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ABSTRACT Machine learning (ML) has gained attention from the network research community because
it can help solve difficult problems and potentially lead to groundbreaking achievements. In the Wi-Fi
domain, ML is applied to solve challenges such as efficient channel access and fair coexistence with other
technologies in unlicensed bands. In this paper, we address the performance of uplink orthogonal frequency
division multiple random access (UORA) in IEEE 802.11ax networks. Optimization of UORA is a good
case for applying ML because of its inherent complexity and dependence on situation and time-dependent
parameters. In particular, we use deep reinforcement learning to tune UORA parameters. Our simulation
results show that even though the ML-based solution leads to close to optimal results, its operation is
comparable to a much simpler, non-ML heuristic. Therefore, we conclude that ML-based solutions to
improve IEEE 802.11 performance need not exceed well-designed heuristics.

INDEX TERMS deep Q-learning, IEEE 802.11ax, machine learning, OFDMA, reinforcement learning,
UORA, uplink orthogonal frequency division multiple random access

I. INTRODUCTION

THE IEEE 802.11ax amendment introduces uplink (UL)
multi-user (MU) orthogonal frequency-division multi-

ple access (OFDMA) to improve the efficiency of Wi-Fi net-
works. OFDMA-based channel access divides radio channel
resources into subcarrier groups, called resource units (RUs),
which are then allocated to stations. Stations can transmit si-
multaneously, which improves efficiency compared to single-
user transmissions. OFDMA has two modes of operation:
scheduled access (SA) [1] and random access (RA) [2]. In the
former, all decisions are made centrally at the 802.11ax AP.
Meanwhile, in the latter, decisions are distributed and there is
room for performance improvement. Therefore, in this paper,
we focus on the RA mode.

To provide RA OFDMA, 802.11ax defines uplink
OFDMA-based random channel access (UORA) [3], which
can be used in dense scenarios, e.g., in Internet of Things
(IoT) deployments or industrial wireless sensor networks [4],

[5]. SA is inappropriate for such scenarios due to the over-
head cost of polling all stations to determine their UL buffer
status. With RA, only stations that require UL transmission
opportunities compete for RUs using UORA rules. UORA is
based on two components: the OFDMA contention window
(OCW) and OFDMA random access backoff (OBO). Stations
select a random OBO counter from the range (0, OCW) and
then decrease it by the number of eligible RUs assigned
by the access point (AP) for uplink transmissions. OBO is
decremented during each UORA frame exchange (Figure 1).
Stations transmit when their OBO reaches 0. The OCW range
can be configured by the AP in the UORA parameter set
element, distributed through beacon frames. Unfortunately,
this basic operation (which we refer to as legacy UORA) is
highly inefficient under saturation [2].

Researchers have proposed to modify UORA in various
ways (cf. Table 1). The efficiency of UORA can be improved
by adaptive grouping [6], [7], spatial clustering [8], sub-
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FIGURE 1: Example of UORA operation in 802.11ax [2].

channel hopping [9], complementary probability instead of
backoff [10], additional carrier sensing [11], retransmission
awareness [12], OBO modifications [2], [13], grouping-based
channel access [14], and considering adjacent channel inter-
ference [15]1. None of the above research uses ML methods,
although the application of reinforcement learning (RL) to
improve UORA operation is suggested as future work by
Kim et al. [13]. In fact, with the proliferation of the use of
ML solutions to improve Wi-Fi performance [17], extending
UORA with ML is the logical next step.

Thus inspired, in this paper, we present an RL-based
OBO procedure (RL-OBO) to adjust the UORA random
access backoff operation to the congestion level of the shared
channel. After providing a brief description of legacy UORA
(Section II) and an existing non-ML heuristic (Section III),
our main contributions are:

• We design an RL-based OBO procedure (RL-OBO)
for UORA (Section IV), where, based on the observed
probability of unsuccessful RUs, the AP learns the level
of network congestion and adjusts the OBO countdown
to achieve a higher success rate and, whenever possible,
avoid empty RUs. To the best of our knowledge, this has
not yet been done.

