
TKN Telecommunication
N etw or k s G r oup

Technical University of Berlin

Telecommunication Networks Group

Consensus using aggregation – a wireless
sensor network specific solution

Andreas Köpke, Holger Karl and Adam Wolisz
{koepke | karl | wolisz }@tkn.tu-berlin.de

Berlin, April 14, 2004

TKN Technical Report TKN-04-004

TKN Technical Reports Series Editor: Prof. Dr.-Ing.

Adam Wolisz

Copyright at Technical University of Berlin. All Rights reserved.

mali
Consensus using aggregation - a wireless sensor network specific solution", Technical Report TKN-04-004, Telecommunication Networks Group, Technische Universität Berlin, April 2004.

Abstract. In distributed systems like Wireless Sensor Networks (WSNs) nodes
often have to agree on actions or values. This is commonly called the consensus
problem. To achieve such a consensus traditional protocols exchange a lot of
message, which requires a lot of energy. To solve the consensus under WSN-
typical constraints, protocols should reduce the number of necessary messages.
One technique to reduce message overhead is aggregation, but it increases the
susceptibility of protocol messages to channel errors.
In this paper, we describe how to probabilistically solve the consensus problem
using aggregation and study the inherent tradeoffs between Bit Error Rate (BER),
time to terminate, energy consumption and failure probability. Comparing the
proposed protocol to a solution that does not use aggregation, the amount of en-
ergy spent is reduced (up to 60%) without increasing the failure probability.

1 Introduction

Consensus is an important problem in distributed systems, such as WSNs. It occurs in
many places, for instance in the tedious task of updating the software in the nodes in a
WSN installation, but also whenever sensors need to agree on a value or actuators agree
on an action.

As an example, consider the case where a WSN has been retrofit to a building to
save energy, e.g. by using sensor and actuators to open or close the blinds of a room.
In such a system, many decisions depending on e.g. temperature, sun shine and wind
are possible. The actuators could for instance agree to close all blinds. Or they could
agree to half-close all blinds, or to close blind A, while opening blind B and C. Things
become even more interesting when more than one motor controls a blind, enhancing
the robustness of the mechanical system. The motors should agree on the direction,
either all should open the blind or close it. The dependencies between actuators lead to
a strict meaning of decision: once a decision is made, an actuator relies on the fact that
the other actuators behave according to the decision – there must be a consensus among
the actuators.

The question arises how such a consensus can be reached in an energy-efficient
manner in a WSN. In a typical solution, one node would start by proposing a value to
all participating nodes. After this multicast it expects an answer from all other nodes
back. These answers will usually be correlated in time (all nodes start sending shortly
after receiving the proposal). Correlation in time means that the network has to deal
with a lot of messages within a short period – in the extreme case this can exceed
its short-term capacity. However, in a WSN such correlation can be used to aggregate
values, turning the apparent disadvantage into an opportunity.

Consequently, we derive a protocol that solves the consensus problem using aggre-
gation. This use of aggregation considerably improves energy efficiency without influ-
encing the quality of the consensus or increasing the time it takes to reach a decision.

This work has been partially sponsored by the European Commission under the contract IST-
2001-34734 – Energy-efficient sensor networks (EYES).

The protocol can be formulated using two kinds of aggregation: concatenation or
computation of a single value that summarizes all the information. Concatenation al-
lows to find out which nodes did not answer. This can be used to initiate retransmission
requests, hence making the transmission more reliable, but in turn increases the packet
size. If only a single value is computed, this is not possible. Still, this low-cost solution
may be sufficient for some applications. In this paper we investigate how reliable the
three versions (no aggregation, concatenation, single value) are, measured in the frac-
tion of nodes that correctly decide. We also evaluate how much time these versions need
until the protocols terminate and how much energy is spent, measured in the number of
bits sent.

The paper is structured as follows. In Sec.2 we introduce the consensus problem
and explain it using the Two-Phase commit (2PC) protocol that solves such a consensus
problem. The protocol can be implemented in several ways. Possible design options are
discussed in Sec.3. The parameters used for the simulation are explained in Sec.4.
Then we present the results we obtained for the different versions and conclude our
work. Furthermore, an outlook on future work is given in Sec.7.

2 Consensus

One protocol that solves a particular instance of the consensus problem is the 2PC
protocol [1]. It ensures that e.g. all actuators perform an action or none does, or that all
nodes activate a software patch or none does.

To achieve this consensus, the 2PC protocol proceeds in two rounds. In the first
round the central coordinator sends aproposal(COMMIT) to all participants using a
multicast. Within a certain time limit, all participants send their proposition (COMMIT

or ABORT) back to the coordinator; this is called a convergecast. If the coordinator
receives onlyCOMMIT messages, it prepares to decideCOMMIT. In case of only a single
ABORT it prepares to decide forABORT. It then multicasts the envisioneddecisionto
the participants and decides. The participants receive the decision within a certain time,
decide accordingly and send an acknowledgement to the coordinator.

