
Hybrid Vehicular and Cloud Distributed Computing:
A Case for Cooperative Perception

Enes Krijestorac∗, Agon Memedi∗‡, Takamasa Higuchi†, Seyhan Ucar†, Onur Altintas†, Danijela Cabric∗
∗Electrical and Computer Engineering Department, University of California, Los Angeles, USA
‡Heinz Nixdorf Institute and Dept. of Computer Science, Paderborn University, Germany

enesk@ucla.com, memedi@ccs-labs.org, danijela@ee.ucla.edu
†InfoTech Labs, Toyota Motor North America R&D, Mountain View, California, USA

{takamasa.higuchi, seyhan.ucar, onur.altintas}@toyota.com

Abstract—Computationally demanding and time-sensitive ve-
hicular applications are often bottlenecked by the computing
power of individual vehicles. In this work, we propose the
use of hybrid offloading of computing tasks simultaneously to
edge servers (vertical offloading) via LTE communication and
to nearby cars (horizontal offloading) via V2V communication,
in order to increase the rate at which tasks are processed
compared to localized processing. Our main contribution is an
optimized resource assignment and scheduling framework for
hybrid offloading of computing tasks. The framework optimally
utilizes the computational resources in the edge and in the micro
cloud, while taking into account communication constraints and
task requirements. While cooperative perception is the primary
use case of our framework, the framework is applicable to
other cooperative vehicular applications with high computing
demand and significant transmission overhead. The framework
is tested in a simulated environment built on top of car traces and
communication rates exported from the Veins vehicular networks
simulator. We observe a significant increase in the processing
rate of sensor frames when hybrid offloading with optimized
resource assignment is adopted. Furthermore, the processing rate
increases with V2V connectivity as more computing tasks can
be offloaded horizontally.

Index Terms—cooperative vehicular perception, distributed
computing, V2V.

I. INTRODUCTION

TOGETHER with the advances in artificial intelligence,
new developments in sensing technology are necessary

to achieve autonomous driving systems that surpass human
capabilities. Cooperative vehicular perception systems seek to
expand a vehicle’s field of view by enabling cars to share the
data from their environment perception sensors via wireless
communication and thereby allowing vehicles to achieve a
global view of the traffic environment. However, granted a
high speed wireless communication channel, experimental im-
plementation studies of cooperative perception systems report
that the main bottleneck in the frame rate at which cooperative
perception systems can operate is the vehicular computational
power [1].

Cooperative perception and similar computationally de-
manding and time-sensitive vehicular applications can benefit
from additional computing power. The limited amount of com-
puting resources in individual cars can be supplemented by
leveraging the computing resources in the edge and in neigh-
boring vehicles. Edge computing is a promising paradigm

where computing resources are placed in close proximity of
end users, which are usually mobile. Vehicles can offload
some of the computational tasks to edge servers which they
can reach via an LTE connection. The results of the processed
tasks can then be sent back from the edge servers to the
interested cars on the road. We refer to this type of offloading
as vertical offloading. The vehicle cloudification framework,
a paradigm that involves forming virtual cloud servers from
vehicles in proximity of each other on the road, can enable
horizontal offloading. In horizontal offloading, the computing
resources and the coordination of the vehicular micro cloud
can be utilized for task offloading via V2V communication.
The feasibility of forming stable vehicular micro clouds on
the road has been confirmed in [2].

In addition to the rate at which sensor frames are processed,
there are other considerations that need to be made when it
comes to cooperative perception systems. Firstly, the process-
ing delay of a frame must not be too long, otherwise the
processing results would be out of date relative to the actual
state of the traffic environment. When offloading tasks, the
processing delay includes data frame transmission delay and
computing delay. Secondly, we need to assume that there is a
limit on the amount of data that can be transmitted over the
cellular and V2V links. For the cellular data exchange, the
practical reason for this is that there is normally a monetary
cost related to the utilization of the cellular link and that there
might also be a limit on how much the cellular providers
will allow the network to be loaded by the transmission of
vehicular perception data, since it could negatively impact the
quality of service for other cellular users. Likewise, there is
a practical limit on how much data transfer can occur over
V2V links, since the data transfer of cooperative perception
data could cause congestion and disrupt other services that
rely on the shared V2V channel.