• We evaluate RL-OBO using a simulation model to
confirm the accuracy of the RL-based solution (Sec-
tion V-D). Unlike most of the literature [6]–[12], [14],
which considers only static scenarios, we follow [13]

1Other UORA-related research areas include coexistence of RA and SA
modes; alternative MAC protocols (including deterministic channel access);
scheduler design; and adaptation to real-time, V2X, and healthcare IoT
applications [2] [16].

Algorithm 1 Legacy UORA (802.11ax)

1: OCWmin ← 7
2: OCWmax ← 31
3: if first transmission then
4: OCW ← OCWmin;
5: else if retransmission then
6: OCW ← 2×OCW + 1;
7: if OCW ≥ OCWmax then
8: OCW ← OCWmax;
9: end if

10: end if
11: OBO ← random integer(0, OCW );
12: Station decrements OBO by nRU and selects a random

RU for transmission if OBO = 0.

and study dynamic network loads and station churn.
• We compare the operation of RL-OBO with a previ-

ous approach in Section V-F. This approach (E-OBO)
is an existing non-ML-based heuristic exhibiting good
performance (Section V-E). However, E-OBO requires
the static definition of certain parameters, which is its
main disadvantage (cf. Section III).

• We show that, even though RL-OBO can improve the
performance of legacy UORA, its behavior can some-
times be slightly worse than that of E-OBO. In partic-
ular, RL-OBO can produce suboptimal results and may
lead to throughput unfairness in dynamic environments.

We conclude the paper and outline future work in Section VI.
The notation and acronyms used are gathered in Tables 2
and 3, respectively.

II. LEGACY UORA
UORA is summarized in Algorithm 1 while Figure 1 pro-
vides an example of its operation. First, a trigger frame
(TF) transmitted by the AP ensures the synchronization of
participating stations. Each TF can designate one or more
RUs for random access. The AP sets the association identifier
(AID) field in the transmitted TF to indicate the RA RUs
assigned to associated stations (AID = 0) and unassociated
stations (AID = 2045).

After the successful reception of a TF, stations contend
to access eligible RA RUs if they have pending data frames
destined to the AP. Each contending RA station maintains
two variables: OCW (initialized to OCWmin) and the OBO
counter (initialized with an integer randomly selected from
a uniform distribution from 0 to OCW). If the OBO counter
is smaller than the number of available RA RUs, a station
randomly selects one of the RUs for data transmission. Oth-
erwise, it decrements the OBO counter by the number of
eligible RUs and waits for the next TF.

In the event of an unsuccessful transmission, the station
retransmits as follows. First, the station updates its OCW
counter to 2×OCW+1 every time OCW ≤ OCWmax. Once
OCW = OCWmax, the OCW value remains unchanged
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TABLE 1: Literature review. Evaluation types: theoretical (T) and simulation (S).

Key UORA Enhancement Result Evaluation Type Year

[6]
Adaptive grouping scheme Improved throughput

T+S

2018

[7] 2019

[8] Spatial clustering Improved area throughput 2019

[9] Extra backoff stage, opportunistic sub-channel hopping Improved bandwidth utilization and reduced colli-
sions

2019

[10] Stations transmit without backoff with a complementary
probability after unsuccessful transmissions

Improved throughput, reduced packet delay 2019

[11] Hybrid OFDMA RA with carrier sensing, secondary backoff
mechanism

Improved throughput 2020

[12] Retransmission-aware channel access Reduced delay
S

2020

[13] New OBO control scheme Improved throughput 2021

[14] Grouping-based channel access Improved fairness and QoS T+S 2021

[2] Enhanced UORA backoff procedure Improved throughput, fairness, and delay S 2022

TABLE 2: Notation used

Parameter Description

α OBO countdown rate
at Agent action at step t
ϵ Exploration rate
ft, fpc Fairness of throughput and collision probability
γ Discount factor
ω Learning rate
OBO OFDMA random access backoff
OCW Current OFDMA contention window value
OCWmin(max) OCW minimum (maximum) values
nRU No. of RUs allocated for unassociated stations
peRU Probability of empty RUs
puRU Probability of unsuccessful RUs
pc Collision probability
Q Q value (quality of a state–action combination)
rt Agent reward at step t
rS , rU , rE Reward for successful, unsuccessful, and empty RUs
st Agent state at step t
t Time step (cf. Figure 2)
ζ Measuring interval (in contention rounds)

for subsequent retransmissions. The station then randomly
selects a new OBO value in the range of 0 and OCW.

