramp for the velocity
reference with constant acceleration from initial time k0 as

v?k =

{
a?k∆tk + v̄, k0 ≤ k < k0 + km

vd, k ≥ k0 + km

where v̄ = min v
(i)
k0

is initialized to the minimum velocity of
the platoon, the acceleration reference is

a?k =

{
vd−v̄
∆tkm

, k0 ≤ k < k0 + km

0, k ≥ k0 + km

and km is the sampling periods to reach the desired velocity.
The time constant km is a tuning parameter of the controller.

For the position reference, we take inspiration from [67]
and [16] to establish the position reference of all the vehicles
as the cumulative sum of the desired distances from a virtual
lead vehicle-0. The lead vehicle position reference is

p?k =

{
1
2a
?
k(∆tk)2 + v̄∆tk + p̄, k0 ≤ k < k0 + km

vd∆tk + p̄, k ≥ k0 + km

where p̄ = p
(1)
k0

+d̄
(1)
k0

is initialized from the position of vehicle-
1. The position reference for each vehicle-i is

p
(i)?
k = p?k −

i∑
j=1

d̄
(j)
k = p?k −

 i∑
j=1

dj + h
(j)
k v?k

 ,

where d̄(i)
k is defined in (11). By using the desired inter-vehicle

distanced to form the position referenced for each individual
vehicle, the headway times are included as part of the state
reference.

When a vehicle leaves the platoon under human driver
control, we desire to drive the platoon forward at the desired
velocity but within the platoon constraints. We reset the
platoon reference based on the human controlled vehicle state.
The initial time is set as k0 = k, and velocity reference is
set to the velocity of vehicle-`: v̄ = v

(`)
k0

, and the virtual
lead vehicle position as the desired distance from vehicle-`:
p̄ = p

(`)
k +

∑`
j=1 d̄

(j)
k .

For convenience we define our desired reference
for the platoon at time k as the vector X?

k =

[p
(1)?
k , . . . , p

(M)?
k , v?k, . . . , v

?
k, a

?
k, . . . , a

?
k]T and over the

finite prediction horizon as X ?k = [(X?
k+1)T, . . . , (X?

k+N )T]T.
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B. Cost Function Design

To design our MPC platoon controller we establish position,
velocity and acceleration error states using our time-varying
references. We propose a finite horizon cost function of these
errors and discuss how our cost function can be rearranged
to be in a quadratic function of the vehicle states. Finally,
we apply the desired inter-vehicle distance, velocity, and
acceleration limits as state constraints on the cost function.
Our final constrained cost function is in the form of a quadratic
program, which can then be solved using standard convex
optimization techniques. The constraints on the states and
control are a boundary in the cost function solution space, such
that the predicted optimal control action is guaranteed to not
exceed the desired constraints. There exist several quadratic
programming solvers to establish the optimal control action
within constraints [60] which reduces to optimization of a
convex function [76].

Consider for each vehicle-i for i ∈ {1,M}, the abso-
lute position, velocity, and acceleration errors as the differ-
ence between the current state and desired reference ξ(i)

k =

p
(i)
k − p

(i)?
k , ζ(i)

k = v
(i)
k − v?k, and ψ

(i)
k = a

(i)
k − a?k. For

the entire platoon, these errors can be written as Xk −
X?
k = [ξ

(1)
k , . . . , ξ

(M)
k , ζ

(1)
k , . . . , ζ

(M)
k , ψ

(1)
k , . . . , ψ

(M)
k ]. For

convenience below, we define η̂
(i)
k+j|k, ξ̂(i)

k+j|k, ζ̂(i)
k+j|k, and

ψ̂
(i)
k+j|k as the predicted errors where the subscript indicates

the state prediction at time k + j given the state at time k.
Following [67] and [16], we introduce virtual reference

vehicles on the platoon boundary that perfectly follow the
reference p(0)

k = p?k, p(M+1)
k = p

(M+1)?
k , v(0)

k = v
(M+1)
k = v?k,

and a
(0)
k = a

(M+1)
k = a?k. and introduce the relative position

error between vehicle-i and vehicle-(i−1) for i ∈ {1,M +1}
as

η
(i)
k = p

(i)
k − p

(i−1)
k + d̄

(i)
k . (12)

Inspired by the infinite horizon cost function of [16] we
propose a finite horizon cost function over a prediction horizon
of N steps with our time-varying references