This protocol ensures that – if no nodes fail, no messages are lost or delayed for an
unknown time and if task execution time on the nodes is smaller than a known upper
bound – the participants reach a consensus. They agree on the value that the coordinator
sent to all participants as a decision.

The 2PC protocol is a specific protocol that we picked as an example for the evalua-
tion. But the consensus problem is actually much broader. Whenever a protocol ensures
three formal properties, it solves a consensus problem [1,2]:

Validity If a node decides forv, thenv was proposed by some node.
Termination Every correct node eventually decides.
Agreement No two nodes (correct or faulty) decide differently.

The Validity property is needed to rule out trivial solutions, where the value for
which all nodes decide never changes. It is possible to relax the agreement property
and to require only correct nodes to decide. This is useful when nodes can behave
arbitrarily or send wrong messages (in a Byzantine fault model, e.g.). The protocol

discussed here is designed for a simple crash fault model, where a failing node stops all
forms of operation. However, we assume that nodes (esp. actuators) fail rarely. Other
cases require more complex protocols and an adaptation of them for WSNs is planned
for future work.

In a real system, it is very hard (if at all possible) to ensure that the task execution
time and the time it takes to transmit a message is bounded by some known constant.
We do not assume that this is attempted in a WSN. Instead, we assume the system to
be asynchronousin the distributed systems sense: task execution times and message
transmission times are not bounded.

In such a realistic system, the consensus problem can – strictly speaking – not be
solved [3]. The solutions for distributed databases minimize the probability that the
properties are violated by considering failure recovery (i.e., maintenance). In a WSN,
however, maintenance is usually not feasible. As a result, only a probabilistic solution
remains feasible where the protocol can occasionally fail but the probability of a failure
should be minimized. Such a protocol may require large amounts of energy and a long
time to reach a decision. A tradeoff between these goals (energy spent, time to reach a
decision and failure probability) exists for each application individually. The following
sections outlines possible design options that achieve different tradeoffs between these
goals.

3 Design options for 2PC in WSN

The particular tradeoffs between the conflicting goals are specific for the concrete appli-
cation that has to reach a consensus. In one application it may be reasonable to reach a
consensus very energy-efficiently even if this implies that some nodes do not take part.
In another application (e.g. software update) saving energy is not the ultimate goal; it
may be more important to be as sure as possible that all nodes get the patch and activate
it. It is not possible to predict the needs for every application that attempts to reach a
consensus. Hence, several protocols are desirable with different tradeoffs.

3.1 Basic options without aggregation

Even a basic 2-phase commit protocol has a number of degrees of freedom as soon as
we have to pay attention to the details of the implementation of such a protocol in a
multi-hop environment. To describe the possible design choices we will discuss them
separately for each step given in the overview in Sec.2.

Two-phase commit. First, the central controller sends a proposal to all participants.
Actually, there is no need for a central controller. The 2PC protocol can be implemented
in a centralized or decentralized fashion. A decentralized protocol is more robust when
nodes fail often, but requires a higher number of messages. A centralized protocol is
more sensitive, it introduces a single point of failure. However, we assume that nodes
actually fail relatively rarely and that a distributed protocol is an overkill: the higher
number of messages make it less feasible in a WSN where communication is the largest
consumer of energy.

In a centralized protocol, one node has to be the coordinator. The precise choice of
a coordinator for a particular application is not within the scope of this paper (leader
election in multihop networks is treated e.g. in [4]). We assume that for the applications
mentioned in the introduction such a coordinator is given, for instance a special node
that serves as a gateway.

Communication infrastructure: Trees or clusters. The design of a distributed pro-
tocol is considerably simplified if a “flat” network view can be assumed, where every
node is a one-hop neighbor of another node – in effect, this presupposes a functional,
identity-based routing layer. While such routing layers exist, they are not necessarily
suitable for ad hoc networks (identity issues, scalability problems) and their superim-
posed topology is not necessarily well adapted to the distributed algorithm. Hence, we
opted for constructing the necessary communication infrastructure in the protocol itself.

The coordinator’s proposal must be forwarded to the participants. In our imple-
mentation we used plain flooding, where every node repeats the message exactly once.
During the flooding of the proposal, the nodes arrange themselves in a tree rooted in the
coordinator and simultaneously learn about their parents in the tree. The nodes use this
information to convergecast their answers back to the coordinator. This operation is the
main task of the tree.

In the non-aggregating case of the protocol, it is not particularly important for a
node in the tree to know about its children or about the depth of the locally rooted tree.
This information is only relevant in the aggregating case (as nodes have to wait for
messages from all their children for aggregation to make sense); how to determine it is
hence described in Section3.2.