The AP can indicate the OFDMA contention window
(OCW) range (i.e., OCWmin and OCWmax) in the UORA
Parameter Set element, which is a part of management frames
(such as beacons and association frames). Alternatively, sta-
tions use the default OCW settings, i.e., OCWmin = 7 and
OCWmax = 31.

III. UORA WITH EFFICIENT OBO
Recently, we proposed an UORA improvement called effi-
cient OBO (E-OBO), which exhibits good performance [2].
We briefly explain the operation of E-OBO in this section to
compare it later with RL-OBO in Section V-F.

In E-OBO, the AP changes the rate of station OBO count-
down based on the RU states observed in previous UORA
frame exchanges. We classify the RU states as successful (the
frame in the RU is acknowledged by the AP), unsuccessful

TABLE 3: List of acronyms

AID association identifier
AP access point
BACK block acknowledgement
CW contention window
DQL deep Q-learning
DQN deep Q network
E-OBO efficient OBO
GI guard interval
HE high efficiency
IoT Internet of Things
ML machine learning
MPDU MAC protocol data unit
MU multi-user
OBO OFDMA random access backoff
OCW OFDMA contention window
OFDMA orthogonal frequency-division multiple access
PPDU PLCP protocol data unit
RA random access
ReLU Rectified linear unit
RL reinforcement learning
RL-OBO RL-based OBO
RU resource unit
SA scheduled access
SIFS short interframe space
TB trigger-based
TF trigger frame
UL uplink
UORA uplink OFDMA-based random channel access

(more than one station selected the RU that resulted in a col-
lision), and empty (no station selected the RU). By observing
these states, the AP can determine whether congestion (many
unsuccessful RUs and few empty RUs) or nonsaturation (few
unsuccessful RUs and many empty RUs) conditions occur.
Then, the AP reacts by increasing or decreasing the rate of
OBO countdown with the α parameter, which is later passed
to the stations.

E-OBO is formally defined in Algorithm 2. The AP mea-
sures the probability of unsuccessful RUs (puRU) and empty
RUs (peRU) within a ζ interval and uses α ∈ [0.1, 3] to modify
OBO:

OBO ←− OBO − α× nRU. (1)
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Algorithm 2 E-OBO procedure
1: α← 1
2: Measuring interval: ζ contention rounds
3: if puRU ≥ 0.33 and peRU < 0.33 then α ← max(0.1, α −

0.1)
4: else if puRU ≤ 0.5 and peRU ≥ 0.5 then α ← min(3, α +

0.2)
5: else
6: α← α;
7: end if
8: AP sends α in the TF to inform stations of the level of

contention in the network.
9: Stations decrement their OBO counters by α × nRU and

select random RUs for transmission if OBO = 0.

By default, α = 1. Then, if puRU ≥ 0.33 and peRU < 0.33 (i.e.,
under congestion), the AP decreases α by 0.1. If puRU ≤ 0.5
and peRU ≥ 0.5 (i.e., under nonsaturation), the AP increases
α by 0.2. Otherwise, α remains unchanged. The selected
α is transmitted in TFs that initialize each UORA frame
exchange. Then, the stations decrement their OBO counters
using (1). The remainder of legacy UORA is left unchanged.

IV. RL-BASED OBO MECHANISM
In this section, we explain how UORA can be improved
with an RL-based OBO (RL-OBO) mechanism. In particu-
lar, we apply deep Q-learning (DQL) [18] to support IEEE
802.11ax2 APs in adjusting the α parameter to the conges-
tion level of the shared channel. Similarly to E-OBO, we
implement a centralized operation. Therefore, stations do not
decide on the α value but obtain this information from the
TFs transmitted by the AP before each contention round.