J =

N−1∑
j=0

[
M+1∑
i=1

q1

(
η̂

(i)
k+j|k

)2

+

M∑
i=1

(
q2

(
ξ̂

(i)
k+j|k

)2

+q3

(
ζ̂

(i)
k+j|k

)2

+ q4

(
ψ̂

(i)
k+j|k

)2

+ r
(

∆u
(i)
k+j|k

)2
)]

+ (X̂k+N |k −X?
k+N )TPk+N (X̂k+N |k −X?

k+N ) (13)

where q1 is the penalty on relative position error, q2 the penalty
on absolute position error, q3 the penalty on velocity error,
q4 as the penalty on the acceleration, r the penalty on the
control inputs, and Pk+N is the terminal state cost. To achieve
convergence independent of platoon length, it is necessary to
penalize both the relative and the absolute position errors [16].

Using algebraic manipulation and (11), the relative position
error (12), can be written as a function of the errors

η
(i)
k =ξ

(i)
k − ξ

(i−1)
k + h

(i)
k ζ

(i)
k

such that the relative position errors can be incorporated as
cross-terms of the absolute position errors and velocity errors,
with the headway times as a weight on the velocity errors.

While one could think of the headway times as a reference to
the problem as introduced in the desired inter-vehicle distance
(11), it is more convenient as a weight on the state deviation.
By forcing the headway time to be a state reference, it may
lead to a nonlinear control problem.

Our cost function can now be efficiently written as a
quadratic function

J = (X̂k+N |k −X?
k+N )TPk+N (X̂k+N |k −X?

k+N ) (14)

+

N−1∑
j=0

(
(X̃k+j|k)TQk+jX̃k+j|k + ∆ÛT

k+j|kR∆∆Ûk+j|k

)
where X̃k+j|k = X̂k+j|k −X?

k+j , R∆ = rIM , and

Qκ =

q1TM + q2IM q1Tκ 0
q1T

T
κ q1Hκ + q3IM 0

0 0 q4IM

 (15)

where 0 is a square matrix of zeros of size M ×M , TM is a
symmetric Toeplitz matrix of size M ×M with the first row
of the form [2,−1, 0, . . . , 0], Tκ is an M ×M matrix with the
headway times of all vehicles [h

(1)
κ , . . . , h

(M)
κ ] on the diagonal

and negative headway times of vehicles-2 to-M on the first
upper diagonal [−h(2)

κ , . . . ,−h(M)
κ ], and Hκ is a diagonal M×

M matrix where Hκ = diag[(h
(1)
κ )2, . . . , (h

(M)
κ )2]. In the case

of a common constant time headway across the platoon h(i)
k =

h, then Tκ reduces to a Toeplitz matrix with h on the diagonal
and −h on the first upper diagonal, and Hκ reduces to the
identity IM multiplied by h2. The reduction of (13) to (14) is
given in Appendix VIII-C.

The terminal penalty P is the penalty on the final state
in the prediction horizon. Choosing P as the solution of the
algebraic Ricatti equation implements the infinite horizon cost
on the final state such that the final control action is the infinite
horizon optimal control action [77].

Using algebraic manipulation and (9) the cost function can
be written in the form of a quadratic program

J(Xk,∆Ûk) = f(Xk, Uk−1) (16)

+ ∆UT
k (IN ⊗ αk)T(Ψ + ΓTΩΓ)(IN ⊗ αk)∆Uk

+ 2(ΦXk + λUk−1 + Γ(IN ⊗ ᾱk)∆Ûk −X ?k )T

× ΩΓ(IN ⊗ αk)∆Ûk

where f(Xk, Uk−1) is a constant term and Ω =
diag{Qk, . . . , Qk+N−1, Pk+N}, Ψ = diag{R∆, . . . , R∆} are
block diagonal matrices. Thus the optimization problem to be
solved using a standard quadratic program solver.

Consider the desired constraints on the vehicles’ velocities
and accelerations, and the inter-vehicle distances outlined in
Section IV of inter-vehicle distance dmin ≤ p

(i−1)
k − p

(i)
k ≤

dmax, velocity vmin ≤ v
(i)
k ≤ vmax, and acceleration amin ≤

a
(i)
k ≤ amax which can be written as a matrix inequality of the

platoon state [
Ǧ g

] [X̂k+j|k
1

]
≤ 0
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where

[
Ǧ g

]
=


TM 0 0 1M−1dmin
−TM 0 0 −1M−1dmax

0 −IM 0 1Mvmin
0 IM 0 −1Mvmax
0 0 −IM 1Mamin
0 0 IM −1Mamax


where TM is a size (M − 1) ×M Toeplitz matrix with −1
on the diagonal and 1 on the first upper diagonal, and 1M−1

and 1M are column vectors of ones of size (M − 1) and M ,
respectively, for a total of 6M −2 constraints for each step of
the prediction horizon.