Approaches to offloading of vehicular computing tasks to
the edge or to the nearby cars have been proposed in the
literature before. A framework for task allocation in horizontal
offloading was proposed in [3]. However, in this work, the
delay due to transmission of the computing task data has not
been considered, therefore this particular framework cannot
be applied on cooperative perception or other computing tasks
that would have a large transmission overhead when offloaded.

Cellular
Base Station

SendersWorkersReceiver

Edge
server

Vertical
offloading

Horizontal
offloading

Frame Output

Output
Frame

Fig. 1: Overview of the system model.

Another comprehensive framework for task offloading was
developed in [4]. While [4] considers the data transfer of
computing tasks, it focuses only on horizontal task offloading.
A mechanism for both horizontal and vertical task offloading
was proposed in [5]. While the system proposed in [5] could
in theory be applied to cooperative perception or other data
intensive computing tasks, it does not give any consideration
to cellular/V2V traffic overhead limitations.

In this paper, we propose hybrid horizontal and vertical
offloading of time-sensitive cooperative perception computing
tasks with the goal of increasing the rate at which these
tasks are processed. We design a resource allocation and task
scheduling algorithm that maximizes the rate at which tasks
are processed, while considering the limits on the amount of
data that can be transferred, the delay constraints and the rate
at which data frames can be transmitted.

II. SYSTEM MODEL

In this section, we describe the model of vehicular micro
cloud and edge computing resources and the model of com-
puting tasks for cooperative perception used in the remainder
of this paper.

A. Vehicular and edge computing resources

We consider a segment of a road or an intersection occupied
by a set of cars C, as illustrated in Fig. 1. A subset of cars
S ∈ C act as senders sharing their sensor data with other
vehicles on the road. Each sender has a receiver set of cars
Rs ∈ C, ∀s ∈ S, interested in the data from the senders.
We assume that all senders and receivers are V2V capable.
Furthermore, the senders and receivers, together with other
V2V capable cars form a stationary vehicular micro cloud C′.
A stationary micro cloud is formed by cars that are present in
particular fixed geographical area [6]. The cars can enter and
exit the area at any time and therefore the set C′ changes over
time. On the other hand, the set of edge servers is constant
over time.

Senders and receivers can connect to a set of edge servers
B via LTE connection through the nearby base stations (BSs).
While we assume that all cars have cellular communications
capability, only a fraction of the vehicles is capable of V2V
communication based on the current trends in car industry.

We define a set of worker nodesW ∈ B∪C′ among the cars
in the vehicular micro cloud and the edge servers that can be
utilized for offloading the processing perception frames from
the senders. The cars that take on the role of workers have

computing resources available that can be used for processing
of cooperative perception frames. We assume that there exist
some form of incentive mechanism or agreement between
car manufacturers that would lead to sharing of computing
resources and sensor data between cars. The sets S, W
and R1, ...,R|S| can be overlapping, i.e., the cars may have
multiple roles from amongst the sender, receiver and worker
role at the same time.

We denote the computational power, measured in Hz, of a
node i (either a car or an edge server) as Fi. Furthermore, we
denote the communication rate between two nodes, i and j,
as Ri,j . We use an indicator variable DLTE

i,j ∈ {0, 1}, that is
equal to 1 if communication between nodes i and j is cellular,
i.e. one node of the nodes is a car and other is an edge server.
Another indicator variable, DV2V

i,j ∈ {0, 1}, is used to capture
whether the communication between the nodes i and j is V2V,
i.e., both of the nodes are vehicles. Only DV2V

i,j or only DLTE
i,j

can be equal to 1 for any given pair of nodes.

