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Abstract— Secrecy encoding for remote state estimation
in the presence of adversarial eavesdroppers is a well stud-
ied problem. Typical existing secrecy encoding schemes
rely on the transmitter’s knowledge of the remote estima-
tor’s current performance. This performance measure is of-
ten shared via packet receipt acknowledgments. However,
in practical situations the acknowledgment channel may
be susceptible to interference from an active adversary,
resulting in the secrecy encoding scheme failing. Aiming to
achieve a reliable state estimate for a legitimate estimator
while ensuring secrecy, we propose a secrecy encoding
scheme without the need for packet receipt acknowledg-
ments. Our encoding scheme uses a pre-arranged schedul-
ing sequence established at the transmitter and legitimate
receiver. We transmit a packet containing either the state
measurement or encoded information for the legitimate
user. The encoding makes the packet appear to be the state
but is designed to damage an eavesdropper’s estimate.
The pre-arranged scheduling sequence and encoding is
chosen psuedo-random. We analyze the performance of
our encoding scheme against a class of eavesdropper,
and show conditions to force the eavesdropper to have an
unbounded estimation performance. Further, we provide a
numerical illustration and apply our encoding scheme to an
application in power systems.

Index Terms— Remote State Estimation, Eavesdropping,
Privacy, State-Secrecy Codes

I. INTRODUCTION

THE emerging network of cyber-physical systems has been
acknowledged as a vulnerability [1] with recent incidents

drawing attention to the need to improve the security of these
systems [2]. Ensuring security of cyber-physical systems can
be enhanced through control-theoretic approaches including
through the utilization of the dynamics in the design [3]. Three
key security problems exist: ensuring confidentiality of state
information and control actions, integrity of transmissions, and
availability of data over a network [4]. In this article we focus
on the problem of confidential state estimation of a remote
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process over an unreliable wireless network in the presence of
an eavesdropper.

While the interest in control systems design is the closed-
loop system performance, it is first necessary to ensure the
quality of the state estimate used in the controller. Sharing
state information at every time instant provides valuable in-
formation to a legitimate user. However, as transmissions can
be intercepted by an adversarial eavesdropper, which could
use transmitted state information to design future attacks on
the system [5], it becomes necessary to obfuscate the shared
state estimate from an eavesdropper. This motivates private
remote state estimation techniques to ensure state secrecy.
Recent works have shown that through careful scheduling
of transmissions [6]–[8] or by encrypting the packets [9]–
[12], significant reduction in adversary performance can be
achieved at the cost of modest degradation in legitimate user
performance. We shall explore this trade-off in our design.

Many state secrecy techniques require knowledge of the le-
gitimate estimator’s current performance, often shared through
acknowledgment of successful packet receipt. Scheduling the
next transmission from the legitimate user’s last received
packet can be used to create the illusion of a random trans-
mission policy to an eavesdropper [7]. By relying heavily on
acknowledgments, [11] showed that an encoded transmission
of relative measurement, the innovation between the current
state and the last acknowledged packet, diverges an eavesdrop-
per’s estimate. In the case of a critical event where the eaves-
dropper misses a packet that the legitimate receiver obtains,
the eavesdropper is unable to recover the state estimate, and
its estimation error will constantly grow1. Effectively, the use
of innovations with acknowledgments, can provide so-called
infinite secrecy of the state information.

However, in many practical situations an acknowledgment
channel may be unavailable due to hardware limitations, such
as for small power limited sensors [13], [14], or an adversary
jamming the network [15]. Under the encoding scheme of [11],
for an eavesdropper to maintain knowledge of the state, the
adversary needs to prevent the critical event from occurring.
An active eavesdropper that combines both eavesdropping
and acknowledgment blocking tasks simultaneously, such as
considered in [15], could block all acknowledgments or be
stealthy and only block acknowledgments when the critical
event occurs thus hiding in the stochastic nature of the net-

1The eavesdropper’s estimation error will grow to infinity in the case of
unstable dynamics [11] or to the open loop estimation error in the case of
stable dynamics [10].
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Fig. 1. Architecture of channel environment. A remote process sends
state information over an unreliable network that can be received by
the legitimate estimator and eavesdropper. The packet zk is encoded
with scheduling sequence νk which is known exactly to the legitimate
estimator but not the eavesdropper. The encoding does not rely on
packet receipt acknowledgments.

work. This style of selective acknowledgment jamming attack
has been demonstrated in practice on a carrier sense mul-
tiple access/collision avoidance (CSMA/CA) protocol WiFi
network [16]. While it may be possible to detect a stealthy
eavesdropper using statistical methods [17], the innovation
state secrecy encoding scheme of [11] is no longer secret to
this powerful eavesdropper.

As further background to our current work, we note that to
improve an eavesdropper’s performance, an adversary could
exploit the vulnerability in packet acknowledgments, including
through fake acknowledgment transmission [8] and event-
based acknowledgment attacks [18]. Noting that often signif-
icant energy is required to block a communication channel,
[19] proposed a strategy to balance performance degradation
of the legitimate estimator with limited energy usage of the
adversary. An active attack to damage the legitimate user’s
estimate is to transmit packets that appear, in a statistical
sense, to be the state measurement [20], [21] alongside ma-
licious control actions [22]. This has motivated watermarking
schemes [23] and online statistical analysis [24] to ensure
integrity of packets. In particular, to combat the denial of
service attacks in large scale power networks, [25] proposed a
distributed Kalman filter for state estimation, while [26] used
the structured nature of the system to design a cooperative
control approach.

In the present work, we are motivated to consider the
problem of private remote state estimation without requiring
receipt acknowledgments. The network architecture is visual-
ized in Figure 1. To damage an eavesdropper we propose an
encoding scheme, where we randomly transmit either the state
measurement or a random value that has the same statistical
properties as the state. Inside the packet, we encode state
information in the form of a single step innovation to improve
performance of the legitimate user. The random encoding
sequence is pre-arranged between the transmitter and legiti-
mate user. Our proposal ensures the legitimate estimator has
bounded performance and the system state remains secret to an
eavesdropper. By increasing the proportion of encoded packets
to unencoded packets, the secrecy against an eavesdropper is
increased at the cost of legitimate estimator performance. We
present our proposed encoding scheme in the sense of this
trade-off. Our work is inspired by the no acknowledgment

secrecy scheme of [6], the use of some encrypted packets in
[12], the innovation only encoding of [11], and the design of
packets that force estimator divergence [20], [21].

Summary of contributions: We consider the problem of
remote state estimation in the presence of eavesdroppers, and
derive an encoding scheme to ensure secrecy of the state.

1) In contrast to many recent secrecy encoding schemes,
such as [11] and [12], we consider the network environ-
ment of no packet receipt acknowledgments.

2) We improve on [6], by transmitting encoded state infor-
mation that also damages the eavesdropper.

3) We derive expressions for the expected estimation error
covariances as a function of the dynamics, channel
quality, and encoding scheme.

4) We propose an offline designed scheduling sequence to
achieve a suitable measure of state secrecy.

The remainder of the paper is structured as follows: we
present the remote estimation scenario and pose our problem in
Section II. In Section III we propose our encoding scheme and
in Section IV give the performance for the legitimate estimator.
In Section V we analyze the impact of our encoding scheme
on a class of eavesdropper, and in Section VI provide guidance
on scheduling design and numerical results. We illustrate
application of our technique to a remote state estimation
problem on a microgrid power system in Section VII. Finally,
we provide concluding remarks in Section VIII.

II. REMOTE STATE ESTIMATION WITH AN
EAVESDROPPER

In this section we outline the dynamics and network model
that we consider, and define the estimation of the legitimate
estimator and eavesdropper.

A. System Dynamics
Consider a discrete-time LTI process with state xk ∈ Rn

xk+1 = Axk + wk (1)

where wk is a zero mean Gaussian distributed process with co-
variance Q, and A is marginally stable or unstable with at least
one eigenvalue on or outside of the unit circle, respectively.
Remote state estimation of unstable processes in the presence
of eavesdroppers is an active problem, see for example [11],
[24], [27], [28]. Additionally, many physical processes such as
vehicle position or power systems [29] can be described with
integrator models and are then marginally stable processes. For
some cyber-physical processes the control unit and actuators
may be separate from the sensors [28], [30], which under fail-
ure could result in open-loop operation, motivating estimation
of marginally stable and unstable process.

We assume that the pair (A,
√
Q) is controllable, the initial

state of the process x0 is a Gaussian random variable with zero
mean and covariance Σ0, and that the two covariances Q and
Σ0 are positive definite. Additionally, we consider that wk and
x0 are uncorrelated, and wk and w` for k 6= ` are uncorrelated.
Finally, we assume that properties of the process A, Q, and
Σ0 are public but the realization of the state x0 and noise wk
are not known.
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Remark 2.1: The state xk in (1) could represent the state
estimate from a Kalman filter using noisy measurements
operating at the sensor. The process noise wk would then
represent the Kalman innovation. See for example [11].

B. Channel Model
Following the standard packet based transmission utilized

in network control problems, we consider that the sensor
transmits a packet of state information, zk ∈ Rp, over an
unreliable channel to the legitimate estimator. The packets
transmitted over the network can also be received by an
eavesdropper. To ensure privacy and secrecy of the state
information, the packet is encoded. We propose our encoding
scheme in Section III-B.

We consider a particularly challenging network situation
where the packet receipts by the legitimate estimator are not
acknowledged to the transmitting sensor. The lack of acknowl-
edgment channel could be due to cost and energy usage [13],
[14], or due to a powerful eavesdropper interfering [15] which
has been demonstrated in practice [16]. An encoding scheme
that relies exclusively on acknowledgments, such as [11], may
be rendered ineffective by acknowledgment blocking. While
it is possible to detect such a powerful eavesdropper [17], an
alternative technique that does not rely on acknowledgments
to ensure privacy should be employed.

As there are no acknowledgments, the sensor does not
have knowledge of the estimation performance of the le-
gitimate estimator. Active privacy techniques which rely on
knowledge of the remote estimator, such as scheduling [7]
or encoding [11], are unsuitable here. Our proposed encoding
scheme utilizes a pre-arranged scheduling sequence νk and
encoding noise χk, known to the transmitting sensor and the
legitimate estimator but is unknown to the eavesdropper. The
encoding information is shared to the legitimate transmitter
and eavesdropper at system initialization, isolated from an
adversary. Information security schemes commonly use pre-
arranged security information in transmission encoding [31],
cryptographic encryption [32], [33], and watermarking [20],
[34]. The challenge in our work, is the design of encoding
mechanism of the state information and the design of the
scheduling sequence. Our network architecture is visualized
in Figure 1.

Let us define γk ∈ {0, 1} as an indicator variable denoting
successful packet reception at the legitimate estimator where

γk =

{
1, if the packet is received,
0, if a packet dropout occurs,

(2)

and similarly γek ∈ {0, 1} for outcomes at the eavesdrop-
per. We assume that the channel outcomes for the estimator
and eavesdropper are independent and identically distributed
(i.i.d.), and that the channel outcomes are independent to the
initial state of the process and the process noise. We define the
channel qualities as a Bernoulli random variables where for the
legitimate estimator P(γk = 1) = µ and for the eavesdropper
P(γek = 1) = µe, where 0 ≤ µ, µe ≤ 1. This model follows
from standard wireless communication channels with block-
fading over the channel links [35].

C. Minimum Mean Square Error Estimation
The estimates of the legitimate estimator and the eaves-

dropper depend on information available at each time in the
received packets and knowledge of the scheduling sequence
νk. Let us define the measurements as

yk = γkzk, at the legitimate estimator, and
yek = γekzk, at the eavesdropper.