These constraints can be extended over the finite prediction
horizon [

Ḡ ḡ
] [Xk

1

]
≤ 0

where Ḡ = diag[Ǧ, . . . , Ǧ] and ḡT = [gT, . . . , gT]. Using
the prediction model (9), the constraints on the states can be
written in terms of ∆Ûk

ḠΓ(IN ⊗ αk)∆Ûk

≤ −Ḡ
(

ΦXk + λUk−1 + Γ(IN ⊗ ᾱk)∆Ûk
)
− ḡ (17)

such that the state constraints appear as a boundary on the
cost function (16) [60].

The left of (17) only changes in the event a vehicle leaves
the platoon and αk 6= αk−1. For a finite platoon of M vehicles,
it is possible to pre-compute all variations of ḠΓ(IN ⊗ αk).
However, the right of (17) is dependent on the current platoon
state Xk and the last control action Uk−1, and must be
recomputed each step.

For a prediction horizon of length N , there are N×(6M−2)
constraints across the 3M states at each time point, such that
Ḡ is of size N(6M − 2) × 3MN . Increasing the length of
the prediction horizon, N , increases the number of control
values required by the number of vehicles M but the number
of applied constraints by 6M −2. For a large platoon this can
be a significant increase to the computational effort.

The optimal platoon control action is the change in control
that minimizes the constrained finite horizon cost function

∆Û?k = min
∆Ûk

J(Xk,∆Ûk)

which we then implement the first element ∆Û?k|k to the
platoon, before solving again at the next time step.

C. Incorporation of Hybridized Human Driver Model

We now predict the change in control action from a human
driver for use in our platoon controller using a second MPC
algorithm. We assume that the human driver will behave
reasonably by rarely changing their control action, and will
at minimum obey performance (acceleration) constraints of
the vehicle, maintain non-negative velocity and obey the road
speed limit. The same acceleration and velocity assumptions
are applied in our centralized platoon controller. Future change
in control actions from the human driver that violate these
constraints could cause our platoon controller to be infeasible.

Using our assumption that the human driver will rarely
change their control action, we consider that the driver’s
control actions will be constant over the finite horizon predic-
tion time of the platoon controller. We propose the following
quadratic finite horizon cost function of the human driver

J̄(x
(`)
k ,∆Û (`)

k ) = (x̂
(`)
k+N |k)TP̄ (x̂

(`)
k+N |k)

+

N−1∑
j=0

(
(x̂

(`)
k+j|k)TQ̄(x̂

(`)
k+j|k) + (∆û

(`)
k+j|k)Tr∆(∆û

(`)
k+j|k)

)
As we make no assumption on desired state of the human
driver, we choose no penalty on the state such that Q̄ = P̄ = 0,
and the penalty on control action as the same in the platoon
model, where r∆ is the `th diagonal element of R∆.

This is the most uninformative cost function possible as
it assumes the driver will make no changes to their current
control value. Our cost function simplifies to

J̄(x
(`)
k ,∆Û (`)

k ) = (∆Û (`)
k )TΨ̄∆Û (`)

k (18)

where Ψ̄ = diag{r∆, . . . , r∆}. Clearly, this cost function is
minimized when ∆Û (`)

k = 0.
Now we consider the minimum constraints that we assume

the human driver obeys of velocity vmin ≤ v
(`)
k ≤ vmax, and

acceleration amin ≤ a
(`)
k ≤ amax which can be written as the

matrix inequality on the vehicle state at time k + j as[
Ǧ g

] [x̂(`)
k+j|k
1

]
≤ 0

where [
Ǧ g

]
=


0 −1 0 vmin
0 1 0 −vmax
0 0 −1 amin
0 0 1 −amax

 .
These constraints can be extended over the finite prediction
horizon [

Ḡ ḡ
] [X (`)

k

1

]
≤ 0

where Ḡ = diag[Ǧ, . . . , Ǧ] and ḡT = [gT, . . . , gT]. Using
algebraic manipulation with the vehicle dynamics (10), the
state constraints can be written as a function of the change in
control ∆Û (`)

k

ḠΓ̄∆Û (`)
k ≤ −Ḡ

(
Φ̄x

(`)
k + λ̄u

(`)
k−1

)
− ḡ. (19)