The implemented DQL model consists of three densely
connected layers. The first two layers are composed of 32
nodes and they use the rectified linear unit (ReLU) activation
functions. The output layer has three nodes (corresponding to
the size of the action space) and it uses the linear activation
function.

In RL-OBO, the agent is installed at the AP and learns
(in the offline training phase) how to update α to reduce
collisions under varying congestion levels. After training, the
agent can be used to adjust the α value in online operation.

In RL-OBO, at each training step, the agent observes the
probability of unsuccessful RUs in state st and selects an
action based on previous observations. The agent has three
possible actions to choose from:

• Action 1 – increase α, i.e., set the α parameter as
min(3, α+ 0.1),

• Action 2 – decrease α, i.e., set the α parameter as
max(0.1, α− 0.1),

• Action 3 – leave α unchanged.

2DQL has previously been successfully applied to improve IEEE 802.11
performance in various areas: rate selection [19], CW tuning [20]–[22],
multi-AP association [23], and RU selection in OFDMA [24].

Contention round
(UORA frame exchange, 

Fig. 1a)

Step

Episode

× z=10 (measuring 
interval)

× 2000 (training), 
1500 (testing)

FIGURE 2: UORA simulator elements for training and test-
ing RL-OBO.

After taking each action, the agent receives feedback in the
form of a reward rt and a new state st+1. Based on the above,
the state space is one-dimensional (it stores the probability
of unsuccessful transmission) and the action space is three-
dimensional (increase α, decrease α, or leave α unchanged).

We notice that a collision is less desirable than an empty
RU, since empty RUs may be the result of low congestion.
Obviously, a successful transmission is the most desirable
outcome. Therefore, the reward is decreased by rE = 1.5 in
the case of each empty RU, increased by rS = 3 in the case
of each successful RU, and decreased by rU = 2 in the case
of each unsuccessful RU. The motivation behind selecting
these particular values is given in Appendix A. Additionally,
Actions 1 and 2 result in decreasing the reward by 0.1 to
promote Action 3 whenever possible (i.e., leave α unchanged
if the performance is satisfactory).

The agent calculates the probability of unsuccessful RUs
as the fraction of the total number of unsuccessful RUs
divided by the sum of the number of successful, unsuccessful,
and empty RUs. Additionally, to limit the number of possible
states, the agent rounds the results to two decimal places.

At each step (composed of 10 contention rounds, as pre-
sented in Figure 2) in the training process, the agent stores
st, at, rt, st+1 and, after each action taken, updates the Q-
value:

Q′(st, at)←− Q(st, at)+ (2)
+ ω(rt + γ(max

a
Q(st+1, a))−Q(st, at))

where Q is the old and Q′ is the new Q-value. Furthermore,
we define the mean squared error as the loss function and use
the ϵ-greedy strategy to balance exploration and exploitation.

The exploration rate (ϵ) is set to 1 at the beginning of the
first episode. Then, with each time step, it anneals linearly
from 1 to 0.1 (with a decay of 0.995) to increase the probabil-
ity of exploitation. Additionally, at each time step, a random
number is generated from a uniform distribution over [0, 1).
The sampled value is then checked with the current ϵ value.
If it is lower, a random action is taken. Otherwise, the learned
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Algorithm 3 RL-OBO procedure

1: Train agent:
2: (1) For state st agent selects action at.
3: (2) AP sends α in TF to inform stations of network

contention level.
4: (3) Stations decrement OBO counters by α × nRU and

transmit in a randomly selected RU if OBO = 0.
5: (4) For a period of ζ contention rounds, the agent cal-

culates the reward as the sum of the results for each RU
i:

6: if Ri is successful then rt ← rt + rS
7: else if Ri is unsuccessful then rt ← rt − rU
8: else rt ← rt − rE ▷ Ri is empty
9: end if

10: (5) Agent calculates new state st+1 = puRU , stores
st, at, rt, st+1, and selects new action at+1.

11: (6) Update the reward after action selection
12: if at+1 ∈ {1, 2} then rt ← rt − 0.1
13: end if
14: Repeat steps 2-5 until training is finished, i.e., when the

reward stabilizes.
15: Use trained agent:
16: (1) AP sends α, selected by the trained agent, in the TF

to inform stations of the contention level in the network.
17: (2) Stations decrement their OBO counters by α × nRU

and transmit in a randomly selected RUs if OBO = 0.