B. Computing tasks for cooperative perception

A cooperative perception system relies on a variety of
computing tasks that need to be performed before the sensor
data from the senders can become useful to the receivers.
Depending on the type of the sensor data, there are different
types of computing tasks that might need to be performed.
For example, on 3D data, generated by radar or lidar, feature
extraction and localization needs to be performed using si-
multaneous localization and mapping (SLAM) algorithms at
either the sender (the source of sensor data) or receiver cars
(cars interested in the information provided by the sender).
For image data, the computing tasks include feature detection
and perspective transformation. We describe a computing task
l by a tuple of parameters Sl = {dl, cl, sl,Rl, tl, τl}, where:
• dl is the data size of the sensor frame to be processed
• cl is the computational load measured in CPU cycles per

second
• sl is the source sender of the task
• Rl is the set of receiver nodes that are interested in

receiving the output of the task
• tl is the time instance when the sensor frame is captured
• τl is the maximum delay. The delay is measured from tl

until the task is processed and its output delivered to the
receiver

We assume that every task l belongs to a particular task
type (TT) k ∈ {1, ...,K} that has a unique set of parame-
ters Ak = {dk, ck, sk,Rk, τk}. Therefore, for every task l,
{dl, cl, sl,Rl, τl} ∈ {Ak : k = 1, ...,K}. For example, a TT
can be feature extraction on a 3D point cloud coming from
a particular sender sk, with a delay tolerance τk, input frame
size dl and a receiver set Rk. Computationally demanding
tasks can create a bottleneck in how many frames per second
can be processed and shared between the sender and receiver
cars. Assuming that computation is the bottleneck, the senders
will generate sensor frames at the rate at which they can be
processed. The sensor generation rate determines a TT arrival
rate, and therefore task arrival time.

III. PROPOSED FRAMEWORK

In this section, we propose an optimization framework
for offloading of vehicular computing tasks to the edge and
the vehicular micro cloud. The objective is to maximize
the rate at which computing tasks are performed on sensor
frames, which determines the rate at which the cooperative
perception systems can operate. The optimization is done in
a centralized manner. We assume that one of the cars in the
vehicular micro cloud or one of the edge servers performs
the resource assignment and task scheduling based on the
knowledge of computing demands and communication and
computation resources of other cars and edge servers.

Since the state of a traffic scenario changes over time,
the offloading decisions need to be updated periodically.
Our algorithm is applied periodically at interval T . At the
beginning of each period, there is a demand for completion
of certain set of TTs, {Ak : k = 1, ...,K}.

We maximize the number of tasks/frames of all TTs that
are processed over the next period T . Our algorithm is a two
step algorithm. In the first step, we assign the computation
resources {Fw : w ∈ W} and communication resources
{Ri,j : i, j ∈ C ∪ B, i 6= j} to particular TTs. The
resource assignment determines how many tasks of each TT
will be processed at each individual worker. Assuming that
computation is the bottleneck, the senders will generate data
frames to meet the achieved processing rate. In the second
stage, we schedule data frame/task generation and assign
where each task is processed since several workers may be
processing the tasks of the same type.

A. Resource assignment

We pose the resource assignment problem as a non-linear
optimization problem and then approximate it as a mixed inte-
ger linear optimization problem that can be solved efficiently.

In the resource assignment stage, we solve for three opti-
mization variables:
• Xk,w ∈ [0, 1] ∀k,w, that determines the share of comput-

ing resources allocated by each worker w for completion
of tasks of type k

• Y LTE
s,k,w ∈ [0, 1] ∀s, k, w, that determines the share of time

resources the sender s will spend on the transmission of
data frames of TT k to worker w via cellular network

• Y V2V
s,k,w ∈ [0, 1], that, similarly to Y LTE

s,k,w, determines the
allocation of V2V communication resources.