The quadratic cost function (18) with the linear matrix
constraints (19) can be minimized using standard quadratic
programming solvers to find the minimum control action that
meets the constraints. We would only expect to predict a
change in control action when one of the constraints will
be violated in the finite horizon. We take the prediction
of the constrained but minimally penalized control for the
human controlled vehicle-`, ∆Û (`)

k , and include this in the
computation for the centralized platoon control action.

VI. NUMERICAL STUDY

In this section, we provide guidance on the tuning of the
cost function weights from (13) and illustrate a numerical
experiment.
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A. Cost Function Weights

Increasing all of the penalties, q1, q2, q3, and q4, sub-
stantially can cause the optimization algorithm to become
infeasible. In the initial transient phase, it is necessary for
the vehicles to deviate from the desired reference to enable
convergence of both positions and velocities. However, it is
the initial transient phase where the impact is most prominent.

At minimum the position error penalties q1 and q2 are
required to ensure that the platoon converges to the desired
positions. As motivated in [16], the absolute position error
penalty q2 must be present or convergence is a function of
the platoon length. As q1 and q2 affect the same position
error states, it is suggested to tune these parameters together.
Increasing q2 forces the vehicles to the position reference, with
less regard to the relative distance, while increasing the relative
position error penalty q1 preferences the inter-vehicle distance
over the absolute position reference.

It is possible to set the velocity (q3) and acceleration (q4)
penalties to zero. Convergence is natural following the position
errors. Increasing the velocity (acceleration) penalty forces the
velocities (accelerations) closer to the desired reference, which
can slow the convergence of the positions.

B. Numerical Simulation

We consider a numerical simulation of five (M = 5)
vehicles, with sampling period of ∆t = 0.5 [sec/sample]. We
consider vehicle lengths as li = 2.5 [m] for all i = {1, 5}, and
the vehicle mechanical lags as τ1 = 0.5, τ2 = 0.2, τ3 = 0.3,
τ4 = 0.6, and τ5 = 0.4 [sec]. The desired velocity is set
as highway speed limit of 100 [km/h] or vd = 27.78 [m/s].
We consider that the drivers individually select their desired
standstill distances as r1 = 6, r2 = 6, r3 = 5, r4 = 8, r5 = 7
[m], and headway times as h(1)

k = 1, h(2)
k = 1.3, h(3)

k = 1.5,
h

(4)
k = 0.8, and h(5)

k = 1.2 [sec].
At time 100 [sec] the human driver of vehicle-3 performs an

emergency brake to 0 [m/s], then at 150 [sec] increases speed
to 11 [m/s] until 250 [sec] when the driver returns to platoon
control. Following this disturbance at 320 [sec] the drivers in
the platoon increase their inter-vehicle distance for additional
safety and set their headway times to h

(2)
k = 3, h(3)

k = 2.6,
h

(4)
k = 4, and h(5)

k = 2.5 [sec].
We choose the acceleration constraints as amin = −6 [m/s2]

and amax = 3 [m/s2], based on the performance of an average
passenger vehicle and comfort of passengers. We choose the
velocity constraints as vmin = 0 [m/s] and vmax = 27.8 [m/s],
based on the road speed limit. Finally, the minimum inter-
vehicle distance dmin = 2 [m] and maximum inter-vehicle
distance dmax = 130 [m]. We consider a prediction horizon
of 10 [sec], or 20 samples, with time to reach desired velocity
of 20 [sec] which equates to km = 40 [samples].

We choose the penalty on the relative position errors or
inter-vehicle distances as q1 = 1, absolute position error or
error to the position reference as q2 = 1, velocity errors as
q3 = 1, acceleration errors as q4 = 1, change in control as
R∆ = 2IM , and the terminal cost P as the solution to the
algebraic Riccatti equation.
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Figure 3. Inter-vehicle Distance from simulation with five vehicles. The
inter-vehicle distance smoothly converges to the desired values. The distances
between each pair of neighboring vehicles are represented by colors (solid
blue, dashed red, dash-dot yellow, dotted purple).
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Figure 4. Velocities of the five vehicles from the simulation. The vehicles
follow the velocity reference and are represented by colors (solid blue, dashed
red, dotted purple, dash-dot brown, solid gold).