TABLE 4: ML parameters

Parameter Value

Exploration rate ϵ 1
Epsilon minimum 0.01
Epsilon decay 0.995
Discount rate γ 0.95
Batch size 100
Learning rate ω 0.001
Maximum memory length 100,000
Action space size 3
State space size 1
No. of nodes in different layers 32, 32, 3
Activation function Rectified linear unit
Optimizer Adam
Loss function Mean squared error

action is performed. Therefore, initially, the agent starts
exploring the environment, and then it steadily increases
exploitation.

Table 4 summarizes all the parameters and settings of
the proposed machine learning model. The values of the
hyperparameters of the model were selected empirically (cf.
Appendix A) to provide good performance results.

In summary, the described model allows the AP to map
congestion levels (reflected by the number of empty, suc-
cessful, or unsuccessful RUs) to optimal α settings, which
are then announced to the stations in the TFs. The rest of
the legacy UORA operation is left unchanged. RL-OBO
operation is summarized in Algorithm 3.

V. RESULTS
To evaluate the performance of the two OBO selection
schemes, we implement both E-OBO and RL-OBO in a
custom 802.11ax UORA simulator. First, we provide details
regarding the simulator design. Then, we describe the simula-
tion scenario and define the performance metrics used. Next,
we explain the RL-OBO training process and show how the
trained agent performs in testing scenarios. Subsequently, we
show how E-OBO performs under similar network conditions
(such an analysis was not carried out previously [2]). Finally,
we compare the ML-based and heuristic solutions.

A. SIMULATOR
Our custom 802.11ax UORA simulator is written in Python,
with the RL parts written using Keras. Unfortunately, to the
best knowledge of the authors, there are no real devices
available with an UORA implementation, which would make
an experimental evaluation possible.

The implemented simulator analyzes consecutive 802.11ax
UORA frame exchange sequences (Figure 1a) called con-
tention rounds. Decisions about future behavior are made
after each measurement interval, i.e., ζ contention rounds.
In accordance with the ML nomenclature, we refer to these
intervals as steps and to each simulation run – as episodes
(Figure 2). The simulator code is available to the research
community3.

B. SIMULATION SCENARIO
We study a scenario with a single AP without outside inter-
ference. We assume there are no channel errors, no hidden
nodes, and that stations always have data frames to send
(a full buffer model). There are two main input parameters
that we modify in the analysis: the number of stations ns

and the number of RUs nRU. We refer to the (ns, nRU) pair
as the current network configuration. The former parameter
denotes the number of stations transmitting to the AP. This
number fluctuates over time as stations join and leave the
network. We evaluate both fixed changes in the number of
stations as well as random ones. In the latter case, the number
of stations arriving or departing is randomly chosen from
the ranges [1, 5], [1, 15], or [1, 30], which represents small,
moderate, and large network dynamicity, respectively. The
second network configuration parameter, the number of RUs,
is selected from the set {4, 8, 16, 32}. Since we are interested
in measuring upper-bound performance, we evaluate only
configurations in which the number of stations is greater than
the number of available RUs. Table 5 summarizes the general
simulation parameters.

C. PERFORMANCE METRICS
We consider the following performance metrics:

• throughput – measured as the sum of successfully trans-
mitted bytes divided by the simulation time (unless

3https://github.com/KatarzynaKosek/RL-UORA
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TABLE 5: Simulation parameters

Parameter Value

PHY/MAC 802.11ax
OCWmin 7
OCWmax 31
Number of RUs (nRU) 4, 8, 16, 32
Data rate per RU (r) 6.67 Mb/s
Slot time 9 µs
SIFS time 16 µs
PHY header duration 40 µs
TF duration 100 µs
MU-BACK duration 68 µs
MPDU length (L) 10 kb
Guard interval (GI) 1.6 µs
OFDM symbol duration 12.8 µs