As a by-product the tree can also reduce the number of messages sent to distribute
the decision (compared to plain flooding). Other options are to reduce the set of for-
warding nodes by clustering the network – then only gateways and clusterheads have to
forward the message. However, the use of clustering is completely independent and not
considered in this paper.

Node failures and message losses.When the energy resources of a node are depleted,
it fails. Although we assume that node failures are rare, they can occur and a consensus
protocol has to cope with them. When the coordinator detects a node failure, the node
is excluded and the remaining nodes proceed with the protocol. The same applies when
the link to a node is broken and the node cannot be reached for a certain amount of time.

To detect node failures, one can use a pro-active approach or a re-active approach.
The basic idea of a pro-active approach is that every node sends a message (“ping”)
once in a while; for possible implementations, see e.g. [5,6,7].

In our implementation, we did not rely on a pro-active failure detector, but rather
a re-active one, better known as timeout. The 2PC protocol requires every node to re-
ply with eitherABORT or COMMIT. If this message does not arrive at the coordinator
within a certain time, the coordinator asks the node to retransmit its message using an
ID-centric routing. We assume that such an ID-centric routing (e.g. AODV, DSR or
comparable) is present.

Consensus

Session

Routing

PHY

Two Phase Commit

Tree

Link

 BSC

ID−centric

with or without ARQ

Fig. 1.Structure without aggregation

The choices for timeouts and the number of retransmissions imply a specific choice
in the tradeoff between the spent energy, the time the protocol needs to reach a decision
and protocol failure probability. A higher number of allowable retransmission requests
leads to a higher energy consumption and a longer time to terminate, but lowers the
failure probability. Shorter timeouts can result in unnecessary energy expenditure for
superfluous retransmission requests. Also, nodes are (erroneously) suspected to have
failed early and this increases the protocol failure probability.

Reliable link layer. Radio transmissions are error prone and a hop-by-hop error re-
covery strategy can be useful. Essentially there are two ways to protect a packet against
message losses using a Forwad Error Correction (FEC) or an Automatic Repeat re-
Quest (ARQ) protocol. Both variants increase the overhead per message and this may
outweigh the benefits. Therefore, simulations were done with and without ARQ.

In summary, Fig.1 shows the interactions between the different parts necessary for
the 2PC protocol without aggregation.

3.2 Integrating aggregation

Aggregation can be introduced into the structure as shown in Fig.2. This has several
ramifications also on other parts and we discuss them in this section.

Aggregation. The aggregation part introduces several functionalities in all nodes of the
network (not only those that participate in the consensus itself). First of all it knows how
to combine multiple values into a single one. One possible aggregation simply computes
the minimum ifABORT≡ 0 andCOMMIT ≡ 1. We call this variant single-value aggrega-
tion. An important consequence is that this precludes retransmission requests, because
the central node does not know whether an answer form a certain node was included
or not. If the aggregation part also ensures that the answers of all children are included
in the message then essentially the TREE-COMMIT protocol [8] is implemented. In our
performance evaluation the aggregation part is not responsible for the reliability of the

Consensus

Session

Routing

PHY

Two Phase Commit

Tree

Link

 BSC

ID−centric

Aggregation

with or without ARQ

Fig. 2.Structure with aggregation

transmission; this is one possible variation. The aggregation into a single value without
enhanced reliability is very energy-efficient: the packet size remains constant irrespec-
tive of the depth of the node in the convergecast tree. Another variant, which does allow
retransmission requests, is to simply concatenate the values and the IDs of all children
into a single message.

In order to collect the messages from all children the aggregation part has to know
about the children, an information available from the tree part. But how long should it
wait for answers from the children? A message loss could block the aggregation part
and the messages that already arrived are not processed. Therefore, the aggregation
block also maintains a timer. If some children fail to answer it just proceeds and sends
the aggregated values on. Retransmission requests are left over to the part that uses
aggregation. If the aggregation part receives a retransmission request, it tries to answer
it using the information in its cached, aggregated message.

Locally determining waiting time. For aggregation to make sense, nodes have to wait
for messages from all (or at least most of) their children. The waiting time is particularly
important for the leafs in the tree as they have to start the actual convergecast back to
the coordinator. It depends on how the tree is built, more precisely, how children in the
tree behave with respect to their parents.

The children have three options how to behave with respect to their parents: They
can simply do nothing, they can explicitly inform a parent node that it has a new child,
or it can inform all nodes in radio vicinity about the newly formed parent-child rela-
tionship. This last option is potentially useful for tree repair (e.g., due to mobility) but
is not pursued further in this paper. The first and second case are called “silent” and
“announce” in the results section.1

1 For completeness’ sake, the distinction between silent and announced tree building is also
used for the non-aggregating case although it makes little difference there. The most important
differences is obviously in the number of sent bits or messages and also in the fraction of
decided nodes.