We simulate our proposed control design using a stan-
dard convex optimizer1 to solve the quadratic program (16)
with constraints (17), and human driver prediction (18) with
(19). The inter-vehicle distances are shown in Figure 3, with
constraints as the solid horizontal black lines. Our proposed
controller converges the vehicles to the desired inter-vehicle
distances by converging to the desired position reference and
ensures the position constraints are maintained when vehicle-3
is controlled by a human driver.

Figure 4 shows the velocities and Figure 5 shows the
accelerations of the five vehicles in the platoon. Our pro-
posed controller smoothly converges the vehicles to the target
velocity reference. We observe that the controller initially
accelerates the latter vehicles in the platoon to converge to
the target position references.

Our simulation results illustrate that our proposed control
design successfully converges the controlled vehicles to the
desired velocity and inter-vehicle distances. The controller
smoothly accelerates the vehicles to the desired position
reference, minimizing the absolute and relative distance errors
before converging the velocity to the reference. The use of
a constrained MPC optimization approach ensures that safety

1We use the MATLAB mpcActiveSetSolver from the MPC toolbox.
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Figure 5. Accelerations of the five vehicles from the simulation. The vehicles
follow the acceleration reference and are represented by colors (solid blue,
dashed red, dotted purple, dash-dot brown, solid gold).

margins on the inter-vehicle are maintained, the velocities are
within the road speed limits, and the commanded accelerations
are appropriate for the vehicle and comfortable for passengers.

Our simulation also illustrates that the use of a human
driver model enables the centralized controller to operate in
the presence of an unknown human driver. Within one sample,
our centralized controller reacts, reducing the speed of the
remaining vehicles and ensuring that all vehicles in the platoon
reach zero velocity before the inter-vehicle distance constraints
are violated. As the human controlled vehicle speeds up to
a slower velocity than desired, the platoon then maintains
the desired standstill distances with additional margin of the
constant time headway while matching the lower velocity. As
the vehicle returns the platoon smoothly accelerates back to
the desired velocity and returns to the full desired inter-vehicle
distances.

Remark: Without the inclusion of the human driver in
the model (9), a simpler platoon controller would be unable
to react to the human driver actions. A state feedback control
using (4), would command vehicles-4 and-5 to drive through
vehicle-3, and give a constraint violating instruction to vehicle-
3 when it re-joined the platoon. An MPC designed for the
platoon using (6), would become infeasible as the actions of
vehicle-3 would result in its state being constraint violating.

VII. CONCLUSION

In this paper we propose a hybrid constrained MPC al-
gorithm to control a heterogeneous platoon of vehicles to a
desired platoon velocity and inter-vehicle distance. The finite
horizon cost function of our centralized platoon controller is
inspired from the the infinite horizon cost function of [16] with
inclusion of headway times individual to each vehicle and able
to be changed with time. In our approach, we propose the use
of a cost function to predict the control actions of a human
driver that takes control of their vehicle, by assuming that the
human driver will only obey at minimum, the legal velocity
limits and the physical performance constraints of their vehi-
cle. We illustrate the performance of our control approach in
a numerical study. Future work includes implementing state
estimation such that a centralized approach can be operated

decentralized, with consideration of unreliable communication
between vehicles.
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VIII. APPENDIX

A. Single Vehicle Dynamics

The continuous-time dynamics and control input matrices
of the dynamics (1) are

A(i)
c ,

0 1 0
0 0 1
0 0 − 1

τi

 , and B(i)
c ,

 0
0
1
τi

 .
Following [72], a continuous-time system can be discretized

with sampling interval ∆t [s] using

A(i) = exp(A(i)
c ∆t) and B(i) =

∫ ∆t

0

exp(A(i)
c m)dm B(i)

c

to give

A(i) =


1 ∆t τi

(
∆t − τi

(
1− exp

(
−∆t

τi

)))
0 1 τi

(
1− exp

(
−∆t

τi

))
0 0 exp

(
−∆t

τi

)


and

B(i) =


−τi

(
∆t − τi

(
1− exp

(
−∆t

τi

)))
+

∆2
t

2

∆t − τi
(

1− exp
(
−∆t

τi

))
1− exp

(
−∆t

τi

)


