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Abstract—The Internet of Bio-Nano Things (IoBNT) is envi-
sioned to be a heterogeneous network of artificial and natural
units that are connected to the Internet. Hence, it extends
the connectivity and control to unconventional domains, such
as the human body. A potential use case for IoBNT is the
communication from the outside to the inside of the human body.
In this scenario, typically the Receiver (RX) inside the human
body has limited computational complexity, while the Trans-
mitter (TX) outside has large computational resources. In this
paper, we address this scenario and propose a novel Asymmetric
Auto-Encoder (AAEC) architecture for end-to-end learning of
a Molecular Communication (MC) system. It applies a Neural
Network (NN) at the TX and a low-complexity slope detector at
the RX. We discuss the different layers of the NN-based TX and
the corresponding training approach. Moreover, we investigate
the explainability of the NN-based TX and show through the
use of meta modeling that it can be approximated by a linear
model. In addition, we demonstrate that the proposed AAEC
resembles an MC system with Zero Forcing (ZF) precoding
for low and moderate Inter Symbol Interference (ISI). Finally,
through numerical results, we confirmed the aforementioned
findings and showed that the proposed AAEC outperforms MC
systems with and without ZF precoding, especially in high ISI
scenarios.

Index Terms—Internet of Bio-Nano Things, Machine Learning,
Molecular Communications, Auto-Encoder, Explainable Artificial
Intelligence.

I. INTRODUCTION

THE Internet of Bio-Nano Things (IoBNT) represents a
significant paradigm shift in the fields of nanotechnol-

ogy and communication engineering and has the potential
to enable transformative applications in healthcare and nano-
medicine. It enables the development of intra-body sensing,
communication, and actuation through clusters of nano-scale
bio-compatible artificial or biological embedded computing
devices, so-called Bio-Nano Things (BNT) [1], [2]. These
nano-devices are expected not only to interact with each
other, but also to communicate and exchange information
with nearby external electronic devices outside the biological
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environment as gateways to the Internet. Molecular Commu-
nications (MC) has emerged as a promising communication
method among BNTs, using molecules for information trans-
mission [3], [4]. However, MC channels often suffer from
significant Inter Symbol Interference (ISI). Several modulation
(e.g., [5]) and detection (e.g., [6], [7]) techniques have been
proposed to mitigate ISI effects in MC channels. Recently,
also Neural Networks (NN) have been applied for detec-
tion, such as Recurrent NNs (RNN) [8] and Convolutional
NNs (CNN) [9]. Moreover, in [10] and [11] both Transmit-
ter (TX) and Receiver (RX) are replaced by NNs, a so-called
Auto-Encoder (AEC), which are jointly optimized to maximize
the information rate.

Despite the promising performance results of the AEC
approach, it suffers from high computation complexity. This
is especially problematic in the context of IoBNT, when
applied to the human body. Thus, in this work, we present
an Asymmetric AEC (AAEC), which applies a NN at the TX,
while having a low-complexity slope detector at the RX. This
approach is very practical for information transmission from
the outside to the inside of the human body. In particular, the
TX consists of an external electronic device and an electronic-
biological interface. The signal to be transmitted is derived in
the external device using a NN and is then converted into a
molecule signal using the biological-electronic interface. The
RX (e.g., BNT) is located in the human body and makes a
simple decision based on the received molecule concentration.
Hence, the proposed AAEC on the one hand reduces the
computational capabilities required by the BNTs, but exploits
the resources available outside the human body.

In addition to the computation complexity, NNs typically
suffer from the lack of insights into the decision-making
process, which limits the transparency and trustworthiness of
NN-based systems. This is addressed through the emerging
research field of Explainable Artificial Intelligence (XAI) [12],
which aims to understand the logic behind the results of AI-
based algorithms. Due to sensitive applications envisioned
for IoBNT, XAI has recently gained attention also in MC.
For the first time, the explainability of a NN-based detection



for an MC system has been studied in [13], based on the
visualization approach to evaluate the neuron’s features (local
interpretability). The results show the analogy between the
NN and standard peak and slope detectors. In this work, we
investigate the explainability of the proposed AAEC, which
we refer to as explainable AAEC (XAAEC). We use symbolic
meta modeling to find a mathematical mapping function from
the inputs to the outputs (global interpretability) [14] and
studied the similarity to existing precoding methods.