We define information available to the legitimate estimator at
time k as Ik = {γ0, y0, ν0, γ1, y1, ν1, χ1, . . . , γk, yk, νk, χk}
and Iek = {γe0 , ye0, . . . , γek, yek} for the eavesdropper. The
legitimate estimator has perfect knowledge of the scheduling
sequence νk and encoding noise χk, while the eavesdropper
has no knowledge. The legitimate estimator’s minimum mean
square error (MMSE) estimate and associated covariance are
defined as

x̂k|k = E[xk|Ik], Pk|k = E[(xk− x̂k|k)(xk− x̂k|k)T|Ik] (3)

and for the eavesdropper

x̂ek|k = E[xk|Iek], P ek|k = E[(xk−x̂ek|k)(xk−x̂ek|k)T|Iek]. (4)

III. RANDOMIZED INNOVATION BASED
ENCODING

In this section we pose the secrecy requirements, propose
our encoding scheme, and decoder for the legitimate estimator.
In the following sections, we show the expected legitimate
estimator performance, and provide guidance on encoding
design choice for state secrecy against a class of eavesdropper.

A. State Secrecy
Our objective is to design an encoding scheme that produces

a reliable state estimate at the legitimate estimator using no
information of the current performance, while simultaneously
ensuring poor estimation performance of an eavesdropper in
the network. We introduce two notions of secrecy using the
expectation of the MMSE of the legitimate estimator and the
eavesdropper.

As our encoding scheme is designed with no information of
the legitimate estimator’s current estimate, we do not aim for
optimal estimation at every packet receipt. Instead, we aim to
ensure that the legitimate estimator’s expected performance is
upper bounded. To ensure secrecy of the state estimate we seek
to design the encoding scheme such that an eavesdropper’s
expected performance is larger than the legitimate estimator’s
performance.

Definition 1 (Relative Secrecy): An encoding scheme
achieves relative secrecy if and only if both the following
conditions hold.

(i) There exists an Ω > 0 such that the trace of the legiti-
mate estimator’s MMSE performance is upper bounded
trace E[Pk|k] < Ω for all time k > 0.

(ii) The trace of the MMSE of the eavesdropper is
strictly larger than that of the legitimate estimator
trace E[Pk|k] < trace E[P ek|k] for all time k > 0.

We recall the definition of perfect secrecy from [6] to ensure
that the eavesdropper’s expected estimation error diverges to
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infinity, while the legitimate estimator’s performance remains
upper bounded.

Definition 2 (Perfect Secrecy): An encoding scheme
achieves perfect secrecy if and only if both of the following
conditions hold.

(i) There exists an Ω > 0 such that the trace of the legiti-
mate estimator’s MMSE performance is upper bounded
trace E[Pk|k] < Ω for all time k > 0.

(ii) The eavesdropper’s expected MMSE is unbounded,
or equivalently the trace diverges to infinity
trace E[P ek|k]→∞ as k →∞.

Definition 2 is stronger than Definition 1, as the diverging
condition trace E[P ek|k]→∞ is more strict than the bounded
condition trace E[Pk|k] < trace E[P ek|k].

For a remote state estimator of an unstable system always
transmitting the state estimate over an unreliable wireless
network, i.e. zk = xk for all k > 0, [36] showed that to ensure
a bounded estimation error covariance, the network channel
needs to satisfy

1− µ < 1

ρ(A)2
, and 1− µe <

1

ρ(A)2
(5)

where ρ(·) is the spectral radius2. In this work, we assume
that the channel qualities of both the legitimate estimator and
eavesdropper satisfy (5), and as such are sufficient to produce
bounded estimation error covariance of an unstable process in
the case that the state is always transmitted. We also do not
restrict ourselves to the case µe < µ as considered in [6].
To achieve state secrecy, including to cause an eavesdropper
to have an unbounded estimation error covariance, we are
unable just to transmit the state estimate at every time instance,
motivating our encoding scheme.

B. Encoding Mechanism

Our proposed encoding scheme for the packet zk is

zk =

{
xk, νk = 0

xk −Axk−1 + χk, νk = 1
(6)

for k ≥ 1 and z0 = x0, where the sensor transmits either
the current state or a single step innovation with relation
to the previous state encoded by additive noise χk. In each
packet, we only transmit the information, not the encoding
values, making decoding challenging for a potential adversary.
The encoding νk and χk are pre-arranged at the sensor and
legitimate estimator. We design the scheduling sequence νk
and encoding noises χk such that each packet zk appears, at
least in a statistical sense, to be the current state value xk.

To balance legitimate estimator estimation performance with
state secrecy against eavesdroppers, several partial encoding
schemes have been proposed [9], [12], [31]. These trans-
mission schemes balance providing a reliable estimate to
the legitimate estimator encoding while obfuscating from an
adversary. As the legitimate estimator estimation performance
can decrease, such as from a reduction in shared information

2The spectral radius of a matrix is defined as the maximum absolute
eigenvalue ρ(M) = maxi |λi(M)| where λi is the ith eigenvalue of M .

[6], quantization encoding [12] or adversary attacks [9], it is
often necessary to send the actual state value in some of the
packets. The challenge becomes to cleverly balance the trade-
off in the encoding scheme, between estimation performance
and state secrecy against an eavesdropper.

In our encoding scheme, we propose that the scheduling
sequence νk and additive encoding noise χk for k ≥ 1
are chosen to be random. The probability distributions and
pseudo-random seeds are shared between the transmitter and
legitimate estimator in initialization, while the eavesdropper
has no knowledge. As such, the realization of the sequence
of νk and χk become pre-arranged, and are known exactly
to the transmitter and legitimate estimator but unknown to
an eavesdropper. The idea of a pre-arranged distribution seed
or common encoding key has been commonly used in several
information security facets, such as in watermarking [20], [34]
and cryptographic encryption with public and private keys
[32], [33] as well as applications to transmission encoding
schemes [31].

We choose the distribution of the additive encoding noise χk
to be a zero-mean Gaussian random variable with covariance

E[χkχ
T
k ] = AkΣ0(Ak)T +

k−2∑
`=0

Ak−1−`Q(Ak−1−`)T, (7)

and χk is uncorrelated from the process x0 and wk for all k,
and χk and χ` for k 6= ` are uncorrelated. Under this choice
of distribution 3 the first and second moments of each packet
zk are equivalent to the state xk

E[zk] = E[xk] and E[zkz
T
k ] = E[xkx

T
k ],

for k ≥ 1. An eavesdropper performing a statistical test
using the first or second moment would be unable to identify
whether each packet zk is the state xk or something else. An
eavesdropper directly using the packet zk as the state estimate
would have a poor estimate of the true process state.

We choose the distribution of the scheduling sequence νk
to be a Bernoulli random variable with probability of sending
the state as

P(νk = 0) = µd,

and encoded innovation as P(νk = 1) = 1 − µd. The proba-
bility µd is a design variable of our encoding scheme, which
trades off nominal estimation performance of the legitimate
estimator where the state is sent at every time instance, against
secrecy of state information. In the case µd = 1 only the
state measurement νk = 0 is transmitted, while in the case
µd = 0 only innovations are sent. We bound µd between these
extremes, 0 < µd < 1, such that some of the transmissions
are innovations and some are the state. We provide guidance
in Section VI-A on choice of µd in relation to our notions of
secrecy and the expected estimation error covariance of the
legitimate estimator and eavesdropper.

IV. STATE ESTIMATION PERFORMANCE
In this section, we present the expected performance of the

legitimate estimator’s state estimate.

3See Appendix A for derivation.
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A. State Estimator

The MMSE estimate of the state is defined in (3) as the
expectation of the state given the information received. We
define the MMSE prediction of the state as the expectation of
the state given the information available at the previous time
instance

x̂k|k−1 = E[xk|Ik−1]

where the estimate follows the dynamics, with associated
covariance as

Pk|k−1 = E[(xk − x̂k|k−1)(xk − x̂k|k−1)T|Ik−1].

From [37, Chapter 2] the state estimate update equation is

x̂k|k = x̂k|k−1 + γkΣk,xz (Σk,zz)
−1

(zk − ẑk) (8)

with associated estimate covariance update

Pk|k = Σk,xx − γkΣk,xz (Σk,zz)
−1

Σk,zx (9)

where the expected packet is ẑk = E[zk|Ik−1] and the
auxiliary variables are

Cov
([

xk
zk

]∣∣∣∣ Ik−1

)
=

[
Σk,xx Σk,xz
Σk,zx Σk,zz

]
where Σk,xx = Pk|k−1,
Σk,zz = E[(zk − ẑk)(zk − ẑk)T|Ik−1], and

Σk,xz = ΣT
k,zx = E[(xk − x̂k|k−1)(zk − ẑk)T|Ik−1].

As the pre-arranged scheduling sequence νk and additive noise
χk are known to the legitimate estimator and the transmitter,
the legitimate estimator’s expected packet is

ẑk =

{
E[xk|Ik−1], νk = 0

E[xk −Axk−1|Ik−1] + χk, νk = 1
. (10)

The MMSE state estimate of the legitimate estimator is

x̂k|k =


Ax̂k−1|k−1, when γk = 0

xk, when (γk, νk) = (1, 0)

xk −A(xk−1 − x̂k−1), when (γk, νk) = (1, 1)

.

The following theorem gives the covariance in the three
possible outcomes: a dropout occurs, the state is successfully
received, and an innovation is successfully received.

Theorem 4.1: The covariance of the legitimate estimator’s
state estimate is

Pk|k =


APk−1|k−1A

T +Q, when γk = 0

0, when (γk, νk) = (1, 0)

APk−1|k−1A
T, when (γk, νk) = (1, 1)

.

The proof is direct through application of the dynamics (1)
and definition of the expectation operator [37].

Proof: See Appendix B.
Inspecting the estimation error covariance of the legitimate

estimator in Theorem 4.1, we observe the following.
In the case that the transmission is dropped, γk = 0, the

estimation error covariance is the prediction error covariance.
This is the worst case as the estimation error builds by a factor
of ρ(A2) and linearly by the driving noise Q.

In the case that the innovation is received (γk, νk) =
(1, 1), the estimation error grows by a factor of ρ(A2),
which provides more information about the current state than
a dropout. Where the previous state is known exactly and
Pk−1|k−1 = 0, then the estimation error covariance remains
zero. The encoded innovation provides useful information to
the legitimate receiver while the random additive hinders a
potential eavesdropper.

Finally, in the case that the current state is received
(γk, νk) = (1, 0), the estimation error of the current state,
x̂k|k, is zero as the state is received exactly.

Remark 4.2: MMSE state estimate and associated covari-
ances can alternatively be derived using the Kalman filter.
In the case of noisy measurements, the Kalman filter can
be employed to provide similar MMSE estimates. While the
above result apply in principle, the estimation error covariance
in the case of a state receipt would not reduce to exactly zero
due to the presence of measurement noise.

B. Expected Performance
The estimation error of the legitimate estimator given in

Theorem 4.1, is dependent on the dynamics and the informa-
tion available at the current time step Ik: scheduling sequence
νk, additive noise χk, and the dropout channel γk. We utilize
the stochastic properties of the channel environment and
scheduling sequence to give the expectation of the legitimate
estimator estimation error performance.

To ensure a bounded estimation error covariance at the
legitimate estimator, the probability of receiving the state
estimate P(γk = 1, νk = 0) = µµd must be bounded

1− µµd <
1

ρ(A)2
. (11)

Given a channel quality µ and dynamics A, the minimum
choice of design variable is

1

µ

(
1− 1

ρ(A)2

)
< µd. (12)

For µd < 1, a better quality channel than (5), where only the
state estimate is transmitted, is required.

In the case that the choice of µd does not satisfy (11) then
E[Pk|k] is unbounded, otherwise we have the following result.