Depending on whether the tree is built in a silent or announced fashion, a node can
use resulting information to decide whether it is a leaf. In any case, a node can make
this decision only after waiting for a certain time in which it expects messages from
its children. If children are silent, this information is implicitly included only in actual
data messages (here, the convergecast) and the necessary waiting time hence depends
on the length of the longest path to any child in the sub-tree of that particular node. In
the initial phase, some estimate of this value is required; we use

(MAX HOP COUNT−hopsto coordinator) ·max time per hop.

After the first convergecast, these estimates can be adapted.
If, on the other hand, children explicitly announce their presence to their parents,

this waiting time can be shortened considerably as only messages from the local neigh-
borhood have to be waited for. The evident consequences of these options are differ-
ences in the time to terminate for the procedure, depending on how and when the con-
vergecast is started by the children.

4 Evaluation

In order to obtain some understanding of the quantitative tradeoffs involved in these
protocol variants, we programmed a simulation that reflects the most crucial aspects of
these algorithms. It is based on the OMNeT++ simulation toolkit [9] and AKAROA [10]
as a statistical evaluation tool.

4.1 Basic parameters

A number of parameters and protocol behaviors have to be fixed to allow for a simula-
tion to run. These are:

Retransmission requests from coordinator If three such requests remain unanswered,
the coordinator assumes that the node is not operational anymore and proceeds.

Timeout values The timeout value is the same for all 2PC implementations, and we
set it to 40 s. The value is computed on the basis that we allow packets to travel at
most 30 hops and the reliable link layer to transmit packets in less than 0.5 s. To this
value a 10 s margin is added, to take some computational overhead into account.

Routing overhead For our simulations we assume an ideal routing protocol with no
overhead. However, this overhead is not necessarily negligible and implementations
of 2PC that do not use it can be beneficial. This has to be evaluated more closely in
the future.

Coordinator rotation We rotated the coordinator node for two reasons. One reason is
that we were interested in an average behavior over all possible choices. The second
reason is that, whenever possible, the coordinator should be rotated lest the energy
resources of a single node are exploited.

Probability to propose ABORT This probability is chosen as 10−3.

4.2 Distribution of participants

The participants can be a subset of the nodes in the whole network or all nodes in
the network. In our simulations we assume that the participants are all nodes in the
network. We evaluated the protocol with different network sizes, ranging from 100 to
400 nodes. The nodes are distributed randomly in a plane using a two-dimensional
uniform distribution. The transmission range was adapted to keep the average number
of neighbors fixed at 14, making the network connected with high probability [11] and
eliminating influences due to a varying number of neighbors. To keep the number of
neighbors independent of the network size, one has to correct the edge effect.2 For a
100 node topology the average number of neighbors is around twelve, while for a 400
node topology the average number of neighbors is around 14. To eliminate this effect
and its influences, we used the toroidal distance [12] between nodes. With this distance
nodes at opposite edges of the plane can communicate. This leads to a constant average
number of neighbors, independent of the total number of nodes.

4.3 Link layer, physical layer and channel model

All forwarding takes place between neighboring nodes. In the simulation, this level
was modeled in a very rudimentary way. The links are modeled as point to point links
for unicast messages. For messages that have multiple recipients the broadcast nature
of the radio medium was taken into account: a single send reaches all nodes in the
neighborhood.

To transport the messages over the wireless medium they are put into packets. The
overhead necessary for the PHY and MAC layer is small (88 bits), slightly smaller than
the overhead of the CSMA type MAC protocol of the IEEE 802.15.4 standard. This
takes only the minimal overhead into account, a possible additional control overhead
due to e.g. the RTS-CTS exchange as in IEEE 802.11 is neglected.

Possible options for the link layer include an unreliable one (with error recovery
completely left to the consensus protocol itself) and a link layer that uses an ARQ
protocol (with up to two retransmissions) for unicast packets. In this case, only the
convergecast is made more reliable, messages can still get lost during the multicast
phase. Therefore, retransmission requests from the coordinator remain necessary.

The physical channel over which packets are transmitted is modeled with a Bi-
nary Symmetric Channel (BSC). This channel introduces independent bit errors in the
packet. Although this model is often used in simulations and analytical evaluations,
measurements [13] show that it is a special case. Future evaluations will use more than
one channel model.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

1e-08 1e-07 1e-06 1e-05 1e-04 1e-03 1e-02
BER

Silent
Announce

No aggr.
Concat.

Single V.

Fig. 3. Sent bits per node, 400 nodes,
without ARQ

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

1e-08 1e-07 1e-06 1e-05 1e-04 1e-03 1e-02
BER

Silent
Announce

No aggr.
Concat.

Single V.