The main contributions of this work can be summarized as
follows:

• We propose an Asymmetric Auto-Encoder (AAEC),
which applies a NN at the TX and a low-complexity
slope detector at the RX. This approach significantly
improves the error performance compared to conventional
MC systems.

• We study the explainability of the proposed NN-based TX
and show that it can be interpreted as a linear precoder.
Moreover, we show an analogy to a Zero Forcing (ZF)
precoder for low and moderate ISI.

Notation: Vectors and matrices are denoted in bold face lower
case a and upper case letters A, respectively. The kth element
of a vector a is named a[k] and [A]k,l addresses the element in
row k and column l. The transpose operation and the Moore-
Penrose inverse are expressed as (·)T and (·)†, respectively.

II. ASYMMETRIC AUTO-ENCODER

In this section, we introduce a novel Asymmetric Auto-
Encoder (AAEC) concept, which allows us to find an end-
to-end optimized TX for a low-complexity RX. Moreover, we
discuss the corresponding training phase of the AAEC.

A. System Model

We consider the system shown in Fig. 1(a), which repre-
sents a potential IoBNT scenario for communication from the
outside to the inside of the human body. The TX consists of
an external computing unit (e.g., mobile phone), which has
sufficient resources to run a NN, along with an electronic-
biological interface (for simplicity, only the NN part of the TX
is shown in Fig. 1(a)). The NN, shown as encoder, receives
a block of M bits as input d ∈ {0, 1}M and generates
the output f(d) = x ∈ {R+}M , where R+ is the set of
real positive values and f(d) describes the mapping of the
NN-based encoder. The hyperparameters of the applied NN
are summarized in Table I. The NN-based encoder consists
of a block-based CNN, where one-dimensional convolutional
layers are used to only connect a few nearby neurons, which
is inspired by the precoding principle in classical digital
transmitters [15]. It includes three convolutional layers each
coming with a batch normalization and a non-linear activation
function, specifically a rectified linear unit (ReLu) function.
The electronic-biological interface converts the output x of
the NN into a molecular signal x(t), i.e., it releases molecules
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Fig. 1: (a) Proposed AAEC architecture; (b) meta-model of the encoder.

into the human body. The relation between the output of the
NN x and the molecular signal x(t) is given by

x(t) =

∞∑
n=0

x[n]rect

(
t

Ts
− n

2

)
, (1)

with rect(t) = 1 for −1/2 < t < 1/2 and 0 otherwise, and Ts

is the symbol duration. The released molecules propagate in
the human body through blood vessels. The main propagation
mechanisms are diffusion and advection and, thus, the Channel
Impulse Response (CIR) can be expressed as [3]

h(t) =
1√
4πDt

e
−(d−vt)2

4Dt , (2)

with diffusion coefficient D, average flow velocity v, and
the distance between TX and RX d. As an example, Fig. 2
shows the CIR for the parameters used throughout this work.
Next, we derive an equivalent discrete representation of the
system, which is required for the following discussions. The
received molecular signal y[n] (molecule concentration) in the
nth interval is obtained as follows

y[n] = hl ∗ x[n] + w[n] =

L∑
l=0

hlx[n− l] + w[n], (3)

with additive Gaussian noise w, channel length L and hl

denotes the lth channel coefficient defined by

hl =

∫ (l+1)Ts

lTs

1√
4πDτ

e
−(d−vτ)2

4Dτ dτ. (4)

It is important to note that the channel length L needs to be
chosen sufficiently large to cover the significant parts of the
CIR (cf. Fig. 2), which also depends on the considered symbol
duration.

We assume that the RX (e.g., BNT) has very limited
computational resources and, thus, only applies a simple slope
detection. The applied decision rule for the estimated bit in the
nth interval can be expressed as

d̂[n] =

{
1, if p[n] > 0

0, if p[n] ≤ 0
, (5)



TABLE I: Layers of the proposed NN-based TX.