Theorem 4.3: The expected estimation error covariance of
the legitimate estimator’s state x̂k|k as k →∞ is

E[Pk|k] = (1− µ)S

where the choice of µd satisfies (12), and S is the unique
stabilizing solutions to the Lyapunov Equation

S =
(√

1− µµdA
)
S
(
AT
√

1− µµd
)

+Q. (13)

Proof: See Appendix C.
The proof of Theorem 4.3 is shown by considering the

expectation of Pk|k as the sum of the conditional expecta-
tion of Pk|k given the outcomes from Theorem 4.1 by the
probability of that outcome. Each conditional expectation of
Pk|k can be written as a function of the expectation of the
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previous estimation error covariance Pk−1|k−1 by application
of Theorem 4.1. Expanding from time k−1 to the initial time
k = 0, the expectation of Pk|k can be written as a function of
the initial condition Σ0 and a sum to time k of the dynamics
A and Q and outcome probabilities, comprised of the channel
quality µ and design variable µd. As k → ∞, we observe
that the expression can be written as a converging Lyapunov
equation providing the form given in Theorem 4.3.

An alternative proof approach is to consider that as k →
∞, the outcomes of the legitimate estimator form a countably
infinite Markov Chain (MC), see Appendix D. From every
state in the MC, the estimation error covariance will return to
a zero state when the state estimate is successfully received,
such that all states in the MC are reachable. The expectation of
Pk|k is then the sum of all of the possible MC states multiplied
by the limiting distribution of the MC, or the probability of
being in a state.

Inspecting the result of Theorem 4.3, we observe that the
expectation of the estimation error covariance of the legitimate
estimator is a function of the dynamics A and Q, the channel
µ, and the encoding scheme with design variable µd. The
performance is reduced compared to the nominal remote state
estimator that transmits the state estimate every time instance,
or the case that µd = 1. Our encoding scheme trades this
nominal performance of only sending the state, with secrecy of
the state information. Using knowledge of the channel quality
and dynamics, the design variable µd can be tuned to achieve a
certain level of expected estimation error while also ensuring a
bounded state estimate. We provide guidance on our encoding
design µd for secrecy against an eavesdropper in Section VI-
A to balance performance of the legitimate estimator against
secrecy to an eavesdropper.

V. EAVESDROPPER ESTIMATION
PERFORMANCE

We pose our secrecy encoding scheme in the context of a
class of adversarial eavesdropper that does not have knowledge
of the encoding scheme. The class of eavesdropper directly
uses any packets that it believes are the state. This amounts
to correctly using the state in the case νk = 0, but incorrectly
using an encoded innovation as the state in the case νk = 1.
We limit our analysis to this class of eavesdropper, as even in
the situation that an adversary was aware that the innovation
was encoded in some of the packets, without knowledge of the
additive noise χk the eavesdropper would be unable to extract
and utilize the innovation.

As the packets are statistically equivalent to the state pro-
cess, in the sense of the first and second moments, we pose
three types of eavesdropper. We consider: a naive eavesdropper
that assumes every received packet is the state; a suspicious
eavesdropper that suspects not every packet is the state, and
has a random chance at guessing the packet type; and a
smart eavesdropper that has perfect packet identification, and
correctly uses the state and discards the innovation.

In this section, we show the expectation of the estimation
error covariance of the class of eavesdropper, and for each type
of eavesdropper compare to the legitimate user’s performance.

We then provide an approach to choose an appropriate design
variable µd, and a numerical illustration.

A. Expected Eavesdropper Estimation Performance

At the receipt of each packet zk, we consider that the
eavesdropper may perform a test on the packet to make a
choice whether to utilize or discard the packet. Let us define
bk = 1 as the case where the eavesdropper identifies a
received packet zk as the state and uses the packet, and
bk = 0 as the case where the eavesdropper identifies a received
packet zk as not the state and so discards the packet. Let
us define the eavesdropper’s belief to use a packet as the
posterior probability test conditioned on the received packet
as P(bk = 1|zk, γek, νk), and the belief to discard a packet as
P(bk = 0|zk, γek, νk) = 1−P(bk = 1|zk, γek, νk). We outline in
the following sections how each type of eavesdropper forms
these conditional probabilities.

An eavesdropper has five possible events: successfully re-
ceives a state which it correctly uses (γek, νk, bk) = (1, 0, 1)
or incorrectly discards (γek, νk, bk) = (1, 0, 0), successfully
receives an innovation which it incorrectly uses (γek, νk, bk) =
(1, 1, 1) or correctly discards (γek, νk, bk) = (1, 1, 0), or the
packet is dropped (γek = 0). As discarding a successfully
received packet (cases bk = 0) is equivalent to dropping the
packet (γek = 0), the five events reduce to three outcomes.

First: successfully receiving a state which the eavesdropper
correctly uses, with probability

per = P(γek = 1, νk = 0, bk = 1).

Second: successfully receiving an innovation which the eaves-
dropper incorrectly uses as the state, with probability

pei = P(γek = 1, νk = 1, bk = 1).

Third: the eavesdroppers drops the packet or discards a suc-
cessfully received packet which it believes is not the state,
with probability

ped = P(γek = 0) + P(γek = 1, νk = 0, bk = 0)

+ P(γek = 1, νk = 1, bk = 0).

The state estimate of an eavesdropper is

x̂ek =


Ax̂ek−1, when (γek = 0) or (γek, νk, bk) = (1, 0, 0)

or (γek, νk, bk) = (1, 1, 0)

xk, when (γek, νk, bk) = (1, 0, 1)

xk −Axk−1 + χk, when (γek, νk, bk) = (1, 1, 1)

where the predicted estimate uses dynamics, and a successfully
received packet is used directly. We derive the covariance of
the state estimate similar to Theorem 4.1, then follow a similar
argument as Theorem 4.3 for the expectation of the estimation
error covariance.
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Lemma 5.1: The eavesdropper’s estimation error covari-
ance is

P ek|k =



AP ek−1|k−1A
T +Q, when (γek = 0)

or (γek, νk, bk) = (1, 0, 0)

or (γek, νk, bk) = (1, 1, 0)

0, when (γek, νk, bk) = (1, 0, 1)

2
(
AkΣ0(Ak)T +

∑k−2
`=0 A

k−1−`Q(Ak−1−`)T
)
,

when (γek, νk, bk) = (1, 1, 1)
The proof is direct through application of the dynamics (1),
definition of the expectation operator [37], and the encoding
scheme (6). Proof: See Appendix E.

Critically, while we can quantify in Lemma 5.1 the es-
timation error covariance of an eavesdropper using knowl-
edge of the mismatch between the encoding scheme and the
eavesdropper’s assumption, this would be unknown to the
eavesdropper. The eavesdropper assumes that upon receiving
a packet (γek = 1) and utilizing the packet (bk = 1) their
estimation error covariance is zero, which would not be the
case upon receiving an innovation. From Lemma 5.1, we note
that upon receipt and use of an innovation, the estimation error
covariance is instead a function of the dynamics and time k.

Theorem 5.2: The expectation of the estimation error co-
variance of the eavesdropper is

E[P ek|k] = (ped)
kAk−1Σ0(Ak−1)T +

k−1∑
`=0

(ped)
`+1A`Q(A`)T

+pei2

k−1∑
`=0

(ped)
`
(
AkΣ0(Ak)T +

k−`−2∑
j=0

Ak−1−jQ(Ak−1−j)T
)

where pei is the probability of receiving and utilizing an
innovation, and ped is the probability dropping or discarding
a packet.

Proof: See Appendix F.
Inspecting the result of Theorem 5.2, we note that the

expectation of the eavesdropper’s estimation error covariance
is a function of the dynamics A and Q, the initial state covari-
ance Σ0, the time k, and the probability of incorrectly using
an innovation pei and probability of dropping or discarding
a packet ped. The probability of use or discard of encoded
innovation packets depend on the belief that a received packet
is the state. We now consider three types of eavesdropper
that have different packet analysis techniques and utilize the
result of Theorem 5.2 to compare to the legitimate estimator’s
performance in the sense of our definitions of secrecy.

B. Naive Eavesdropper
Consider a naive eavesdropper that assumes that every

packet transmitted to the legitimate estimator is the state,
ẑk = xk for all k. Performing basic statistical tests, such
as computing the first or second moment on each received
packet zk, the naive eavesdropper would be unable to identify
a difference between state packets (νk = 0) and innovation
packets (νk = 1), as by design E[zk] = E[xk], see Section III-
B. The eavesdropper’s belief whether to use a packet that is
successfully received is

P(bk = 1|zk, γek = 1, νk) = 1,

irrespective of the packet containing the state (νk = 0) or
innovation (νk = 1). The probability of the naive eavesdropper
using the state or innovation are then

per = P(γek = 1, νk = 0, bk = 1) = µeµd

pei = P(γek = 1, νk = 1, bk = 1) = µe(1− µd)

and probability of packet drop or discard is ped = 1− µe.
We state the estimation error performance of the naive

eavesdropper from the result in Theorem 5.2.
Corollary 5.3: The expectation of the estimation error co-

variance of the naive eavesdropper diverges, E[P ek|k]→∞ as
k →∞, satisfying condition (ii) of Definition 2.

Proof: See Appendix G.
As the naive eavesdropper treats all received packets as

the state, it will inadvertently use the innovation packets
which significantly degrades the naive eavesdropper’s state
estimate. The result of Corollary 5.3 gives that the expectation
of the estimation error covariance is a function of time k
with some terms diverging as k increases. We note that the
diverging terms in the expected performance are larger for
larger probabilities pei , or smaller µd. Thus while any choice
of µd that satisfies (11) will ensure perfect secrecy, a smaller
µd will provide faster divergence of the naive eavesdropper’s
estimate. Additionally, we observe that even in the case of a
perfect channel µe = 1 and ped = 0, the naive eavesdropper’s
expected performance still diverges.

C. Suspicious Eavesdropper

Consider an eavesdropper that becomes suspicious that not
all of the received packets are the state. This suspicious
eavesdropper applies a statistical test to each packet that
it receives to form a belief of whether to use the packet
or to discard. Such analysis could be performed by testing
the sequence of received packet Iek , using online statistical
techniques such as Quickest Change Detection [17], [20].

As this eavesdropper is performing a statistical test on the
content of the received packet zk, the posterior probability to
use the packet would be correlated with the value of that packet
and thus the encoding νk and χk. For simplicity in analysis,
we assume that the eavesdropper has a fixed random chance
of correctly identifying a packet upon receipt, independent
of the packet value, encoding, or previous test outcome.
As such, our assumption is that the probability of belief is
i.i.d. and uncorrelated from the packet zk. While a major
simplifying assumption, this permits the below result, which
gives an indication to the potential eavesdropper performance
in the situation of non-perfect statistical tests. In the following
section, we analyze a smart eavesdropper that has perfect
detection through statistical analysis of received packets.

Let us define the probability for the eavesdropper to use a
packet that contains the state as

P(bk = 1|zk, γek = 1, νk = 0) = µb,

and to use a packet that contains the innovation as

P(bk = 1|zk, γek = 1, νk = 1) = µ̄b
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where 0 < µb < 1 and 0 < µ̄b < 1. By the independence
assumption, the probability of the suspicious eavesdropper
using the state or innovation are then

per = P(γek = 1, νk = 0, bk = 1)

= P(γek = 1)P(νk = 0)P(bk = 1|zk, γek = 1, νk = 0)

= µeµdµb,

pei = P(γek = 1, νk = 1, bk = 1)

= P(γek = 1)P(νk = 1)P(bk = 1|zk, γek = 1, νk = 1)

= µe(1− µd)µ̄b,

and the probability to drop or discard a packet is

ped = 1− µeµdµb − µeµ̄b + µeµdµ̄b.

The above probabilities are a consequence of the assumption
that the channel quality, schedule to transmit the state, and
eavesdropper belief, are i.i.d. random variables and uncorre-
lated from each other and the process.

We state the estimation error performance of the suspicious
eavesdropper from the result in Theorem 5.2.

Corollary 5.4: The expectation of the estimation error co-
variance of the suspicious eavesdropper diverges, E[P ek|k] →
∞ as k →∞, satisfying condition (ii) of Definition 2.

Proof: See Appendix G.
As the suspicious eavesdropper has a random chance of

incorrectly identifying encoded innovation packets as the state,
it will inadvertently use these packets which significantly
degrades its state estimate. The result of Corollary 5.4 gives
that the expectation of the estimation error covariance is a
function of time k with some terms diverging as k increases.