Fig. 4.Sent bits per node, 400 nodes, with
ARQ

5 Selected results

The results presented in this section are averaged for 20 random topologies, simulations
were run until a relative precision of 0.01 had been reached (i.e., the actual value is with
95% confidence between11.01x≤ µ ≤ 1.01x).

The first metric to look at is the number of sent bits. Fig.3 and4 show (with or
without ARQ for the unicast communication) the average number of bits sent by each
node per consensus attempt as a function of the BER for a sensor network consisting
of 400 nodes, all taking part in the 2PC protocol. The graphs show all the six possible
combinations: two ways of building a tree and three forms of value aggregation. The
way how a tree is built is denoted by different points in the graphs: if no messages are
sent to built the tree, we call this a “silent” tree (the graphs have crosses) whereas when
the tree is built using announcements “I am your child” to inform the parent node about
the presence, the graphs have circles.

From these figures it becomes clear that how the tree is built has only a minor influ-
ence. A more pronounced influence is seen in the way how values are aggregated. The
variant that aggregates the values in a single value clearly sends the smallest number of
bits and this number even drops with a rising BER. This is due to the fact that with a
higher BER more and more messages are lost and not forwarded – resulting in a drop-
ping number of sent bits in downstream nodes. The concatenating variant sends more
bits, and this can even exceed the number of bits send by the non-aggregating version.
The explanation is that the concatenated values require larger packets (each value adds
24 bits to the packet) which are more susceptible to losses. Also, the retransmission re-
quests are made for each missing value separately, resulting in a high number of packets
sent for retransmission requests. This remains true although the aggregation seeks to an-

2 This effect is introduced when the Euclidean distance is used to check whether two nodes can
reach each other: the nodes at the edge of the plane have fewer neighbors than those in the
middle of the plane. As a result, the average number of neighbors in topologies with few nodes
is smaller than in topologies with a large number of nodes.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 0 50 100 150 200 250 300 350 400 450
Number of nodes

Silent
Announce

No aggr.
Concat.

Single V.

Fig. 5. Sent bits per node, BER 1e−5,
without ARQ

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 0 50 100 150 200 250 300 350 400 450
Number of nodes

Silent
Announce

No aggr.
Concat.

Single V.

Fig. 6.Sent bits per node, BER 1e−5, with
ARQ

swer retransmission requests as early as possible and if it can do so, the retransmission
request is not forwarded.

Because the longer packets of the concatenating variant are more susceptible to
losses, it may make sense to protect them with an ARQ scheme and put more effort
into them. Interestingly, for small BER the additional cost is small for the aggregating
variants, while it results in a high penalty for the non-aggregating variant. However,
for high BERs the concatenating variant is still on the loosing end. This suggests that
an adaptive protection should be used. One possibility is to avoid bad links altogether,
or to add more error protection. However, information on the link quality may be hard
to obtain whereas it is fairly easy to have a notion of an important packet: a packet
that carries the aggregated information from many nodes should be protected in a more
sophisticated way. Such an “aggregation-aware link layer” is suggested in [14].

Using ARQ has another benefit if we look at Figures5 and6 (which show sent bits
over varying network size): it lowers the influence of the network size.

 0

 50

 100

 150

 200

 250

 300

 350

 400

1e-08 1e-07 1e-06 1e-05 1e-04 1e-03 1e-02
BER

Silent
Announce

No aggr.
Concat.

Single V.

Fig. 7. Time to terminate (s), 400 nodes,
without ARQ

 0

 50

 100

 150

 200

 250

 300

 350

 400

1e-08 1e-07 1e-06 1e-05 1e-04 1e-03 1e-02
BER

Silent
Announce

No aggr.
Concat.

Single V.

Fig. 8. Time to terminate (s), 400 nodes,
ARQ

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250 300 350 400 450
Number of nodes

Silent
Announce

No aggr.
Concat.

Single V.

Fig. 9. Time to terminate (s), BER 1e−5,
without ARQ

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250 300 350 400 450
Number of nodes

Silent
Announce

No aggr.
Concat.

Single V.

Fig. 10.Time to terminate (s), BER 1e−5,
with ARQ

Another question is whether the use of aggregation has an influence on the time it
takes for the algorithm to terminate. Figures7 to 10 show that the use of aggregation
does not necessarily increase the time until the protocol terminates. In fact, this is more
related to the way timers are chosen for the leafs to start the convergecast, especially
for small BER. The problem here is that the possible depth of the tree is vastly overes-
timated with the maximum number of hops of 30, usually the average number of hops
is smaller than 5. This error in the estimated tree depth leads to timeout values (for ag-
gregation and retransmission requests) that are too large. A more sophisticated scheme
should be adopted. Still, the variant that does not use aggregation often needs more time
– even with the small MAC overhead the large number messages need time until they
are transmitted.