TABLE 6: RL-OBO training and testing parameters

Parameter Value

No. of episodes 30 (training), 5 (testing)
No. of steps per episode 2000 (training), 1500 (testing)
Measuring interval ζ 10 contention rounds
Frequency of new station arrivals (i.e.,
change of the network configuration)

Every 100 steps

No. of network configurations 20 (training), 45 (testing)
rS 3
rU 2
rE 1.5

otherwise indicated, throughput refers to the aggregate
network throughput),

• efficiency – measured at the AP as the number of
successful RUs divided by the total number of RUs,

• collision probability – measured by each station as the
ratio of successfully transmitted data frames and all
transmission attempts (we report the average probability
across all stations),

• fairness – measured using Jain’s fairness index calcu-
lated either over the throughput or collision probability
of each station.

We do not measure airtime since we evaluate only AP-
triggered frame exchanges, i.e., the channel contains only
consecutive UORA frame exchanges (Figure 1a). How much
data is contained in these exchanges is reflected in the ef-
ficiency metric mentioned above. Furthermore, we are in-
terested in determining the upper bound of RL-OBO and
E-OBO performance, hence in some cases, the number of
stations varies up to a dense network of 90 stations.

D. RL-OBO PERFORMANCE

In this section, we first explain the RL-OBO training process,
which is performed in a scenario where the number of sta-
tions increases by a fixed number over time. Then, we show
how the trained agent performs in dynamic scenarios, where
the number of stations increases randomly over time. Table 6
provides the training and testing parameters for RL-OBO.

‐50

‐40

‐30

‐20

‐10

0

10

0 5 10 15 20 25 30

Re
w
ar
d

x1
00

0

Episode

FIGURE 3: Reward for RL-OBO across 30 training episodes.

0

0.5

1

1.5

2

2.5

3

3.5

0 500 1000 1500 2000



Step

FIGURE 4: Evolution of RL-OBO’s α in the final training
episode.

1) Training

In the training scenario, a fixed number of new transmitting
stations (five) arrive in the network every 100 steps. A single
step consists of ζ = 10 contention rounds, which gives the
agent time to estimate the congestion level in the network.
Additionally, every 500 steps we increase the number of
RUs (from 4 to 32) and the number of transmitting stations
is then set to 2 × nRU. Therefore, there are 20 (ns, nRU)
configurations in each training episode.

Simulations show that a training duration of 30 episodes
is sufficient; the reward stabilizes after about 10 episodes
(Figure 3). These results confirm the correct operation of the
implemented learning and its fast convergence.

The results for the final (30-th) training episode are shown
in Figures 4 and 5. RL-OBO allows UORA to adjust the α
parameter values to the number of contending stations and
the number of available RUs. This results in a moderately
high collision probability (pc), high network efficiency and
throughput, as well as high throughput fairness (ft) and high
collision probability fairness (fpc

).
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2) Testing

After training in fixed-increase scenarios, we test the oper-
ation of RL-OBO in three scenarios with varying network
dynamics. We select the number of new station arrivals
randomly from the ranges [1, 5], [1, 15], and [1, 30] to reflect
small, moderate, and high network dynamicity, respectively.
Additionally, starting from step 1100, stations start leaving
the network. The number of stations leaving the network is
again randomly selected from the ranges [1, 5], [1, 15], and
[1, 30], respectively. We also set the minimum number of
stations as ns = nRU, because if the number of stations is
less than the number of available RUs, the resources would
be underutilized, leading to low observed efficiency. All other
aspects are similar to the training phase.

For each of the three network dynamicity scenarios, we
perform five independent runs (episodes), each composed of
1500 testing steps in total (i.e., for each episode 15 different
network configurations are tested). These settings amount to
45 different network configurations per episode (3 network
dynamics × 15 configurations). The following metrics are
measured: network efficiency, throughput, throughput fair-
ness (ft), and collision probability fairness (fpc )

In Figure 6, we present the average results of the five
testing episodes. Each point represents the results obtained
for a different configuration. The performance of RL-OBO
is highly satisfactory. For all measured metrics, the observa-
tions are similar to those for the training scenario.