Encoder (TX)
Type of layer Output size
Input layer M
Conv1d+BatchNorm1d+ReLu M × 16
Conv1d+BatchNorm1d+ReLu M × 32
Conv1d+ReLu+Max-
pooling+Normalization

M

where p[n] is the output of the slope computation and denotes
the molecule concentration difference at the beginning of the
current and the previous symbol interval

p[n] = y[n]− y[n− 1]. (6)

Based on the aforementioned results, we derive the following
end-to-end model of the system depicted in Fig. 1(a), using
matrix notation. Considering a noise-free transmission, the
mapping from the input x to the output of the slope com-
putation p can be expressed as

p = Wx, (7)

where the matrix W is given by

W=



h0 0 0 0 · · · 0

h1−h0 h0 0 0 · · · 0

h2−h1 h1−h0 h0 0 · · · 0

...
...

...
...

...
...

0 −hL−2 hL−1−hL−2 · · · h1−h0 h0

 .

(8)

To illustrate, how this matrix can be obtained, we consider
the first three channel coefficients hl. Assuming zero-padding
of x, the first three values of y[n] can be obtained using (3)

y[0] = h0x[0] (9a)
y[1] = h0x[1] + h1x[0] (9b)
y[2] = h0x[2] + h1x[1] + h2x[0]. (9c)

By applying (6), the first three values of p[n] can be derived
as follows

p[0] = h0x[0] (10a)
p[1] = (h1 − h0)x[0] + h0x[1] (10b)
p[2] = (h2 − h1)x0 + (h1 − h0)x[1] + h0x[2], (10c)

Through rewriting these equations as the multiplication of a
vector by a matrix (p = Wx), the structure of the matrix
W can be clearly seen. Finally, the end-to-end model can be
expressed as

d̂ = sign(Wf(d)), (11)

where sign(·) denotes the sign function. We refer to the system
described above as Asymmetric Auto-Encoder (AAEC), which
is an adaption of the classical AEC concept [16]. The principle
of an AEC is that for a given channel, the NN at TX and RX
are optimized with respect to the end-to-end performance [17],
instead of optimizing their individual performance. Typically,
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Fig. 2: Normalized Advection-diffusion CIR with D = 1.24×10−4 m2s−1,
v = 0.055ms−1, and d = 38mm; the parameters are adopted from [18].

the TX-NN and RX-NN have approximately the same com-
plexity and, thus, AEC can be considered symmetric. However,
especially in IoBNT applications it might be the case that the
RX has limited computational complexity, while the TX has
enough resources. This use case is addressed by the proposed
AAEC, which applies a NN at the TX and a low-complexity
slope detector at the RX. Nevertheless, the approach maintains
the property, that the TX is optimized with respect to end-to-
end performance.

TABLE II: Simulation parameters

Parameter Value
Optimizer Stochastic Gradient Decent
Learning Rate (η) 0.0008
Learning Rate Decay 0.999
Number of Epochs 4000
Batch Size 40
Input Size (M ) 20

B. Model Training

The goal of the training of the NN-based TX is to minimize
the error probability of the entire system (cf. Fig. 1), i.e., d and
d̂ should differ as little as possible for any possible choices
of d and channel conditions. However, the sign(·) function
used for the slope detection (cf. (11)) is not differentiable and,
thus, does not allow for the optimization (gradient descent) of
the end-to-end performance as discussed above for the AEC
approach. To resolve this issue, during training, we replace the
sign(·) function by the differentiable sigmoid function σ(·),
which leads to

d̂t = σ(Wf(d)). (12)

This enables the interpretation of the individual entries of d̂t

as the probability of the bit at the nth interval belonging to the
class labeled ’1’. Hence, we can use the Binary Cross Entropy
loss (BCE)

J(θTX) :=Ey,d

[
− log

(
pθTX(d̂t|y)

)]
(13)

=−
∑
∀d

(
(d[n])log(d̂t[n])

+ (1− d[n])log(1− d̂t[n])
)
,

as the optimization loss function. The BCE can be interpreted
as a measure for the average error probability using the
AAEC and, thus, minimizing the BCE also minimizes the
error probability. By the end-to-end-model in (12) and the BCE
in (13) we now have a differentiable model and a loss function



TABLE III: Linearity score ε defined in (16) between AAEC and XAAEC.

Ts [s] 2 1.8 1.6 1.4 1.2 1
ε 0.9729 0.9750 0.9728 0.9734 0.9746 0.9638

TABLE IV: Metric for similarity between XAAEC and ZF precoder defined
in (19) for Ts = 1 s.

M 20 50
ρ 0.9985 0.9990

that allows to train the NN-based TX using a gradient descent
algorithm. The parameters used for training are summarized
in Section II-A. In particular, we use Stochastic Gradient
Decent (SGD) with a learning rate of η = 0.0008 and the
model converges after around 4000 epochs of training.