The next (and perhaps most important) question is how aggregation influences the
quality of the consensus. The quality of a consensus protocol can be measured in how
likely it violates the agreement property. The problem here is that a message might
not reach a given node. If a node does not receive the decision, it does not decide.
This can happen despite retransmission requests. After three retransmission requests
the coordinator terminates the protocol, but some nodes may remain undecided. The
fraction of nodes that actually decide gives an impression of the quality of the protocol.3

Figures11and12show that the fraction of decided nodes is different for each vari-
ant. The single-value aggregation has the smallest number of decided nodes, because
it does not care whether nodes answered or not. The other variants that do care about
individual nodes have a very similar performance. The difference between these two
variants is not significant up to a BER of 1e−3. The difference between the two variants
is caused by the way how the tree is built. If the children in the tree do not announce
their presence, they will be included in the tree on the first convergecast received from

3 This is actually a better performance metric than using the more intuitive fraction of incor-
rectly decided nodes, as this would largely depend on the (relatively small) probability of
proposingABORT and would hence lead to distorted figures – this product of two small prob-
abilities (ABORT probability and the probability that a message of one of the objecting nodes
is concerned) is very small and difficult to simulate.

 0

 0.2

 0.4

 0.6

 0.8

 1

1e-08 1e-07 1e-06 1e-05 1e-04 1e-03 1e-02
BER

Silent
Announce

No aggr.
Concat.

Single V.

Fig. 11.Percentage of decided nodes, 400
nodes, without ARQ

 0

 0.2

 0.4

 0.6

 0.8

 1

1e-08 1e-07 1e-06 1e-05 1e-04 1e-03 1e-02
BER

Silent
Announce

No aggr.
Concat.

Single V.

Fig. 12.Percentage of decided nodes, 400
nodes, with ARQ

them – this can also be an answer to a retransmission request. If the children have to
announce their presence within a certain time limit, then no new children will be in-
cluded in the tree after that. When the multicast message or their announcement is lost
they are not included in the tree – and the next multicast, restricted to the tree, is not
forwarded to them. In effect this lowers the number of messages they can potentially
receive, lowering the success probability. If the tree is built with more care using ARQ
the difference diminishes.

6 Conclusion

In this paper, we have shown that it is indeed possible to perform the comparably expen-
sive operation of a consensus even under the severe resource constraints of a wireless
sensor network. The most interesting conclusion from our results is that the choice of
protocol considerably depends on the present bit error rate. In scenarios with a low
to medium BER, interestingly enough, the concatenation protocol turns out to be the
preferable choice. In these circumstances, single-value aggregation suffers consider-
ably from the absence of information which node’s proposal is missing; the savings in
message length do not compensate for this shortcoming – only at BERs of about 10−7

do the advantages of single-value aggregation prevail. Non-aggregating protocols, on
the other hand, have too high a message overhead to be competitive.

This conclusion changes for high BERs: Here, non-aggregating protocols are best
suited and tend to send the smallest number of bits. This is mostly due to some prob-
lems of concatenating protocols, where important messages can get lost, resulting in a
high overhead to repair this loss – overall more than the non-aggregating protocol re-
quires. Moreover, the long packets of the concatenating protocols are not ideal for such
circumstances anyway.

As a consequence, reliable link layers are highly recommended in most circum-
stances. However, it is beneficial to make the ARQ protocol conscious of the relevance
of a given packet. This should considerably improve performance even further.

7 Future work

The evaluation in this paper can be extended in several directions. The first extension
is to evaluate the protocol performance using more realistic and a wider variety of
channel models. The channel models should also take correlated channel conditions
into account. It may well happen that a certain node is hardly reachable. A compara-
ble problem occurs when mobility is taken into account. Mobility leads to correlated
breaking of links – in contrast to the usual assumptions in distributed systems textbooks
where at best stochastically independent link failures/repairs are considered. With the
approach used here, mobility causes a major problem as it destroys the tree used for
aggregation. It is not clear how to recover from such problems and whether a pro- or
re-active approach should be chosen. Another, simpler solution is to lower the time un-
til the algorithm terminates, because this lets nodes less time to become unreachable
due to their movement. The time an algorithm needs to terminate is closely connected
with the values chosen for the timers, but choosing good values is tricky because of
the inherent tradeoff with energy – too short timeouts cause unnecessary retransmission
requests and increase the protocol failure probability. The protocol failure probability is
also connected with retransmission requests. Currently, they are initiated by the central
controller and forwarded to the node in question using an ID-centric routing. However,
the TREE-COMMIT protocol uses parents in the convergecast tree to request retransmis-
sions. The advantage is that the messages travel only short ways, but this also makes
the computation of timeout values more difficult. For a reasonable estimate the parents
need information about the ID of their children – which is fairly easy to get – but also
the depth of the tree that starts at a particular child. It remains to be seen whether the
energy necessary to obtain this information pays off in lower total energy spent.