The delay of processing a task of a certain type k needs
to be less than τk. We assume that only two types of delay
are significant: the delay of transmitting the data frame to
the worker if a task computation is offloaded and the delay of
task processing. The maximum rate of transmission between a
sender of TT k, sk, and a worker wk is Rsk,w. However, given
that the sender only spends a fraction of period T , Ysk,k,w,
transmitting that particular TT to worker w, the effective rate
of transmission is Rsk,wYsk,k,w. The delay of transmitting a
data frame of a task of type k to worker w is dk

Rsk,wYsk,k,w
.

The delay of processing a task at worker w is ck
FwXk,w

, where

FwXk,w is the effective computing rate of a TT k at w.
We define the resource assignment problem as a non-linear
program:

max
Xk,w,Y LTE

s,k,w,Y V2V
s,k,w

∑
k

∑
w

⌊
TFwXk,w

ck

⌋
(P1)

s.t.

dk

⌊
TFwXk,w

ck

⌋
≤ TRsk,w

(
DLTE

sk,w
Y LTE
sk,k,w

+

DV 2V
sk,w

Y V 2V
sk,k,w

)
(C1)

∑
k

∑
w

DLTE
sk,w

dk

⌊
TFwXk,w

ck

⌋
≤ ULTET (C2)

∑
k

∑
w

DV 2V
sk,w

dk

⌊
FwXk,w

ck

⌋
≤ UV2VT (C3)

dk
Rsk,wY

V 2V
sk,k,w

+
ck

FwXk,w
≤ τk if Xk,w 6= 0 and DV 2V

sk,w
= 1

(C4)

dk
Rsk,wY

LTE
sk,k,w

+
ck

FwXk,w
≤ τk if Xk,w 6= 0 and DLTE

sk,w
= 1

(C5)

∑
k

Xk,w ≤ 1,
∑
w

∑
k

Y LTE
sk,k,w

≤ 1,
∑
w

∑
k

Y V 2V
sk,k,w

≤ 1

(C6, C7, C8)
The objective function counts the total number of tasks or

data frames that will be processed over the current period
T . The floor function b·c rounds its argument down to the
nearest integer, since only the whole number of tasks that are
processed is important. The Constraint (C1) is applied per
each TT k and it limits the rate at which data frames can be
transmitted by the effective communication rate Rsk,wY

LTE
sk,k,w

if the communication is cellular or the rate Rsk,wY
V 2V
sk,k,w

if the
communication is V2V. The Constraint (C2) limits the amount
of data transmitted through the cellular network by an upper
bound ULTET and the Constraint (C3) limits the amount of
data transmitted through V2V by an uppper bound UV2VT .
The parameters ULTE and UV2V are defined by the operator
of the system to precisely limit the amount of LTE and V2V
traffic. The constraints (C4) and (C5), applied per each TT k,
are the delay constraints and they only need to be satisfied
for workers w that process tasks of type k, i.e., Xk,w 6= 0.
The delay constraint (C4) applies to data frames that are
transmitted via V2V communication and the delay constraint
(C5) applies to transmissions that occur over cellular. The
Constraint (C6) is applied per each worker and ensures that
shares of all computing resources per worker add up to one.
Similarly, the constraints (C7) and (C8) are applied per each
unique sender s and they ensure that the shares of transmission
time per sender add up to 1.

To the best of authors’ knowledge, the optimization problem
we arrive at cannot be readily solved by any standard opti-
mization techniques, therefore we linearize it by making the
necessary approximations. Moreover, linearizing the problem
normally means that the problem can be solved faster. Once
the optimization problem is linearized, it can be readily solved
with using any mixed integer linear programming solver.