In contrast to the naive eavesdropper’s expected estimation
error covariance, see Corollary 5.3, the probability of using
an innovation, pei , is smaller µe(1− µd) ≥ µe(1− µd)µ̄b, for
µ̄b < 1, but the probability of the dropout, ped, is much larger.
For some choices of the eavesdropper’s beliefs µb and µ̄b the
expectation of the suspicious eavesdropper’s performance will
be worse than for the naive eavesdropper.

Remark 5.5: Consider the scenario where the suspicious
eavesdropper correctly identifies all packets that contain the
state, such that µb = 1 but makes errors on the innovation
packets such that µ̄b > 0 and pei > 0. By Corollary 5.4 the
expectation of the eavesdropper’s estimation error covariance
will diverge. We note that for errors in identification of the
encoded innovations such that the eavesdropper uses these
packets will diverge the eavesdropper’s estimate.

D. Smart Eavesdropper
Consider a smart eavesdropper that analyses the packets,

but in contrast to the suspicious eavesdropper has perfect
performance. The smart eavesdropper perfectly identifies all
received packets that are the state measurement

P(bk = 1|zk, γek = 1, νk = 0) = 1,

and uses these packets. The smart eavesdropper perfectly
identifies all received packets that are not the state

P(bk = 1|zk, γek = 1, νk = 1) = 0,

and discards these packets. Effectively, the smart eavesdropper
can identify the sequence νk. However, we consider that it
does not know the realization of χk and is unaware of the full
encoding mechanism (6), so cannot decode the innovations.
We consider that it would be challenging for an eavesdropper
to identify the value of χk inside the packet zk as the random
variable is independent and uncorrelated from the state process
xk and scheduling sequence νk.

The probability of the smart eavesdropper using the state or
innovation is

per = P(γek = 1, νk = 0, bk = 1) = µeµd,

pei = P(γek = 1, νk = 0, bk = 1) = 0,

and probability of packet drop or discard is

ped = 1− µeµd.

We note that the second outcome introduced in Section V-A is
eliminated. We note that this is the best type of eavesdropper
in the class that we analyze. For an eavesdropper to obtain
better performance, an adversary would need to decode the
innovation, which is outside of the class that we consider.

The smart eavesdropper effectively functions as a remote
state estimator where the state is transmitted every time
instance with a channel quality of per = µeµd. This result is
a consequence of our encoding scheduling sequence νk being
i.i.d. and uncorrelated to the eavesdropper’s channel. Follow-
ing [36], a necessary and sufficient condition for the smart
eavesdropper to have a bounded estimation error covariance,
is that the encoding design probability is upper bounded by

1

µe

(
1− 1

ρ(A)2

)
< µd. (14)

The result of Lemma 5.1 can be reduced by noting that the
case (γek, νk, bk) = (1, 1, 1) is discarded. The state estimate of
the smart eavesdropper is

x̂ek =


Ax̂ek−1, when γek = 0 or (γek, νk) = (1, 1)

or (γek, νk, bk) = (1, 0, 0)

xk, when (γek, νk, bk) = (1, 0, 1)

with covariance

P ek|k =


AP ek−1|k−1A

T +Q,

when γek = 0 or (γek, νk) = (1, 1)

or (γek, νk, bk) = (1, 0, 0)

0, when (γek, νk) = (1, 0)

This can be shown directly from [37] and is simpler than the
state estimate of the legitimate estimator, see Theorem 4.1.
Unlike the naive and suspicious eavesdroppers above, the
smart eavesdropper can correctly quantify its own estimation
error covariance, P ek|k, as it is aware of the nature of the
packets it is using.

To compare the performance of the smart eavesdropper
to the legitimate estimator, we establish the expectation of
the estimation error covariance of the smart eavesdropper. In
the case that µe or µd do not satisfy (14), then E[P ek|k] is
unbounded. In the case that µe and µd satisfy (14) then we
have the following result.
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Lemma 5.6: The expectation of the estimation error covari-
ance of the smart eavesdropper as k →∞ is

E[P ek|k] = (1− µeµd)Se

where µe and µd satisfy (14), and Se is the unique stabilizing
solution to the Lyapunov Equation

Se =
(√

1− µeµdA
)
Se
(
AT
√

1− µeµd
)

+Q. (15)

The proof follows that of Theorem 4.3 and Theorem 5.2,
but is simpler as the eavesdropper has only two possible
channel outcomes. As pei = 0 for the smart eavesdropper,
then the diverging terms in Theorem 5.2 are removed, and the
expectation then converges.

Proof: See Appendix H.
To show secrecy as a function of design variable µd and

channel qualities, µ and µe, we give the following monotonic-
ity result of the Lyapunov equation.

Lemma 5.7: Consider a β, β? where 0 < β, β? < 1,
ρ(
√

1− βA) < 1 and ρ(
√

1− β?A) < 1 and introduce the
following two Lyapunov equations

W =
√

1− βAWAT
√

1− β +Q

W ? =
√

1− β?AW ?AT
√

1− β? +Q

where W and W ? are the unique stabilizing solutions. In the
case that β? < β then

trace W < trace W ?.
Proof: See Appendix I.

Using Lemmas 5.6 and 5.7 and Theorem 4.3, we compare
the expected estimation error of the smart eavesdropper against
the legitimate estimator. The differences in performance are
related to the difference in channel qualities, and scheduling
sequence design. We explore the cases where the eavesdropper
channel quality is worse than, or equal to, the legitimate
estimator’s channel quality.

Theorem 5.8: In the case that the eavesdropper has a worse
or equal quality channel to the legitimate estimator, µe ≤ µ
and the scheduling sequence is chosen in the range

1

µe

(
1− 1

ρ(A)2

)
< µd < 1 (16)

then the trace of the expected estimation error of the legitimate
estimator is strictly less than the eavesdropper

trace E[Pk|k] < trace E[P ek|k].

This satisfies condition (ii) of Definition 1.
Proof: Recall (12), Theorem 4.3 and Lemma 5.6. For

any µd < 1 and µe ≤ µ then 1 − µ < 1 − µeµd. In the case
µe = µ then S ≡ Se. In the case µe < µ, let β = µµd and
β? = µeµd and via Lemma 5.7, trace S < trace Se. It follows
in both cases that (1− µ)trace S < (1− µeµd)trace Se.

From Theorem 5.8, we can conclude that our encoding
scheme achieves a level of relative secrecy against the smart
eavesdropper that has an equal or worse channel quality. In
the case where the eavesdropper has a strictly worse quality
channel and the dynamics are unstable such that ρ(A) > 1,
we observe an extension to Theorem 5.8.

Theorem 5.9: In the case that µe < µ, and the dynamics
are unstable ρ(A) > 1, the smart eavesdropper’s expected
state estimate is unbounded E[P ek|k]→∞ while the legitimate
estimator’s estimate is bounded where the design variable µd
is bounded by

1

µ

(
1− 1

ρ(A)2

)
< µd ≤

1

µe

(
1− 1

ρ(A)2

)
. (17)

This satisfies condition (ii) of Definition 2.
Proof: Choice of µd satisfying (12) to ensure a bounded

estimate for the legitimate estimator informs the lower bound.
Failing (14) such that the eavesdropper has an unbounded
estimation error covariance informs the upper bound.

Comparing the result of Theorem 5.9 to the proposal of [6]
the bound on the random transmission of the state is similar to
achieve perfect secrecy. However, our encoder is different as
we transmit an encoded innovation instead of no information,
which the legitimate estimator can decode, providing better
legitimate estimation performance while still ensuring secrecy
of the state estimate against an eavesdropper.

Under a channel model with signal fading over distance, we
might expect the case of eavesdropper channel quality worse
than the legitimate estimator to be more common, as a stealthy
eavesdropper might be physically located further away from
the transmitter as considered in [6].

We observe from the results of Theorems 5.8 and 5.9, that
through the use of the innovations in our encoder design, the
legitimate estimator has lower expectation of estimation error
covariance than a smart eavesdropper and thus a better state
estimate in the case of better or the same channel quality. Our
proposed encoding technique is most beneficial in the case
where the legitimate user has a better or equal channel quality
to the eavesdropper.

VI. SCHEDULING SEQUENCE DESIGN FOR
SECRECY

We now discuss approaches to determine an appropriate
design variable µd to generate the scheduling sequence, and
provide a numerical illustration. Let us briefly recall our packet
encoding from (6)

zk =

{
xk, νk = 0

xk −Axk−1 + χk, νk = 1

for k ≥ 1 and z0 = x0, and we randomize transmission
of the state with P(νk = 0) = µd, and χk is a zero-mean
Gaussian random variable designed such that the first and
second moment of the packet are the same as the state.

A. Scheduling Distribution Design
Consider a given dynamics A and Q, and legitimate esti-

mator channel quality µ and eavesdropper channel quality µe,
then the expectations of the estimation error covariance can be
written as a function of µd. The expectation of the estimation
error covariance of the legitimate estimator from Theorem 4.3
can be written as

J(µd) = trace E[Pk|k] = (1− µ)trace S, (18)
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and the smart eavesdropper from Lemma 5.6

Je(µd) = trace E[P ek|k] = (1− µeµd)trace Se

where S and Se are functions of µd, see (13) and (15).
Before providing a method to select an encoding design µd,
we observe the following monotonicity result.

Lemma 6.1: The trace of the expectation of the estimation
error covariance for the legitimate estimator J(µd) and smart
eavesdropper Je(µd) are monotonically decreasing in µd, such
that for µ?d ≤ µd

J(µd) ≤ J(µ?d) and Je(µd) ≤ Je(µ?d).

Proof: Consider µ?d < µd. Recall Theorem 4.3, and let
β = µµd and β? = µµ?d then via Lemma 5.7, trace S <
trace S?. Recall Lemma 5.6, and let βe = µeµd, βe,? = µeµ

?
d

then via Lemma 5.7, trace Se < trace Se,?, and 1−β < 1−β?.
The result follows.

The result of Lemma 6.1 gives that as we decrease µd
towards the minimum value in (12), and as such transmit more
innovations, the expectation of the estimation error covariance
of both the legitimate estimator and the smart eavesdropper
increase. Conversely as we increase µd towards 1, such that we
transmit fewer innovations, the expectation of the estimation
error covariance of both the legitimate estimator and the smart
eavesdropper reduces. Our design variable µd then trades off
the estimation performance of the legitimate estimator for
secrecy against the eavesdropper.

We now establish a range on the encoding design µd to
satisfy the constraints (12) and µd < 1 and condition (i) of
our secrecy Definitions 1 and 2. Applying the monotonicity
result of Lemma 6.1, the minimum choice of µd will be at
the bound J(µd) = Ω by a given Ω > 0, while the maximum
choice will be at the bound J(µd) = 0. The minimum choice
that ensures that the expected estimation error covariance of
the legitimate estimator is bounded by a given Ω > 0 can be
found by maximizing4 (18) over possible µd

µmin
d = arg max J(µd) < Ω

such that the constraints (12) and µd < 1 hold. The maximum
choice can be found by minimizing greater than 0

µmax
d = arg min J(µd) > 0

such that the constraints (12) and µd < 1 hold. A choice of
choice in the range µmin

d < µd < µmax
d ensures condition (i)

of Definitions 1 and 2.
For the case µe ≤ µ, while any choice of encoding

design µd in the ranges µmin
d < µd < µmax

d and (16), from
Theorem 5.8, will give secrecy under Definition 1, we may be
interested in the encoding design that maximizes the secrecy
gain. To maximize the secrecy gain, we desire to find the
encoding that achieves the biggest performance difference. Let
us introduce a function of the difference in expectation of
estimation error covariances

Jr(µd) = trace E[P ek|k]− trace E[Pk|k]

= (1− µeµd)trace (Se)− (1− µ)trace S

4Using any standard constrained nonlinear solver.

where both Se and S are functions of the design µd. We
note that Jr(µd) > 0 for any µd in the range (16), as
trace E[P ek|k] > trace E[Pk|k] by Theorem 5.8.