References

1. Coulouris, G., Dollimore, J., Kindberg, T.: Distributed Systems – Concepts and Design. 3.
edn. Addison-Wesley, Harlow (2001)

2. Guerraoui, R., Hurfin, M., Mostéfaoui, A., Oliveira, R., Raynal, M., Schiper, A.: Consensus
in asynchronous distributed systems: A concise guided tour. In Krakowiak, S., Shrivastava,
S., eds.: Distributed Systems. Volume 1752 of Lecture Notes in Computer Science. Springer
Verlag, Berlin Heidelberg (2000) 33–47

3. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one
faulty process. Journal of the ACM32 (1985) 374–382

4. Malpani, N., Welch, J.L., Vaidya, N.H.: Leader election algorithms for mobile ad hoc net-
works. In: Proc. 4th Intl. Workshop on Discrete Algorithms and Methods for Mobile Com-
puting and Communications, Boston, MA (2000)

5. Aguilera, M.K., Chen, W., Toueg, S.: Heartbeat: A timeout-free failure detector for quiescent
reliable communication. In: Workshop on Distributed Algorithms. (1997) 126–140

6. van Reenesse, R., Minsky, Y., Hayden, M.: A gossip style failure detection service. In Davies,
N., Raymond, K., Seitz, J., eds.: Middleware. International Conference on Distributed Sys-
tems Platforms and Open Distributed Processing, IFIP, Springer Verlag (1998) 55–70

7. Gupta, I., Chandra, T.D., Goldszmidt, G.S.: On scalable and efficient distributed failure
detectors. In: 20th Symposium on Principles of Distributed Computing, Newport (2001)

8. Segall, A., Wolfson, O.: Transaction commitment at minimal communication cost. In:
Proceedings of the sixth ACM SIGACT-SIGMOD-SIGART symposium on Principles of
database systems, ACM Press (1987) 112–118

9. Varga, A.: Omnet++ discrete event simulation system.http://www.omnetpp.org/
index.php (2003)

10. Ewing, G., Pawlikowski, K., McNickle, D.: Akaroa2: Exploiting network computing by
distributing stochastic simulation. In: Proc. European Simulation Multiconference ESM’99,
Warsaw, International Society for Computer Simulation (1999) 175–181

11. Xue, F., Kumar, P.R.: The number of neighbors needed for connectivity of wireless networks.
Wireless Networks (2003) accepted for publication.

12. Bettstetter, C.: On the minimum node degree and connectivity of a wireless multihop net-
work. In: Proceedings of the 3rd ACM international symposium on Mobile ad hoc network-
ing & computing, ACM Press (2002) 80–91

13. Köpke, A., Willig, A., Karl, H.: Chaotic maps as parsimonious bit error models of wireless
channels. In: Proc. of IEEE INFOCOM, San Francisco, USA (2003)

14. Karl, H., Löbbers, M., Nieberg, T.: A data aggregation framework for wireless sensor net-
works. In: Proc. Dutch Technology Foundation ProRISC Workshop on Circuits, Systems
and Signal Processing. (2003)http://www.stw.nl/prorisc/ . To appear.

A Additional results

Silent Announce
Aggr.type ARQ No ARQ ARQ No ARQ
No aggr. 241.0 400.0 241.0 400.0
Concat. 201.0 378.0 197.0 378.0
Aggr. 57.9 58.0 53.7 57.6

Table 1.Time to terminate (in s), 400 nodes, BER 1e-03

Silent Announce
Aggr.typeARQ No ARQ ARQ No ARQ
No aggr. 6189 3801 6423 3843
Concat. 7826 3944 7832 3955
Aggr. 792 485 998 613

Table 2.Sent bits per node, 400 nodes, BER 1e-03

http://www.omnetpp.org/index.php
http://www.omnetpp.org/index.php
http://www.stw.nl/prorisc/

Silent Announce
Aggr.typeARQ No ARQ ARQ No ARQ
No aggr. 39.6 18.3 42.1 19.1
Concat. 37.9 17.8 37.5 18.3
Aggr. 4.66 2.33 6.96 3.52

Table 3.Sent packets per node, 400 nodes, BER 1e-03

Silent Announce
Aggr.type ARQ No ARQ ARQ No ARQ
No aggr. 1.000 0.627 1.000 0.577
Concat. 0.999 0.584 1.000 0.662
Aggr. 0.374 0.169 0.385 0.265

Table 4.Fraction of decided nodes, 400 nodes, BER 1e-03

Silent Announce
Aggr.typeARQ No ARQ ARQ No ARQ
No aggr. 79.2 305.0 79.7 314.0
Concat. 58.5 239.0 33.2 206.0
Aggr. 56.7 57.3 29.2 55.6