III. EXPLAINABLE AAEC

In this section, we study the interpretability of the proposed
AAEC architecture, especially the NN-based TX. A NN is
usually a black box, where we are not able to say why a
certain input leads to a certain output. Shedding light onto this
is the subject of explainable AI, which aims to understand the
logic behind NNs. In the following, we apply this approach to
the proposed AAEC. We take a two-step approach, which is
described in the following subsections.

1) First Step - Finding a Meta Model: The NN-based
encoder of the AAEC in Fig. 1(a) can be represented by
the function f(d). The aim of the meta model g(d,Θ) is to
find a less complex and interpretable approximation of f(d)
(cf. Fig. 1(b)). The model is parametrized by the matrix Θ,
which is obtained through solving the following optimization
problem using a gradient descent algorithm

Θ∗ = argmin
Θ

∥f(d)− g(d,Θ)∥F, (14)

where ∥.∥F denotes the Frobenius norm. We assume a linear
model and, thus, the meta model can be expressed as

g(d,Θ∗) = xXAAEC = Θ∗d, (15)

with the M × M matrix Θ∗. Next, we evaluate how well
the meta model approximates f(d). As a metric, we use the
linearity score defined by

ε = r(xXAAEC,x), (16)

where r(·, ·) denotes Pearson’s correlation coefficient [19].
Table III shows the linearity score for six different symbol
durations. i.e., Ts. Moreover, Fig. 3 illustrates the transmitted
signal generated by the meta model xXAAEC = g(d,Θ∗) and
the proposed NN x = f(d), along with their corresponding
received signal yXAAEC and y after the MC channel, i.e. Since
the linearity score is close to one and the signals in Fig. 3
match well, we conclude that the proposed AAEC can be very
well approximated through the linear model in (15) and, thus,
interpreted as linear precoder. In the following we refer to (15)
as explainable AAEC (XAAEC).
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Fig. 3: Transmitted signals from the linear model xXAAEC and the actual
encoder x and their corresponding received signals yXAAEC and y for the
input bit sequence d = [1, 0, 0, 1, 1, 1, 1, 0, 1, 0] and Ts = 1 s. Vertical gray
lines indicate symbol intervals.
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Fig. 4: Normalized transmitted signals of the XAAEC (linear model)
xXAAEC and ZF precoder xZF for the input bit sequence d =
[1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0] and Ts = 1 s.

2) Second Step - Meta Model vs. Classical Approaches: In
the previous step, we have shown that the linear model in (15),
i.e., XAAEC, approximates the actual AAEC reasonably well.
Now, we want to get further insights into this model. There-
fore, we compare the XAAEC to well-know linear precoder
designs [20]. We found that the XAAEC performs similarly
to a Zero Forcing (ZF) precoder for low to moderate ISI (i.e.,
Ts ≥ 1 s), which we will elaborate in the following. The output
of the ZF precoder xZF can be expressed as

xZF = WZFd, (17)

with the input bit sequence d (see Sec. II) and the precoding
matrix given by [20]

WZF = W†, (18)

with the channel matrix W as defined in (8). Finally, we
show that the XAAEC (15) and the ZF precoder (17) perform
similar on a given input d. We measure the similarity in two
ways, namely through comparing the transmitted signals and



the matrices, respectively. Fig. 4 illustrates the signals xZF and
xXAAEC for Ts = 1 s (moderate ISI) and we observe that they
match very well. Next, we compare the matrices WZF and
Θ∗ and define the following metric for it

ρ =
1

2
(ρ−1 + ρ+1) , (19)

with
ρ±1 = r(∆±(Θ∗),∆±(WZF)), (20)

and ∆±(Z) = [Z]i±1,i − [Z]i,i for a matrix Z. Hence, (20)
computes the Pearson’s correlation coefficient r(·, ·) of the
difference between the main and the first off-diagonal elements
of the matrices WZF and Θ∗. More details about this metric
can be found in the Appendix. Table IV shows the metric for
two different numbers of transmitted bits M and we observe
that for both cases the metrics are close to one. Hence, since
the signals in Fig. 4 match well and the metric is close to one,
we conclude that the XAAEC and the ZF perform similarly
for low and moderate ISI scenarios (i.e. symbol duration above
1 s).1