B. Platoon Dynamics

The block diagonal dynamics matrices of (4) are defined as

AM =

IM ∆tIM A
(1,3)
M

0 IM A
(2,3)
M

0 0 A
(3,3)
M

 and BM =

B
(1,1)
M

B
(2,1)
M

B
(3,1)
M


where IM the identity matrix of size M ×M , 0 is a matrix
of zeros of appropriate size, and

A
(1,3)
M = diag

[
τ1

(
∆t − τ1

(
1− exp

(
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)))
, . . . ,

τM
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(
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, . . . ,
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(
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(
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A
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M = diag
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(
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)
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(
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B
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M = diag
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M = diag
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M = diag
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(
−∆t

τ1

)
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(
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In the case of a homogeneous platoon, τi = τ , then A(i) = A
and B(i) = B and the platoon dynamics can be conveniently
computed as

AM = A⊗ IM and BM = B ⊗ IM

where ⊗ is the Kronecker operator.

The matrices of the prediction model of the platoon dynam-
ics (6) are

Φ =

AM...
ANM

 , λ =

 A0
MBM

...
(AN−1

M + · · ·+A0
M )BM

 ,
and Γ =

 BM · · · 0
...

. . .
...

(AN−1
M + · · ·+A0

M )BM · · · BM



and for the human controlled vehicle (10) are

Φ̄ =

 A(`)

...
(A(`))N

 λ̄ =

 (A(`))0B(`)

...
((A(`))N−1 + · · ·+ (A(`))0)B(`)

 ,

and

Γ̄ =

 B(`) · · · 0
...

. . .
...

((A(`))N−1 + · · ·+ (A(`))0)B(`) · · · B(`)



C. Cost Function Expansion

In the below, we show the expansion of sums in the cost
function from (13) to the matrix version (14). Consider (13)

J =

N−1∑
j=0

[
M+1∑
i=1

q1

(
η̂

(i)
k+j|k

)2

+

M∑
i=1

(
q2

(
ξ̂

(i)
k+j|k

)2

+ q3

(
ζ̂

(i)
k+j|k

)2

+q4

(
ψ̂

(i)
k+j|k

)2

+ r
(

∆u
(i)
k+j|k

)2
)]

+

 ξ̂k+N |k
ζ̂k+N |k
ψ̂k+N |k

T

Pk+N

 ξ̂k+N |k
ζ̂k+N |k
ψ̂k+N |k



The first sum in (13) is of the relative position errors η̂κ
noting that we substitute κ in place of k + j|k. We start
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by showing this in terms of the absolute position errors and
velocity errors

M+1∑
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κ
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κ ζ̂(M)
κ − 2h(M)

κ ξ̂(M−1)
κ ζ̂(M)

κ

+
(
ξ̂(M+1)
κ

)2

+
(
ξ̂(M)
κ

)2

+
(
h(M+1)
κ

)2 (
ζ̂(M+1)
κ

)2

− 2ξ̂(M+1)
κ ξ̂(M)

κ + 2h(M+1)
κ ξ̂(M+1)

κ ζ̂(M+1)
κ

−2h(M+1)
κ ξ̂(M)

κ ζ̂(M+1)
κ

]
Recall that the virtual lead and tail vehicles perfectly follow
the reference such that

ξ̂(0)
κ = ξ̂(M+1)

κ = 0

ζ̂(0)
κ = ζ̂(M+1)

κ = 0

then

q1

[(
ξ̂(1)
κ

)2

+
(
h(1)
κ

)2 (
ζ̂(1)
κ

)2

+ 2h(1)
κ ξ̂(1)

κ ζ̂(1)
κ

+
(
ξ̂(2)
κ

)2

+
(
ξ̂(1)
κ

)2

+
(
h(2)
κ

)2 (
ζ̂(2)
κ

)2

− 2ξ̂(2)
κ ξ̂(1)

κ + 2h(2)
κ ξ̂(2)

κ ζ̂(2)
κ − 2h(2)

κ ξ̂(1)
κ ζ̂(2)

κ

+ · · ·+

+
(
ξ̂(M)
κ

)2

+
(
ξ̂(M−1)
κ

)2

+
(
h(M)
κ

)2 (
ζ̂(M)
κ

)2

− 2ξ̂(M)
κ ξ̂(M−1)

κ + 2h(M)
κ ξ̂(M)

κ ζ̂(M)
κ − 2h(M)

κ ξ̂(M−1)
κ ζ̂(M)