Table 5.Time to terminate (in s), 400 nodes, BER 1e-04

Silent Announce
Aggr.typeARQ No ARQ ARQ No ARQ
No aggr. 3528 2935 3681 3064
Concat. 1821 3099 1934 2937
Aggr. 974 758 1150 866

Table 6.Sent bits per node, 400 nodes, BER 1e-04

Silent Announce
Aggr.typeARQ No ARQ ARQ No ARQ
No aggr. 23.0 14.1 24.8 15.3
Concat. 9.33 11.9 11.1 11.1
Aggr. 5.79 3.65 7.80 4.74

Table 7.Sent packets per node, 400 nodes, BER 1e-04

Silent Announce
Aggr.type ARQ No ARQ ARQ No ARQ
No aggr. 1.00 1.000 1.00 1.000
Concat. 1.00 0.999 1.00 1.000
Aggr. 0.909 0.825 0.905 0.874

Table 8.Fraction of decided nodes, 400 nodes, BER 1e-04

Silent Announce
Aggr.typeARQ No ARQ ARQ No ARQ
No aggr. 30.8 92.8 30.7 96.0
Concat. 43.4 62.7 16.1 46.9
Aggr. 43.6 50.1 15.7 35.9

Table 9.Time to terminate (in s), 400 nodes, BER 1e-05

Silent Announce
Aggr.typeARQ No ARQ ARQ No ARQ
No aggr. 3258 2447 3438 2538
Concat. 1423 1536 1600 1574
Aggr. 1003 823 1179 913

Table 10.Sent bits per node, 400 nodes, BER 1e-05

Silent Announce
Aggr.typeARQ No ARQ ARQ No ARQ
No aggr. 21.2 11.8 23.2 12.8
Concat. 7.17 6.00 9.18 6.70
Aggr. 5.97 3.96 7.97 4.96

Table 11.Sent packets per node, 400 nodes, BER 1e-05

Silent Announce
Aggr.type ARQ No ARQ ARQ No ARQ
No aggr. 1.00 1.00 1.00 1.00
Concat. 1.00 1.00 1.00 1.00
Aggr. 0.990 0.981 0.990 0.985

Table 12.Fraction of decided nodes, 400 nodes, BER 1e-05

Silent Announce
Aggr.typeARQ No ARQ ARQ No ARQ
No aggr. 4.76 29.3 4.74 30.3
Concat. 29.2 33.9 3.23 8.79
Aggr. 29.0 33.0 3.13 6.85

Table 13.Time to terminate (in s), 400 nodes, BER 1e-06

Silent Announce
Aggr.typeARQ No ARQ ARQ No ARQ
No aggr. 3227 2400 3409 2484
Concat. 1391 1250 1573 1336
Aggr. 1007 830 1182 918

Table 14.Sent bits per node, 400 nodes, BER 1e-06

Silent Announce
Aggr.typeARQ No ARQ ARQ No ARQ
No aggr. 21.0 11.5 23.0 12.5
Concat. 6.99 5.09 9.00 6.07
Aggr. 5.99 3.99 7.98 4.99

Table 15.Sent packets per node, 400 nodes, BER 1e-06

Silent Announce
Aggr.typeARQ No ARQ ARQ No ARQ
No aggr. 1.00 1.00 1.00 1.00
Concat. 1.00 1.00 1.00 1.00
Aggr. 1.00 0.998 0.999 0.999

Table 16.Fraction of decided nodes, 400 nodes, BER 1e-06

Silent Announce
Aggr.typeARQ No ARQ ARQ No ARQ
No aggr. 1.17 3.95 1.16 4.11
Concat. 29.1 29.1 1.20 2.01
Aggr. 29.0 29.0 1.07 1.69

Table 17.Time to terminate (in s), 400 nodes, BER 1e-07

Silent Announce
Aggr.typeARQ No ARQ ARQ No ARQ
No aggr. 3229 2395 3405 2483
Concat. 1393 1221 1571 1309
Aggr. 1007 831 1182 919

Table 18.Sent bits per node, 400 nodes, BER 1e-07

Silent Announce
Aggr.typeARQ No ARQ ARQ No ARQ
No aggr. 21.0 11.5 23.0 12.5
Concat. 6.99 5.00 8.98 6.00
Aggr. 5.99 4.00 7.99 4.99

Table 19.Sent packets per node, 400 nodes, BER 1e-07

Silent Announce
Aggr.typeARQ No ARQ ARQ No ARQ
No aggr. 1.00 1.00 1.00 1.00
Concat. 1.00 1.00 1.00 1.00
Aggr. 1.00 1.00 1.00 1.000

Table 20.Fraction of decided nodes, 400 nodes, BER 1e-07