To obtain an encoding design µ?d that maximizes the estima-
tion error covariance difference, we find the µd that maximizes
Jr(µd) > 0

µ?d = arg max Jr(µd) > 0 (19)

such that the constraints µmin
d < µ?d < µmax

d , and (16) hold.
The choice of µ?d for the encoding design will provide the
biggest secrecy gain against the smart eavesdropper.

In the case of better eavesdropper channel quality µ < µe
there may exist a range on µd where our encoding design
will satisfy Definition 1. There may exist a value µ?d that
maximizes Jr(µd) > 0 from the optimization (19) such that
only the constraint µmin

d < µ?d < µmax
d is satisfied. Noting

that the constraint (16) does not apply in the case µ < µe. If
an encoding design µ?d exists, then there may also be a range
µ
d
< µ?d < µd that provides J(µd) > 0, and can be computed

µ
d

= arg min Jr(µd) > 0

with constraint µmin
d < µ

d
< µ?d and

µd = arg min Jr(µd) > 0

with constraint µ?d < µd < µmax
d .

Finally, in the case of worse eavesdropper channel quality
µe < µ the best legitimate estimator performance, where the
eavesdropper has an unbounded estimate under Definition 2,
is given by

µmax
d = arg min J(µd) > 0

such that the constraint (17) holds.

B. Numerical Illustration
We briefly illustrate the relative performance of the le-

gitimate estimator and smart eavesdropper in a numerical
example. We do not illustrate the performance of the naive
and suspicious eavesdroppers, as via Corollary 5.3 and 5.4
the estimation performance is divergent for any µd.

Consider the dynamics in (1) with

A =

[
1 0.3

0.5 1.001

]
, and Q = 10−3

[
1 0
0 1

]
where we note that ρ(A) = 1.3878 > 1. Consider a channel
quality of µ = 0.9 for the legitimate estimator. Using (12) we
obtain that the design variable is lower bounded 0.5342 < µd.

Let us consider four cases of smart eavesdropper channel
quality of µ1

e = 0.85, µ2
e = µ, µ3

e = 0.95, and µ4
e = 0.99.

Figure 2 shows the absolute difference in the traces of the
expected estimation error between the smart eavesdropper and
the legitimate estimator Jr(µd)/J(µd), against the encoding
design variable µd for the four cases.

In the case that the eavesdropper’s channel quality is worse
(µ1
e < µ in dotted magenta) or equal (µ2

e = µ in dashed blue)
to the legitimate estimator, the trace of the expected estima-
tion error covariance of the eavesdropper, while bounded, is
larger for any choice of valid design. These results illustrate
Theorem 5.8 and satisfaction of Definition 1.
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Fig. 2. Comparison of the absolute difference in trace of the expected
estimation error covariance of the legitimate estimator compared with
the smart eavesdropper with four channel qualities (worse, equal, bet-
ter, much better). Eavesdropper with worse channel quality in dotted
magenta, equal channel quality in dashed blue, better channel quality
in solid black, and much better channel quality in dot-dashed red. The
results of Theorem 5.8 are apparent where the eavesdropper has worse
performance than the legitimate estimator in the case of worse or equal
channel quality.

For the case where the eavesdropper has a worse quality
channel µ1

e < µ, using (17) from Theorem 5.9 encoding
designs in the range 0.5342 < µd < 0.5656 force the smart
eavesdropper’s estimation error covariance to be unbounded
while the legitimate estimator’s estimation error covariance
remains bounded, achieving Definition 2.

In the case that the eavesdropper’s channel quality is better
than the legitimate estimator µ3

e = 0.95, see the solid black
line in Figure 2, there is a visible range of µd where Jr(µd) >
0. Optimizing (19), the encoding design µd = 0.5745 gives
the largest positive value of Jr(µd), with the range 0.5342 <
µd < 0.8931 giving Jr(µd) > 0. In some scenarios where
the eavesdropper has a better quality channel, our encoding
design can provide relative secrecy under Definition 1.

For a near perfect eavesdropper channel of µ4
e = 0.99, a

choice of µd that provides Jr(µd) > 0 is not apparent in
Figure 2 (dot-dashed red line). Using (19), the encoding design
µd = 0.5571 gives the largest positive value of Jr(µd), and
the range 0.5342 < µd < 0.9384 gives Jr(µd) > 0. Even in
the scenario where an eavesdropper has a significantly better
quality channel, our encoding design still provides relative
state secrecy under Definition 1.

VII. APPLICATION TO POWER SYSTEMS

We now consider an application of our proposed transmis-
sion encoding scheme to a microgrid. A microgrid is a small
electricity grid, typically consisting of local generation, such
as solar photo-voltaics, and local storage, such as batteries,
to supply a small to medium load. The load could include a
typical suburban house, several houses, or contained facility
such as a hospital [29]. In metropolitan areas, the microgrid
can connect to the main grid with import and export capability,
while in remote areas, the microgrid is isolated. The intercon-
nection between multiple microgrids and to the main utility
grid, enables coordination to achieve global system goals.
However, this networking exposes the whole power system
to cyber-attacks altering the behavior of the system [38].

Wireless Network

System
Solar PV

Power Grid Household
Load

Power Flow
Controller

State
Estimator

Remote

Hydrogen
Storage Battery

State
Local

Estimator

Storage Systems

Power Source Power Sink

Physical Infrastructure

Fig. 3. Illustration of the microgrid power flow connections, adapted
from [29]. Local green power supplies a small to medium sized load,
such as a house, with batteries and hydrogen system providing power
storage. The controller manages the power flows to maximize the use of
the storage systems and minimize purchase of power from the grid.

With advancements in solar generation and battery storage
technology, there has recently been a rise in the microgrid
‘prosumer’ [39]. The ‘prosumer’ both produces electricity and
exports to the grid, as well as consumes and imports power
from the grid. The challenge of a grid connected microgrid is
to control the power flow to either maximize the use of the
local storage and minimize purchase of power from the grid,
or to maximize the export of power to the grid for profit [40].

While individuals may benefit from maximizing sale of
power to the grid, many users in a small geographic area
exporting power can cause grid instability [41]. As more
consumer households transition to microgrids with local power
generation and storage, it becomes necessary for a network
operator to monitor and control the connected microgrid to
ensure stability [42]. The transmission of consumer data, and
behavior as extracted from power flow data poses a privacy
risk [43]. This motivates the associated cybersecurity problem
to ensure confidentiality of the storage levels and generation
potential from eavesdroppers.

To autonomously control the power flows in a connected
microgrid, [29] posed a constrained model predictive control
design. Their experimental microgrid consisted of a battery
and hydrogen storage systems, green power from solar panels,
household load, and a grid connection for export for sale and
purchase import power. Figure 3 illustrates the power flow
connections in this example microgrid.

A. Microgrid Dynamics
The dynamics of the battery and hydrogen storage systems

can be parameterized as nonlinear ordinary differential equa-
tions. For the purposes of control, [29] introduced a discrete-
time linearized model to describe the change in storage
charge from the input power flows. The model states are the
percentage battery state of charge (SOC) and hydrogen level
(LOH) such that x = [SOC, LOH]T, the control inputs are
the hydrogen power flow PH and the grid power flow Pgrid
such that u = [PH , Pgrid], while the green power Psolar,
and load Pload, are considered uncontrolled input disturbances.
The power to the battery storage is the sum of all power flows
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by Kirchhoff’s laws

Pbat = Pload − Psolar − PH − Pgrid.

All power flows are in kW. The discrete-time linearized
dynamics posed in [29] are

xk+1 = Axk +Buk +Bd(Psolar − Pload) (20)

where the sampling rate is 1 second, A is the identity matrix
of size 2× 2 and

B =

[
1.56 1.56
−5.66 0

]
× 10−3, Bd =

[
1.56

0

]
× 10−3.

We note that the system is marginally stable. A MAT-
LAB/Simulink implementation of the MPC controller, nonlin-
ear storage system models, and sample data for one 24 hour
day of solar power generation and household load used in
[29] is available online5. At the chosen sampling rate there
are 86400 data points.

B. Transmission Encoding Performance
We extend this system by considering that the two storage

systems have a one-way wireless network connection to the
digital controller. At the battery and hydrogen system, a local
Kalman filter computes a state estimate to filter measurement
and process noise. This local state estimate is then the trans-
mitted state measurement of the storage system levels. This
state estimate using the microgrid dynamics (20) can then be
written in the form (1), where A is the identity matrix of
size 2 × 2 and the process noise wk ∼ N (0, Q) encodes the
Kalman innovation and the control actions. Through testing on
the simulation the covariance of the process noise was found
to be approximately Q ≈ I2 × 10−5 where I2 is the identity
matrix of size 2× 2.

We perform a Monte Carlo simulation of 1000 trials of the
one day of sample generation data from [29] to illustrate the
estimation error performance difference between the legitimate
estimator and the smart eavesdropper. We consider that the
two remote estimators have the same channel qualities of µ =
µe = 0.6, and we investigate design variable probabilities in
the range µd = {0.1, 0.9}.

Figure 4 shows the mean of the estimation error covariances
Pk|k (solid blue) and P ek|k (dashed red) across the Monte
Carlo trials and across the simulation time k, against the
design variable probability µd. As the proportion of the state
measurement is sent increases, µd → 1, the estimation error
decreases for both the legitimate estimator and the eavesdrop-
per. However, the mean estimation error for the eavesdropper
is considerably larger than for the legitimate estimator, greater
than 103 compared to less than 100.

The error in the state measurement does degrade the con-
troller performance. Considering the power flow to the grid
connection as a measure of controller performance, as grid
flow equates to power sold or purchased, we compare the total
power flow over the day using our encoding scheme against
no transmission encoding. The difference in grid power flow is
below 1.58% for decision probability µd = 0.1, highlighting

5http://institucional.us.es/agerar/simugrid/
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Fig. 4. Monte Carlo Simulation of Microgrid with transmission encoding
of remote state estimate. Eavesdropper performance is significantly
reduced compared to the legitimate estimator by randomly sending true
state and one step innovation.

that there is marginal impact on control performance even at
the most restrictive encoding scheme.

VIII. CONCLUSIONS

This article investigated the problem of remote state estima-
tion in the presence of an eavesdropper, under a challenging
network environment. We consider the situation where the
transmitter and legitimate estimator receiver do not have a
packet receipt acknowledgment channel. This scenario could
arise due to hardware limitations or the actions of an adversary
jamming the network.

We have developed a state-secrecy code that randomly
alternates between sending the state and a random value
packet that appears to statistically be the state. The random
value packet both damages the eavesdropper’s state estimate,
while containing encoded state information for the legitimate
estimator. Our encoding scheme ensures that the legitimate
estimator’s expected estimation performance remains bounded.
We design our encoding to provide a measure of expected
secrecy against an eavesdropper.

An open problem is to ensure state secrecy against intelli-
gent eavesdroppers that learn the encoding scheme.

APPENDIX

A. Encoding Scheme Additive Noise Design

For any finite k > 0, the expectation of the state xk is

E[xk] = AkE[x0] +

k−1∑
`=0

Ak−1−`E[w`] = 0

recalling that the initial state x0 and every wk are zero mean.
As such, in case νk = 0 of sending the state zk = xk then

E[zk] = E[xk] = 0.

Now consider case νk = 1 with the innovation encoded by
additive noise zk = xk −Axk−1 + χk then

E[zk] = E[xk −Axk−1 + χk] = E[wk−1] + E[χk] = 0

by the design that χk is zero-mean.
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The covariance of the state can be found to be [37]

E[xkx
T
k ] = AkΣ0(Ak)T +

k−1∑
`=0

Ak−1−`Q(Ak−1−`)T.