E. E-OBO PERFORMANCE
To measure E-OBO performance4, which serves as a non-
ML benchmark, we use the parameters in Tables 5 and 7.
First, we test E-OBO under constant changes to the number
of transmitting stations, i.e., every 100 steps five new stations
appear in the network, similarly to the RL-OBO training
scenario. E-OBO allows UORA to adjust its operation to the

4In [2], E-OBO was shown to outperform OBO-CTRL [13]. However, E-
OBO was not previously analyzed for such dynamic scenarios; the results
presented in this section are novel and are provided for completeness.
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FIGURE 6: RL-OBO performance (the average of five test-
ing episodes) for three dynamic test scenarios (small, mod-
erate, and large network dynamicity). Results are gathered at
the end of the measuring interval ζ. The number of stations
arriving or departing (since step 1100) is randomly chosen
from the ranges [1, 5], [1, 15], and [1, 30], for the three sce-
narios respectively.

TABLE 7: Simulation parameters for E-OBO

Parameter Value

Measuring interval ζ 10 contention rounds
Frequency of new station arrivals (i.e.,
change of the network configuration)

Every 100 steps

No. of steps per scenario 2000 (fixed), 1500 (dynamic)
No. of network configurations 20 (fixed),

45 (dynamic)
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FIGURE 7: E-OBO performance in fixed scenarios.

number of competing stations, resulting in high values of the
five measured metrics (Figure 7).

Next, we test E-OBO under more varying conditions, with
low, moderate, and high network dynamicity. To ensure a fair
comparison, we use a configuration similar to the RL-OBO
dynamic case: the number of active stations in the network
changes every 100 steps, while the analysis of each of the
three network dynamics lasts 1500 steps (after which the
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FIGURE 8: E-OBO performance in dynamic scenarios
(small, moderate, and large network dynamicity). Results are
gathered at the end of the measuring interval ζ.

number of stations and RUs is reset to four). Finally, we
change the number of RUs every 500 steps to check the
performance under different contention levels5. The results
are shown in Figure 8. Once again, E-OBO allows UORA
to quickly adjust to the number of competing stations and
maintain high throughput, efficiency, throughput fairness,
and collision probability fairness.

F. RL-OBO VS. E-OBO
We now compare the performance of RL-OBO with E-OBO.
Figure 9 shows the final performance metrics for each con-
figuration (i.e., the converged results at the end of a multiple
of 100 steps). In general, both mechanisms perform compa-
rably under low, moderate, and high dynamicity. Analyzing
the performance in detail reveals the following. Although
both methods have high throughput and collision probability
fairness, E-OBO has more stable results. For RL-OBO, espe-
cially throughput fairness shows temporary decreases when
the trend in the number of stations changes from increasing
to decreasing. However, fairness remains high (above 0.9).
Meanwhile, RL-OBO usually has a slightly lower collision
probability. This translates to efficiency – lower (if there are
too many empty RUs, i.e., the RL-OBO mechanism is too
conservative) or higher (if the prediction of current network
conditions is correct). However, the throughput values of
both mechanisms are comparable as both adapt to changing
network conditions quite well. To better highlight the similar-
ities between the measured metric values, we compare the E-
OBO and RL-OBO throughput results in fixed and dynamic
scenarios in Figure 10. Clearly, regardless of supply (number
of RUs) and demand (number of stations), both methods lead
to comparable results.

5Congestion decreases with the same number of stations and an increasing
number of available RUs.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

10

20

30

40

50

60

70

80

90

1 5 9 13 17 21 25 29 33 37 41 45

Ef
fic

ie
nc
y/
p c
/f

t/
f p

c

N
o.
 o
f S

TA
s/
N
o.
 o
f R

U
s/
Th

ro
ug

hp
ut
 [M

b/
s]

Configuration

no. of STAs no. of RUs throughput efficiency pc ft fpc

(a)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0

10

20

30

40

50

60

70

80

90

1 5 9 13 17 21 25 29 33 37 41 45

Ef
fic

ie
nc
y/
p c
/f

t/
f p

c

N
o.
 o
f S

TA
s/
N
o.
 o
f R

U
s/
Th

ro
ug

hp
ut
 [M

b/
s]

Configuration

no. of STAs no of RUs throughput efficiency pc ft fpc

(b)

FIGURE 9: Performance for dynamic change of the number
of transmitting stations at the end of a multiple of 100
steps: (a) E-OBO, (b) RL-OBO (the average of five testing
episodes).