κ

+
(
ξ̂(M)
κ

)2
]

=q1

[
2
(
ξ̂(1)
κ

)2

+ · · ·+
(
ξ̂(M)
κ

)2

− 2ξ̂(2)
κ ξ̂(1)

κ − · · · − 2ξ̂(M)
κ ξ̂(M−1)

κ

+
(
h(1)
κ

)2 (
ζ̂(1)
κ

)2

+ · · ·+
(
h(M)
κ

)2 (
ζ̂(M)
κ

)2

+ 2h(1)
κ ξ̂(1)

κ ζ̂(1)
κ + · · ·+ 2h(M)

κ ξ̂(M)
κ ζ̂(M)

κ

−2h(2)
κ ξ̂(1)

κ ζ̂(2)
κ − · · · − 2h(M)

κ ξ̂(M−1)
κ ζ̂(M)

κ

]

This can be written in matrix notation as

q1

(
ξ̂TκTM ξ̂κ + ζ̂TκHκζ̂κ + ξ̂TTκζ̂κ + ζ̂TκT

T
κ ξ̂κ

)
=q1

[
ξ̂κ
ζ̂κ

]T [
TM Tκ
TT
κ Hκ

] [
ξ̂κ
ζ̂κ

]
where TM is a symmetric Toeplitz matrix of size M×M with
the first row of the form [2,−1, 0, . . . , 0], and Tκ and Hκ are
M ×M matrices where

Tκ =



h
(1)
κ −h(2)

κ 0 . . . 0 0

0 h
(2)
κ −h(3)

κ . . . 0 0
...

. . . . . .
...

...
. . . . . .

...
0 0 0 . . . h

(M−1)
κ −h(M)

κ

0 0 0 . . . 0 h
(M)
κ



and Hκ =


(
h

(1)
κ

)2

. . . 0

. . .

0 . . .
(
h

(M)
κ

)2

 .
Returning to the full sum, we can see that the other terms

can also be written in matrix notation

J =

N−1∑
j=0

[
M+1∑
i=1

q1

(
η̂

(i)
k+j|k

)2

+

M∑
i=1

(
q2

(
ξ̂

(i)
k+j|k

)2

+q3

(
ζ̂

(i)
k+j|k

)2

+ q4

(
ψ̂

(i)
k+j|k

)2

+ r
(

∆u
(i)
k+j|k

)2
)]

+

 ξ̂k+N |k
ζ̂k+N |k
ψ̂k+N |k

T

Pk+N

 ξ̂k+N |k
ζ̂k+N |k
ψ̂k+N |k


=

N−1∑
j=0

[
q1

[
ξ̂k+j|k
ζ̂k+j|k

]T [
TM Tk+j

TT
k+j Hk+j

] [
ξ̂k+j|k
ζ̂k+j|k

]
+q2ξ̂

T
k+j|kIM ξ̂k+j|k + q3ζ̂

T
k+j|kIM ζ̂k+j|k

+q4ψ̂
T
k+j|kImψ̂k+j|k + r

(
∆Uk+j|k

)T
IM∆Uk+j|k

]
+

 ξ̂k+N |k
ζ̂k+N |k
ψ̂k+N |k

T

Pk+N

 ξ̂k+N |k
ζ̂k+N |k
ψ̂k+N |k



=

N−1∑
j=0


 ξ̂k+j|k
ζ̂k+j|k
ψ̂k+j|k

T

Qk+j

 ξ̂k+j|k
ζ̂k+j|k
ψ̂k+j|k


+
(
∆Uk+j|k

)T
R∆∆Uk+j|k

]
+

 ξ̂k+N |k
ζ̂k+N |k
ψ̂k+N |k

T

Pk+N

 ξ̂k+N |k
ζ̂k+N |k
ψ̂k+N |k


where from (15) of R∆ = rIM and

Qκ =

q1TM + q2IM q1Tκ 0
q1T

T
κ q1Hκ + q3IM 0

0 0 q4IM
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then with further simplification of state and reference we find
the cost function in reduced form (14)

J =

N−1∑
j=0

((
Xk+j|k −X?

k+j

)T
Qk+j

(
Xk+j|k −X?

k+j

)
+
(
∆Uk+j|k

)T
R∆∆Uk+j|k

)
+
(
Xk+N |k −X?

k+N

)T
Pk+N

(
Xk+N |k −X?

k+N

)
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