In the case νk = 0 this would be the covariance of the packet.
Consider the covariance of the packet in the case νk = 1
where the packet zk = xk −Axk−1 +χk = wk−1 +χk is the
innovation encoded by additive noise

E[zkz
T
k ] = E[(wk−1 + χk)(wk−1 + χk)T]

= E[wk−1w
T
k−1] + E[wk−1χ

T
k ] + E[χkw

T
k−1] + E[χkχ

T
k ]

= Q+ 0 + 0 +AkΣ0(Ak)T +

k−2∑
`=0

Ak−1−`Q(Ak−1−`)T

= AkΣ0(Ak)T +

k−1∑
`=0

Ak−1−`Q(Ak−1−`)T = E[xkx
T
k ]

where χk is uncorrelated from w` for all k, ` ≥ 1 and by
design the covariance of χk is chosen as

E[χkχ
T
k ] = AkΣ0(Ak)T +

k−2∑
`=0

Ak−1−`Q(Ak−1−`)T.

B. Legitimate Estimator MMSE

Proof of Theorem 4.1. The proof shows the MMSE of the
state estimate for the legitimate estimator.

Proof: We consider the three outcomes separately, let us
first consider a packet drop γk = 0. From (8) and (9) with
γk = 0 then x̂k|k = x̂k|k−1 = E[xk|Ik−1] where

x̂k|k−1 = E[Axk−1|Ik−1] + E[wk−1|Ik−1] = Ax̂k−1|k−1

recalling that wk is defined as a zero-mean Gaussian random
variable such that E[wk−1|Ik−1] = 0, and E[xk−1|Ik−1] =
x̂k−1|k−1, and the estimation error covariance is Pk|k =
Σk,xx = Pk|k−1 where

Pk|k−1 = E[(xk − x̂k|k−1)(xk − x̂k|k−1)T|Ik−1]

=E[(Axk−1 + wk−1 −Ax̂k−1|k−1)

(Axk−1 + wk−1 −Ax̂k−1|k−1)T|Ik−1]

=AE[(xk−1 − x̂k−1|k−1)(xk−1 − x̂k−1|k−1)T|Ik−1]AT

+ E[wk−1w
T
k−1|Ik−1]

=APk−1|k−1A
T +Q

recalling that wk and xk are uncorrelated.
Now consider a successfully received state transmission

(γk, νk) = (1, 0) where zk = xk, and from (10) the expected
packet is zk = E[xk|Ik−1] = x̂k|k−1. Now with zk = xk and
ẑk = x̂k|k−1 we present the parts of (8) and (9) required

Σk,zz =E[(xk − x̂k|k−1)(xk − x̂k|k−1)T|Ik−1]

=APk−1|k−1A
T +Q,

and

Σk,xz =E[(xk − x̂k|k−1)(xk − x̂k|k−1)T|Ik−1]

=APk−1|k−1A
T +Q.

Then applying the estimation update (8)

x̂k|k = x̂k|k−1 + γkΣk,xz (Σk,zz)
−1

(zk − ẑk)

= x̂k|k−1 + (APk−1|k−1A
T +Q)

×
(
APk−1|k−1A

T +Q
)−1 (

xk − x̂k|k−1

)
= xk

with covariance (9)

Pk|k = Σk,xx − γkΣk,xz (Σk,zz)
−1

Σk,zx

= (APk−1|k−1A
T +Q)− (APk−1|k−1A

T +Q) = 0.

Finally, consider a successfully received innovation trans-
mission (γk, νk) = (1, 1) where zk = xk − Axk−1 = wk−1,
and from (10) the expected packet is

ẑk = E[xk −Axk−1|Ik−1] + χk

= Ax̂k−1|k−1 −Ax̂k−1|k−1 + χk = χk.

which gives the preliminary result

zk − ẑk = wk−1 + χk − χk = wk−1.

Now we present the parts of (8) and (9) required using the
above result

Σk,zz = E[(zk − ẑk)(zk − ẑk)T|Ik−1] = E[wk−1w
T
k−1] = Q

and

Σk,xz = E[(xk − x̂k|k−1)(zk − ẑk)T|Ik−1]

= E[(Axk−1 + wk−1 −Ax̂k−1|k−1)wT
k−1|Ik−1]

= E[A(xk−1 − x̂k−1|k−1)wT
k−1 + wk−1w

T
k−1|Ik−1]

= 0 +Q = Q.

Then the estimate (8) is

x̂k|k = x̂k|k−1 + γkΣk,xz (Σk,zz)
−1

(zk − ẑk)

= Ax̂k−1|k−1 +QQ−1wk−1

= Ax̂k−1|k−1 + wk−1 = xk −A(xk−1 − x̂k−1|k−1).

where wk−1 = xk −Axk−1, with covariance (9)

Pk|k = Σk,xx − γkΣk,xz (Σk,zz)
−1

Σk,zx

= (APk−1|k−1A
T +Q)−Q (Q)

−1
Q

= AP̄k−1|k−1A
T.

This completes the proof.

C. Legitimate Estimator Expected Estimation Error
Covariance

Proof of Theorem 4.3. The following proof shows the ex-
pected estimation error covariance of the state at the legitimate
estimator.

Proof: We consider that the legitimate estimator is able
to decode the packages that it successfully receives. There are
then three outcomes for the legitimate estimator, successful
receipt of a state estimate (ϕk = 1) with probability pr =
P(γk = 1, νk = 0) = µµd, successful receipt of an innovation
(ϕk = 2) with probability pi = P(γk = 1, νk = 1) = µ(1 −
µd), and a standard dropout (ϕk = 3) with probability pd =
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P(γk = 0) = (1− µ). The expectation of the estimation error
covariance for time k > 0 can be written as a sum of the
sequence of dropouts from the first transmission

E[Pk|k] = (pi + pd)
kAkΣ0(AT)k (21)

+ pd

k−1∑
j=0

(pi + pd)
jAjQ(AT)j .

We show via a proof by induction.
Consider k = 0 from definition E[P̄0|0] = Σ0B

Tpd, as only
the state is transmitted at the first time and Σ0 is the covariance
of the initial state x0. Now consider the first time k = 1 from
definition

E[P1|1] =

3∑
y=1

E[P1|1|ϕ1 = y]P (ϕ1 = y)

= (pd + pi)AΣ0A
T + pdQ.

We now show that if (21) holds for time k, that the form (21)
also holds for time k + 1.

E[Pk+1|k+1] =

3∑
y=1

E[Pk+1|k+1|ϕk+1 = y]P (ϕk+1 = y)

= AE[Pk|k]ATpi + E[Pk+1|k]pd0pr

= AE[Pk|k]ATpi +
(
AE[P̄k|k]AT +Q

)
pd

= Qpd +AE[P̄k|k]AT(pi + pd).

Consider the expression AE[Pk|k]AT(pi + pd) utilizing (21)
for E[Pk|k], the first term

A
(
(pi + pd)

kAkΣ0(AT)k
)
AT(pi + pd)

= (pi + pd)
k+1Ak+1Σ0(AT)k+1,

the second term

A

pd k−1∑
j=0

(pi + pd)
jAjQ(AT)j

AT(pi + pd)

= pd

k∑
j=1

(pi + pd)
jAjQ(AT)j .

Now

E[Pk+1|k+1] = (pi + pd)
k+1Ak+1Σ0(AT)k+1

+Qpd + pd

k∑
j=1

(pi + pd)
jAjQ(AT)j

= (pi + pd)
k+1Ak+1Σ0(AT)k+1

+ pd

k∑
j=0

(pi + pd)
jAjQ(AT)j ,

which is the form of (21) at time k + 1. This completes the
induction argument.

Let us explore the stabilizing solutions of the two terms of
(21) as k → ∞. The first term results from a sequence of a
dropouts from the initial transmission. By assumption of µd
in (11), we note that ρ(

√
pi + pdA) = ρ(

√
1− µµdA) < 1,

so as time k → ∞ then (
√
pi + pdA)k → 0 and the initial

estimation error covariance Σ0 is exponentially forgotten.

The second term encodes the sequences of potential
dropouts and innovations occurring from the first dropout after
the estimator received a state packet. The sum is comprised
of the potential value of the estimation error covariance
multiplied by the corresponding probability. Taking as k →∞,
this result can be shown with a countably infinite, irreducible,
and aperiodic Markov Chain, see Appendix D. Consider the
sum in (21) from j = 0 to k − 1 and denote as Sk,

Sk−1 =

k−1∑
j=0

(pi + pd)
jAjQ(AT)j

=

k−1∑
j=0

(√
pi + pdA

)j
Q
(
AT√pi + pd

)j
.

By assumption of µd in (11), we note that ρ(
√
pi + pdA) =

ρ(
√

1− µµdA) < 1, so the sum is a vector geometric series,
and can be written in the form of a discrete-time Lyapunov
equation sequence [37]

Sk =
√
pi + pdAS̄k−1A

T√pi + pd +Q

from S0 = Q. The stabilizing solution S can be found by
taking k →∞, or setting Sk = Sk−1 = S and solving for the
unique stabilizing solution to

S =
√
pi + pdASA

T√pi + pd +Q.

We conclude the proof by stating the expectation of the state
using the above results

E[Pk|k] = (1− µ)S.

D. Alternative Legitimate Estimator Expected Estimation
Error Covariance

Proof of Theorem 4.3. The following proof shows the ex-
pected estimation error covariance of the state at the legitimate
estimator using an alternative Markov Chain approach.

It is possible to derive the estimation error at some time
k with exact knowledge of the past sequence of dropouts
and encoding. To find the expectation of the estimation error
covariance at some time k, we can take the total expectation
over all possible sequences of dropouts and encoding, the
summation of the final estimation error covariances weighted
by the possibility of each sequence. The proof is in two parts,
we first define a Markov Chain representation of the possible
sequences of packet receipts, before second computing the
total expectation.

The possible sequences can be written as a resetting random
walk from the ‘in-sync’ state and the first dropout. The ‘in-
sync’ state is where the estimation error covariance is zero
from either receiving the state, or receiving an innovation
after receiving the state. On the third outcome, a dropout,
the estimation error covariance diverges from zero. Let us
define ∆ as the number of steps from the ‘in-sync’ state,
where ∆ = 1 is the first dropout after being ‘in-sync’. From
this first dropout, the estimation error covariance can increase
from a dropout or innovation for two possible states, or reset
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Fig. 5. Markov Chain representation of the states of the legitimate esti-
mator. The first state is the ‘in-sync’ state where the estimate is in sync
with the transmitter. The legitimate estimator remains in sync from state
or innovation receipts, or drops the packet moving to the second state.
The estimate after this first dropout is dependent on the sequence of
further dropouts of successful packet receipts of transmitted innovations.
At any point, the estimator can receive a state packet and return or reset
to the ‘in-sync’ state.

to the ‘in-sync’ state. From the second dropout or innovation,
the estimation error covariance can increase further with a
dropout or innovation for now four possible states, or reset to
the ‘in-sync’ state. As k →∞, this resetting random walk can
be written as a countably infinite Markov Chain [44], where
the first state is the ‘in-sync’ state, the second state is the first
dropout, and every following state of dropouts and innovations
follows.

The states of the Markov Chain represent the time since
the last packet receipt that maintained the ‘in-sync’ state. For
clarity we recall the following three probabilities pr = P(γk =
1, νk = 0) = µµd as the probability of receiving a state
and resetting, pi = P(γk = 1, νk = 1) = µ(1 − µd) as the
probability of receiving an innovation, and pd = P(γk = 0) =
(1 − µ) as the probability of a packet dropout. Additionally,
we define πj as the limiting distribution of state j of the
Markov Chain with state π0 the ‘in-sync’ state, π1 as the
first dropout from ‘in-sync’, and we recall that the sum of all
probabilities is equal to 1:

∑∞
j=0 πj = 1. The Markov Chain

is visualized in Figure 5. This Markov Chain represents all
possible estimation error covariance resulting from sequences
of dropouts and packet receipts.