VI. CONCLUSION

In this paper, we addressed the problem of low UORA
efficiency in dense 802.11ax deployments with high station
contention. We have shown that ML can be used to improve
the performance of the OBO mechanism, an important part
of UORA. Furthermore, we compared the performance of the
new RL-OBO mechanism with the E-OBO heuristic, which
does not implement ML. The simulation results confirm that
the proposed approach gives satisfactory results in various
dynamic settings; however, when compared to E-OBO, RL-
OBO does not provide meaningful advantages. Both mech-
anisms provide similar outcomes (i.e., throughput, channel
access fairness, efficiency) and, therefore, the need for RL-
OBO training and appropriate configuration of ML-related
hyperparameters becomes a disadvantage. The selection of
hyperparameters needs to be done carefully (e.g., empirically
with a grid search approach), since different values may lead
to completely different (and often worse) results. In contrast,
E-OBO adjusts the α parameter on the fly using predefined
thresholds. In summary, the result of the assessment of
whether the ML-based solution (RL-OBO) outperforms a
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FIGURE 10: Comparison of E-OBO and RL-OBO perfor-
mance in (a) fixed increase and (b) dynamic increase scenar-
ios.

heuristic (E-OBO) can be interpreted as negative.
We conclude that ML should be used with care to resolve

existing network problems. Although ML may provide satis-
factory results, its application in a given area should be well
thought out. As we have shown, in the case of UORA, the
non-ML-based solution is already efficient, and the use of
ML does not bring important advantages. At the same time,
ML may be useful in distinguishing between collisions and
channel errors [25] to improve the efficiency of E-OBO in
more complex scenarios, e.g., with time-sensitive services
[26]. However, this requires further validation. Furthermore,
as future work, we envision the analysis of UORA in a full-
protocol stack simulator such as ns-3.
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APPENDIX A REWARD PARAMETER CALCULATION
In this appendix, we provide the rationale for selecting the
constant values used by the proposed RL-OBO procedure
when updating the reward. First, recall that in lines 6-8 of
Algorithm 3, the agent’s reward at step t (rt) is increased
by rS , decreased by rU , or decreased by rE in case of
successful, unsuccessful, and empty RUs, respectively.

To find good parameter settings, we simulate different
congestion levels with the network configurations listed in
Table 8. Then we perform model training (each training
consisting of 15 episodes), in which rS = 3 while rU and
rE are changed linearly from 1 to 3 with a step of 0.5.

The results are presented in Figure 11 in the form of
boxplots of the performance metrics achieved in the final
training round. In this figure, we also define thresholds for
each metric to better visualize the performance of each set of
parameters.

We conclude that the chosen set (rS , rU , rE) = (3, 2, 1.5)
exhibits the best performance, i.e., the first (third) quar-
tiles are above (below) the defined thresholds. In addition,
(3, 1.5, 1.5) and (3, 1.5, 1) exhibit similar good performance
but have slightly larger delay.

TABLE 8: Network configurations used to compare the per-
formance of various reward parameter values.

Conf. nS nRU

1 4 4
2 9 4
4 14 4
6 19 4
3 24 4
5 16 8
7 21 8
8 26 8
10 31 8
9 36 8
11 32 16
12 37 16
13 42 16
14 47 16
15 52 16
16 64 32
17 69 32
18 74 32
19 79 32
20 84 32
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(c) Collision probability fairness
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(d) Delay

FIGURE 11: Training results for various combinations of rS , rU , and rE values. The combination used in the simulation results
presented in the paper is highlighted on the X-axis in red. The horizontal dashed lines indicate arbitrary performance thresholds:
efficiency should be larger than 0.3, throughput fairness – larger than 0.98, collision probability fairness – larger than 0.995,
and delay – lower than 0.2 s.
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