IV. SIMULATION RESULTS

In this section, we study the error performance (i.e., Bit
Error Ratio (BER)) of the proposed AAEC architecture in
comparison with a conventional MC system and ZF precoding.
Moreover, we compare the robustness of the AAEC and ZF
precoding against channel variations. Fig. 5 compares the BER
of the proposed AAEC architecture with a conventional MC
system using Concentration Shift Keying (CSK) at the TX and
an advanced slope detector [18] at the RX. We observe that
the AAEC significantly outperforms the conventional system
for a wide range of symbol intervals Ts, which is expected
due to the increased complexity at the TX. Nevertheless, it
demonstrates the possible performance gain when increasing
the TX complexity, which is especially interesting for IoBNT
applications. A BER comparison of the AAEC and an MC
system with a ZF precoder at the TX (cf. Sec. IV) and the basic
slope detector defined in (5) at the RX is shown in Fig. 6. For
low ISI scenario (Ts = 1 s), AAEC and ZF precoder perform
closely, while for high ISI scenario (Ts = 0.15 s) the AAEC
clearly outperforms the ZF precoder. The findings underscore
the close parallel in performance between the AAEC and ZF
precoders, while also highlighting that in scenarios with high
ISI, the AAEC demonstrates a notably superior performance
compared to the ZF precoder.

Finally, in Fig. 7 we compare the AAEC and ZF precoder
with respect to their robustness to variations in the MC
channel. Thus, we illustrate the BER for different relative
channel mismatches given by δ = (Dreal −D)/D, with the
real diffusion coefficient Dreal and its mismatched value D.
The results reveal that for a high ISI scenario, the proposed
AAEC is clearly more stable to a model mismatch.

1Unfortunately, no precoder scheme was found that resembles the proposed
AAEC for the high ISI case.
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V. CONCLUSION AND OUTLOOK

In this paper, we presented a novel AAEC architecture,
with a NN at the TX and a low-complexity slope detector
at the RX. The proposed AAEC overcomes computational
constraints, which may occur in IoBNT communication sce-
narios. We presented a NN-based TX architecture and then
an approach for training it. Furthermore, we investigated the
explainability of the AAEC and showed that the NN-based TX
can be approximated by a linear model and resembles a ZF
precoder for low and moderate ISI regimes. In our numerical
evaluations, we confirmed the aforementioned interpretation
and showed that the proposed AAEC has superior error perfor-
mance compared to MC systems with and without precoding
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for high ISI scenarios. Interesting topics for future research
include a detailed investigation of the explainability for high
ISI and the design and comparison of AAEC with different
low-complexity detectors (e.g., threshold detection).
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APPENDIX A
JUSTIFICATION FOR THE METRIC IN (19)

To obtain the metric in (19), we reconsider the matrix W
defined in (8). For Ts = 1 s, we observe from the CIR shown
in Fig. 2 that it is sufficient to set the channel length to
L = 2, i.e., we consider the channel coefficients h0, h1, and
h2 (see (4)). Neglecting the initial and final phase of the
transmission, the matrix W for L = 2 reads as

W=


h2 −h1 h1 −h0 h0 0 · · · 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 h2 −h1 h1 −h0 h0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 0 h2 −h1 h1 −h0 h0

 .

(21)
According to the system model p = Wx, the output p[n] is
only affected by three samples of x[n]. Hence, we expect that a
ZF precoder, which generates x[n] will also only consider three
symbols d[n], when calculating x[n]. Thus, we conclude (and
this tendency is also observed in simulation), that for the ZF



precoder, the elements that have the greatest influence on the
generated signal are located around the main diagonal of WZF.
If, on the other hand, Θ∗ performs a similar operation to the
ZF precoder, we expect that also in Θ∗ the most significant
entries are located in and around the main diagonal. Inspired
by the structure of (21), we decide to compare the three
elements along the diagonal of Θ∗ and WZF according to (19).
Since our detector is a slope detector, it does not respond to a
constant offset in the signal y[n]. Hence, our metric should
neglect the influence of a constant offset in the generated
channel input x[n]. Furthermore, it should measure, if the two
signals xZF[n] and xXAAEC[n] are positively correlated. The
metric that fulfills both demands is the Pearson correlation
coefficient, which was used (19).