In computing the total expectation of the estimation error
covariance, we take the summation of the estimation error
covariance value weighted by the probability of the state in the
Markov Chain. The limiting distribution of a Markov Chain
represents the proportion of time that is spent in a given state
[44].

In the following proposition we state the limiting distribu-
tion of the countably infinite Markov Chain which character-
izes the possible sequences of dropouts and innovations, then
give a proof.

Proposition 1.1: The limiting distribution of the in-sync
state is

π0 =
pr

1− pi
,

the limiting distribution of the first state from one dropout

where ∆ = 1 is
πD = pdπ0.

From each state there are two possible options to continue the
sequence for a total of N = 2∆−1 at each step ∆. The limiting
distribution of the first step ∆ = 2, when an innovation is
received is: πDI = piπD = pipdπ0 = µ(1 − µd)(1 − µ)π0,
or when a dropout occurs is: πDD = pdπD = pdpdπ0 =
(1 − µ)2π0. Thus the limiting distribution of one of the N
states at step ∆ > 1 from ‘in-sync’ is based on the sequence
to that state

πj` = pjip
`
dpdπ0 = (µ(1− µd))j(1− µ)`(1− µ)π0

where j ≥ 0 is the number of innovations received and ` ≥ 0
is the number of dropouts, and the number of innovations and
dropouts at step ∆ are bounded by j + `+ 1 = ∆.

Proof: Proof of Proposition 1.1.
There are three options that can occur at any state: receiving

the state with probability pr, receiving an innovation with
probability pi, and a dropout with probability pd. Receiving
the state measurement will return to the ‘in-sync’ state.

In the Markov Chain the ‘in-sync’ state, denoted π0, can be
reached from any other state when either the state is received
νk = 0 or from the ‘in-sync’ state when an innovation is
received νk = 1. We can write the transitions into π0 as the
sum of every state multiplied by the probability of receiving a
state pr and the probability of an innovation pi from the state
π0

π0 = (pr + pi)π0 + prπN

+ prπDI + prπDD + . . .

(1− pr − pi)π0 = pr

∞∑
j=1

πj

∞∑
j=1

πj =
(1− pr − pi)

pr
π0

Recall that the sum of probabilities is equal to 1 then combine
with the above result

∞∑
j=0

πj = 1

π0 +

∞∑
j=1

πj = 1

π0 +
(1− pr − pi)

pr
π0 = 1

π0
1− pi
pr

= 1

π0 =
pr

1− pi
which shows the first part of the proposition.

When in the ‘in-sync’ state, receiving a state or innovation
will ensure the state remains in the ‘in-sync’ state, and can
only leave with the first occurrence of dropout. Thus the
limiting distribution of the first dropout state is

πD = pdπ0. (22)
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From the first dropout state ∆ = 1, receiving the state will
return to the ‘in-sync’ state but receiving an innovation or
dropout will propagate the error to the next step ∆ = 2 with
the following N = 2 limiting distributions

πDI = piπD = pipdπ0

πDN = pdπD = pdpdπ0

by application of (22) for the step ∆ = 2. To the next step
∆ = 3, receiving the state will return to the ‘in-sync’ state
again, but receiving an innovation or dropout will propagate
the error to the following N = 4 limiting distributions

πDII = piπDI = pipipdπ0 = p2
i pdπ0

πDID = pdπDI = pdpipdπ0 = pip
2
dπ0

πDDI = piπDD = pipdpdπ0 = pip
2
dπ0

πDDD = pdπDD = pdpdpdπ0 = p3
dπ0

by application of (22), noting that the limiting distribution
is comprised of the number of innovations and dropouts from
the limiting distribution of the ‘in-sync’ state. We observe that
from every state there are two options to the next step, such
that at ∆ = 3 there were N = 4 = 23−1 states. We can
generalize to N = 2∆−1 states for the step ∆.

At step ∆ there are N states, covering the combinations of
j ≥ 0 is the number of innovations received and ` ≥ 0 is the
number of dropouts where ∆ = j + `+ 1 to give

πj` = pjip
`
dpdπ0.

This shows the second part of the proposition and completes
the proof.

We now show an alternate proof to Theorem 4.3 utilizing
the structure of the Markov Chain to enumerate the sequences
that give the possible estimation error covariances.

Proof: Proof of Theorem 4.3.
As k → ∞, we can compute the expected estimation

error of the legitimate estimator as the a possible expected
estimation error conditioned on a given sequence multiplied
by the probability of that sequence. The total expectation of
the estimation error of the legitimate estimator can be written
as k →∞ is

E[P̄k|k] =

∞∑
i=0

E[P̄k|k|∆ = i]P (∆ = i)

where ∆ is the number of dropouts from the ‘in-sync’ state.
Following Proposition 1.1, we observe that there N = 2i−1

states at the step ∆ = i. Thus at step i we can write the
conditioned expectation as a sum of the Markov Chain states
at ∆ = i multiplied by the probability of reaching that state

E[Pk|k|∆ = i]P (∆ = i)

=

N∑
m=0

E[Pk|k|j, ` ∧∆ = i]P (j, `|∆ = i)

where m iterates through the combinations of j and `.
Consider at the ‘in-sync’ state ∆ = 0, by Theorem 4.1

the estimation error covariance will be Pk|k = 0 and the

probability is the limiting distribution of the first dropout
P (∆ = 0) = π0

E[Pk|k|∆ = 0]P (∆ = 0) = 0π0 = 0.

Consider at step ∆ = 1, the first dropout from ‘in-sync’,
the previous estimation error covariance is zero Pk−1|k−1 = 0
so by Theorem 4.1 the estimation error covariance will be
Pk|k = Q and the probability is the limiting distribution of
the first dropout P (∆ = 1) = πD

E[Pk|k|∆ = 1]P (∆ = 0) = Qpdπ0.

At step ∆ = 2, there is a dropout and an innovation so the
estimation error covariance will build slightly differently with
the two limiting distributions

E[Pk|k|1, 0 ∧∆ = 1]P (1, 0|∆ = 2)

= AQATpipdπ0

E[Pk|k|0, 1 ∧∆ = 1]P (0, 1|∆ = 2)

= (AQAT +Q)pdpdπ0

and together

E[Pk|k|∆ = 2]P (∆ = 2)

=AQATpipdπ0 + (AQAT +Q)pdpdπ0

=(AQAT(pi + pd) +Qpd)pdπ0

Consider at step ∆ = 3 we find

E[Pk|k|2, 0 ∧∆ = 3]P (2, 0|∆ = 3)

= A2QA2Tp2
i pdπ0

E[Pk|k|1, 1 ∧∆ = 3]P (1, 1|∆ = 3)

= (A2QA2T +Q)pdpipdπ0

E[Pk|k|1, 1 ∧∆ = 3]P (1, 1|∆ = 3)

= A(AQAT +Q)ATpipdpdπ0

E[Pk|k|0, 2 ∧∆ = 3]P (0, 2|∆ = 3)

= (A(AQAT +Q)AT +Q)p2
dpdπ0

which together give

E[Pk|k| ∧∆ = 3]P (∆ = 3)

=(A2QA2T(pi + pd)(pi + pd)

+AQAT(pi + pd)pd

+Qpd(pi + pd))pdπ0.

The conditioned expectation multiplied by the limiting dis-
tributions reduce to the a combination of the dynamics by
the probabilities of dropout and innovation, by the stationary
distribution of the ‘in-sync’ state.

We then observe that the sum for all steps after the ‘in-sync’
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state can be written as

E[P̄k|k] = π0pd

[
Q+

∞∑
m=1

(pi + pd)
m−1

×

(
m−1∑
s=0

AsQ(As)Tpd +AmQAmT(pi + pd)

)]

=

[ ∞∑
m=1

pd(pi + pd)
m−1

m−1∑
s=0

AsQ(As)T

+

∞∑
m=1

(pi + pd)
mAmQAmT +Q

]
pdπ0

=

[ ∞∑
m=1

pd(pi + pd)
m−1

m−1∑
s=0

AsQ(As)T

+

∞∑
m=0

(pi + pd)
mAmQAmT

]
pdπ0

where we have two infinite sums. Consider the second sum

S =

∞∑
m=0

(pi + pd)
mAmQ(Am)T

=

∞∑
m=0

(
√
pi + pdA)mQ(

√
pi + pdA

T)m

which is a vector geometric series. We can alternatively write
S as a sequence

Sm+1 =
√
pi + pdA)mSm(

√
pi + pdA

T)m +Q

from S0 = Q. This equation is in the form of a Lyapunov
Equation [37], in the case that the matrix ρ(

√
pi + pdA) < 1

by assumption of (12) and m → ∞ then Sm+1 = Sm = S
and

S = (
√
pi + pdA)S(

√
pi + pdA)T +Q

where S is a unique stabilizing solution to the Lyapunov
Equation.

Now consider the first sum

S1 =

∞∑
m=1

pd(pi + pd)
m−1

m−1∑
s=0

AsQ(As)T

= pd

∞∑
m=0

(pi + pd)
m

m∑
s=0

AsQ(As)T

= pd

∞∑
m=0

(
√
pi + pdA)sQ(

√
pi + pdA

T)m

×
∞∑
s=0

(pi + pd)
s

= pdS

∞∑
s=0

(pi + pd)
s

where we have two separable sums in geometric series. We
observe that the first part is the same as S above and the
second part is the standard scalar geometric series where

∞∑
s=0

(pi + pd)
s =

1

1− (pi + pd)

then

E[P̄k|k] = S

(
pd

1− (pi + pd)
+ 1

)
pdπ0.

Recalling that pr = P(γk = 1, νk = 0) = µµd, pi =
P(γk = 1, νk = 1) = µ(1 − µd), and pd = P(γk = 0) =
(1− µ), and π0 = pr

1−pi . Then we can write

E[P̄k|k] = S

(
pd

1− (pi + pd)
+ 1

)
pdπ0

= S

(
(1− µ)

1− (µ(1− µd) + (1− µ))
+ 1

)
(1− µ)π0

= S

(
1− µ

1− µ+ µµd − 1 + µ
+ 1

)
(1− µ)

pr
1− pi

= S

(
1− µ
µµd

+ 1

)
(1− µ)

µµd
1− µ(1− µd)

= S

(
1− µ
µµd

+
µµd
µµd

)
µµd

1− µ+ µµd
(1− µ)

= S
1− µ+ µµd

µµd

µµd
1− µ+ µµd

(1− µ)

= S(1− µ)

and the Lyapunov equation

S = (
√
pi + pdA)S(

√
pi + pdA)T +Q

S = (
√

1− µµdA)S(
√

1− µµdA)T +Q.

We then conclude the proof by stating the expected estima-
tion error covariance as k →∞ as

E[Pk|k] = (1− µ)S

where

S = (
√

1− µµdA)S(
√

1− µµdA)T +Q.

This concludes the proof.

E. Eavesdropper MMSE

Proof of Lemma 5.1. The following proof shows the esti-
mation error covariance of an eavesdropper.

Proof: Consider a packet drop γek = 0 or the eaves-
dropper discards a successfully received packet (γek, νk, bk) =
(1, 0, 0) or (γek, νk, bk) = (1, 1, 0), no new information is
received, so the state estimate is the prediction from the
previous state. Following the dynamics and applying (4) the
state estimate is x̂ek = E[xk|Iek−1] = Ax̂ek−1, with covariance

P ek|k−1 = E[(xk − x̂ek|k−1)(xk − x̂ek|k−1)T|Iek−1]

= AP ek−1|k−1A
T +Q

recalling that wk and xk are uncorrelated.
Consider a successful packet receipt of the state trans-

mission, such that zk = xk, which the eavesdropper uses
(γek, νk, bk) = (1, 0, 1). The transmission is directly used as
the state estimate x̂ek|k = zk = xk, with covariance

P ek|k = E[(xk − x̂ek|k)(xk − x̂ek|k)T|Iek] = 0.
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Finally, consider a successful packet receipt of the inno-
vation, such that zk = xk − Axk−1 + χk, which the eaves-
dropper mistakenly believes is the state and uses (γek, νk, bk) =
(1, 1, 1). The transmission is directly used as the state estimate

x̂ek|k = zk = xk −Axk−1 + χk = wk−1 + χk.

The covariance is then

P ek|k = E[(xk − x̂ek|k)(xk − x̂ek|k)T|Iek]

= E[(xk − wk−1 − χk)(xk − wk−1 − χk)T]

= E[(Axk−1 + wk−1 − wk−1 − χk)

× (Axk−1 + wk−1 − wk−1 − χk)T]

= E[(Axk−1 − χk)(Axk−1 − χk)T]

= AE[xk−1x
T
k−1]AT − E[χkx

T
k−1]AT

−AE[xk−1χ
T
k ] + E[χkχ

T
k ]

From [37] the covariance of xk−1

E[xk−1x
T
k−1] = Ak−1Σ0(Ak−1)T+

k−2∑
`=0

Ak−2−`Q(Ak−2−`)T,

that the additive noise is designed (7) such that

E[χkχ
T
k ] = AkΣ0(Ak)T +

k−2∑
`=0

Ak−1−`Q(Ak−1−`)T,

and χk and xk−1 are uncorrelated, E[xk−1χ
T
k ] = 0, then

P ek|k = 2

(
AkΣ0(Ak)T +

k−2∑
`=0

Ak−1−`Q(Ak−1−`)T

)
.

This shows the eavesdropper’s state estimate and associated
covariance and completes the proof.

F. Eavesdropper Expected Estimation Error Covariance

Proof of Theorem 5.2. The following proof shows the
expected estimation error covariance of the eavesdropper

Proof: We are going to show via proof by induction
that the expected estimation error of the eavesdropper for time
k > 0 can be written as a sum of the sequence of dropouts
and encoded innovations from the first transmission, we repeat
the form of E[P ek|k] from Theorem 5.2

E[P ek|k] = (ped)
kAk−1Σ0(Ak−1)T +

k−1∑
`=0

(ped)
`+1A`Q(A`)T

+pei

k−1∑
`=0

(ped)
`2
(
AkΣ0(Ak)T +

k−`−2∑
j=0

Ak−1−jQ(Ak−1−j)T
)
.

It is helpful for the proof to rewrite E[P ek|k] as

E[P ek|k] = (ped)
kAk−1Σ0(Ak−1)T +

k−1∑
`=0

(ped)
`+1A`Q(A`)T

+ pei

k−1∑
`=0

(ped)
`A`fk−`(A

`)T. (23)

where the expected estimation error covariance on use of an
innovation (γek, νk, bk) = (1, 1, 1) at time i > 1 from the result
in Lemma 5.1 as

fi = 2

AiΣ0(Ai)T +

i−2∑
j=0

Ai−1−jQ(Ai−1−j)T

 .

We show (23) via proof by induction.
An eavesdropper has three possible outcomes: drop or

discards a packet (ϕk = 1) with probability ped = P(γek =
0) + P(γek = 1, νk = 0, bk = 0) + P(γek = 1, νk = 1, bk = 0),
receive and use a state packet (ϕk = 2) with probability
per = P(γek = 1, νk = 0, bk = 1), and receive and use
an encoded innovation packet (ϕk = 3) with probability
pei = P(γek = 1, νk = 1, bk = 1).

Consider k = 0 from the definition E[P e0|0] = Σ0p
e
d +

0(per +pei ) as only the state is transmitted at the first instance,
z0 = x0. Consider the first time k = 1 from the definition

E[P e1|1] =

3∑
y=1

E[P e1|1|ϕ1 = y]P(ϕ1 = y)

= (ped)
2AΣ0A

T + peif1 + 0per.

We now show that if (23) holds for time k, then the form
(23) also holds for time k+ 1. From the result in Lemma 5.1

E[P ek+1|k+1] =

3∑
y=1

E[P ek+1|k+1|ϕk+1 = y]P(ϕk+1 = y)

= ped(AE[P ek|k]AT +Q) + peifk+1 + per0

By the proposed form for E[P ek|k] in (23)

E[P ek+1|k+1] = ped(AE[P ek|k]AT +Q) + peifk+1

= pedA

(
(ped)

kAk−1Σ0(Ak−1)T +

k−1∑
`=0

(ped)
`+1A`Q(A`)T

+pei

k−1∑
`=0

(ped)
`A`fk−`(A

`)T

)
AT + pedQ+ peifk+1

= (ped)
k+1AkΣ0(Ak)T +

k∑
`=0

(ped)
`+1A`Q(A`)T

+ pei

k∑
`=0

(ped)
`A`fk−`(A

`)TAT

which is the form (23) at time k + 1.
This completes the proof.

G. Naive and Suspicious Eavesdropper Expected
Estimation Error Covariance

Proof of Corollary 5.3 and Corollary 5.4. The following
proof shows the expected estimation error covariance of the
naive and suspicious eavesdroppers.

Proof: The naive eavesdropper utilizes any transmission
that it successfully receives. The probabilities of the three
outcomes for the naive eavesdropper are: standard dropout
ped = 1 − µe, successful receipt of the state per = µeµd, and
successful receipt of an innovation pei = µe(1− µd).
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The suspicious eavesdropper utilizes a successfully received
transmission with random chance based on the type of trans-
mission it receives. The probabilities of the three outcomes for
the suspicious eavesdropper are: standard dropout or discard
ped = 1− µeµdµb − µeµ̄b + µeµdµ̄b, successful receipt of the
state per = µeµdµb, and successful receipt of an innovation
pei = µe(1− µd)µ̄b.

Applying ped and pei for both the naive and suspicious
eavesdroppers to Theorem 5.2, we inspect the resulting terms.
Under assumption that ρ(

√
pedA) < 1, then for the first two

terms as k →∞

(ped)
kAk−1Σ0(Ak−1)T → 0

k−1∑
`=0

(ped)
`+1A`Q(A`)T → Se,n

where 0 is a zero matrix of appropriate size and Se,n is
the converged stabilizing solution to the Lyapunov equation.
Otherwise Se,n is undefined, and both terms diverge.

Let us inspect the two parts of the last term of Theorem 5.2
as k →∞

trace AkΣ0(Ak)T →∞, if ρ(A) > 1

or trace AkΣ0(Ak)T > min
i
λi(AΣ0A

T), if ρ(A) = 1,

where mini λi(AΣ0A
T) is the minimum eigenvalue of

AΣ0A
T, and the second part of the last term

trace
k−2∑
`=0

Ak−1−`Q(Ak−1−`)T →∞.

By assumption that the pair (A,
√
Q) is controllable, there are

no eigenvectors of A in the nullspace of
√
Q. In the case that

ρ(A) = 1, the eigenvector of A associated with the eigenvalue
on the unit circle extracts a combination of the eigenvalues of√
Q, and remains non-zero as k → ∞. Thus we conclude

that as k → ∞ then we have an infinite sum of non-zero
eigenvalues of Q.

The expectation of the eavesdropper’s estimation error di-
verge to infinity, or trace E[P ek|k] → ∞, such that both
the naive and suspicious eavesdroppers have an unbounded
estimation error satisfying condition (ii) of Definition 2. This
completes the proof.

H. Smart Eavesdropper Expected Estimation Error
Covariance

Proof of Lemma 5.6. The following proof shows the ex-
pected estimation error of the smart eavesdropper.

Proof: The smart eavesdropper has two outcomes:
standard dropout or discard of innovation with probability
ped = 1− µeµd, or successful receipt of a state estimate with
probability per = µeµd. In this proof we assume that (14) holds
such that the eavesdropper has a bounded estimate.

The expected estimation error covariance of the smart
eavesdropper at time k can be found from Theorem 5.2

E[P ek|k] =(1− µeµd)kAk−1Σ0(Ak−1)T

+

k−1∑
`=0

(1− µeµd)`+1A`Q(A`)T.

Consider the first term of the initial estimation error term
with Σ0, by assumption of (14) then ρ(

√
1− µeµdA) < 1,

and we observe that as k → ∞ then
(√

1− µeµdA
)k → 0,

and the initial estimation error will be exponentially forgotten.
Consider the second term of the sum to k − 1,

Sek =

k−1∑
`=0

(1− µeµd)`AjQ(AT)`

which can be written as a Lyapunov equation from S0 = Q

Sek =
√

1− µeµdASek−1A
T
√

1− µeµd +Q.

The stabilized solution Se can be found by taking k →∞ or
setting Sk−1 = Sk = Se and solving for the unique stabilizing
solution Se

Se =
√

1− µeµdASeAT
√

1− µeµd +Q.

The expected estimation error of the smart eavesdropper is

E[P ek|k] = (1− µeµd)Se.

We note the performance is as expected of a remote state esti-
mator transmitting the state every time instance with channel
quality per = µeµd. This completes the proof.

I. Monotonicity of Lyapunov Equation

Proof of Lemma 5.7. The following proof shows a mono-
tonicity result on the scaling coefficient on the Lyapunov
equation.

Proof: Consider a β? and β where 0 < β, β? < 1 where
ρ(
√

1− βA) < 1 and ρ(
√

1− β?A) < 1 and introduce two
Lyapunov equations as stabilizing recursions [37]

Wk+1 =
√

1− βAWkA
T
√

1− β +Q,

W ?
k+1 =

√
1− β?AW ?

kA
T
√

1− β +Q

with W ?
0 = W0 = Q, which converge to the unique-stabilizing

solutions W and W ?, respectively. Let us introduce α =√
1− β?/

√
1− β and Ã =

√
1− βA, and note that ρ(Ã) < 1

and ρ(αÃ) < 1.
Consider the case that β? < β then α > 1. The two

Lyapunov equations can be written as

Wk+1 = ÃWkÃ
T +Q, and W ?

k+1 = αÃW ?
k Ã

Tα+Q.

Let us introduce the difference Vk = W ?
k −Wk, which can

written as a function of the previous difference

Vk = (α2k − 1)ÃkQ(ÃT)k + Vk−1 (24)

from V0 = 0. We show (24) via proof by induction. Let us
first evaluate at k = 0 and k = 1

V0 = W ?
0 −W0 = Q−Q = 0, and

V1 = W ?
1 −W1 = αÃW ?

0 Ã
Tα+Q− ÃW0Ã

T −Q
= (α2 − 1)ÃQÃT + V0.
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Let us assume the form (24) and show the form at k+ 1 from
the definition of W ?

k and Wk,

Vk+1 = W ?
k+1 −Wk+1

=

k+1∑
j=0

(αÃ)jQ(ÃTα)j −
k+1∑
`=0

Ã`Q(ÃT)`

= (α2(k+1) − 1)Ãk+1Q(ÃT)k+1

+

k∑
j=0

(αÃ)jQ(ÃTα)j −
k∑
`=0

Ã`Q(ÃT)`

= (α2(k+1) − 1)Ãk+1Q(ÃT)k+1 + Vk

which produces the form (24) at iteration k + 1.
We now explore the trace of Vk.

trace Vk = trace
(

(α2k − 1)ÃkQ(ÃT)k + Vk−1

)
= (α2k − 1)trace

(
ÃkQ(ÃT)k

)
+ trace Vk−1.

We observe that trace (ÃQÃT) > 0 as the pair (A,
√
Q) is

controllable. By definition α > 1 so it follows that α2j−1 > 0
for all j > 0. Thus the first term is strictly positive

(α2k − 1)trace
(
ÃkQ(ÃT)k

)
> 0.

Consider the trace of V1 using the same properties as above

trace V1 = (α2 − 1)trace (ÃQÃT) > 0.

At k = 2, then trace Vk−1 = trace V1 > 0, and trace V2 > 0.
Following a proof by induction argument, we conclude that
trace Vk > 0 for k > 0. This implies that at the difference in
stabilized Lyapunov equation solutions trace (W ? −W ) > 0,
and that trace W ? > trace W . This concludes the proof.
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