Linearization of the optimization problem: A non-linear ex-
pression that appears several times in our problem formulation
is
⌊
TFwXk,w

ck

⌋
. To approximate this expression by a linear

function, we introduce an integer variable Vk,w ∈ Z+. We
add two additional constraint sets:

Vk,w ≤
TFwXk,w

ck

TFwXk,w

ck
− 0.999 ≤ Vk,w

We then replace the expression
⌊
TFwXk,w

ck

⌋
by the variable

Vk,w everywhere in problem formulation.
Next, we linearize the delay constraints (C4) and (C5). We

introduce a set of helper constants α(n) = n/N , for n =
0, ..., N , where N is a positive integer hyperparameter. We
also introduce a set of helper binary variables U (n)

k,w ∈ Z2,
∀n, k, w. To simplify the exposition, we only show how one
of the delay constraints can be linearized. To accomplish our
goal, we introduce the following constraints that will replace
the delay constraint(

1− U (n)
k,w

)
− α(n)τk

Fw

ck
Xk,w ≤ 0 ∀n

(
1− U (n)

k,w

)
−
(
1− α(n)

)
τk
Rsk,w

dink
Y LTE
sk,k,w

≤ 0 ∀n

U
(1)
k,w + U

(2)
k,w + · · ·+ U

(N)
k,w ≤ N − I(Xk,w > 0)

where I(Xk,w > 0) is the indicator function equal to 1 if
Xk,w > 0 and 0 otherwise. This indicator function can easily
be linearized using the same approach as with the expression⌊
TFwXk,w

ck

⌋
. The greater the value of hyperparameter N

selected, the more accurate our approximation becomes.

B. Task scheduling

The resource assignment determines how many tasks will
be processed by each worker over the current period T .
Given Xk,w, the number of tasks of type k processed by
worker w is Mk,w =

⌊
TFwXk,w

ck

⌋
and the total number of

tasks of type k that will be processed is Lk =
∑

wMk,w.
Given that workers can process Lk tasks of a particular TT k
and assuming that that the computation is the bottleneck, the
arrival rate of sensor frames and, hence, the tasks will meet the
processing rate. Expressed mathematically, the arrival times
of tasks l = 1, ..., Lk are tl = (tl−1)T

Lk
. The assignment of

tasks to workers is performed using a heuristic policy. We
use a round-robin assignment algorithm that we empirically
established to minimize the queuing delays in transmission

queue at the sender and the processing queue at the worker.
Let Zl,w ∈ Z2 be an assignment variable equal to 1 if the
task l is assigned to worker w and 0 otherwise. The heuristic
round robin assignment policy is described in the pseudo-
code below: The policy is applied per each TT separately.

Algorithm 1: Round-robin task assignment for a TT
k

Result: Zl,w

Zl,w ← 0 ∀w ∈ W,∀l = 1, ..., Lk

Mk,w ←
⌊
TFwXk,w

ck

⌋
∀w ∈ W

Lk ←
∑

wMk,w

l← 0
while l < Lk do

for w ∈ W do
if Mk,w 6= 0 then

Zl,w ← 1
Mk,w ←Mk,w − 1
l← l + 1

end
end

end

The algorithm continuously loops over each of the workers
that are sorted randomly and assigns each of the Lk tasks
to one worker in each loop iteration unless that worker has
already been assigned Mk,w tasks. The looping over workers
ends once all Lk tasks have been assigned.

IV. SIMULATION RESULTS

In this section, we analyze the performance of the proposed
approach for horizontal and vertical computing offloading for
cooperative perception in a simulated traffic environment. We
simulate an intersection in the Luxembourg SUMO traffic
(LuST) scenario [7]. The simulated intersection is located at
49°36’34.7”N, 6°07’09.7”E and the micro cloud area radius
is 150 m. We assume that all V2V capable cars that enter the
circular area become members of the vehicular micro cloud.
The traffic is simulated for one hour between 8 AM and 9
AM.

A share ηS of cars in the micro cloud are randomly selected
to be senders and a share ηR are randomly selected to be
receivers. We assume that all senders have the same receivers.
All the cars in the micro cloud, including the senders, together
with one edge server form the set of workers.

In the LUST scenario, using Veins [8], we simulate the cars
broadcasting beaconing signals three times per second, which
we use to estimate the signal to noise plus interference ratio
(SINR) between cars in the area. The SINR is mapped to
DSRC communication rates based on the mappings reported
in [9]. The communication rate to the edge server is modeled
as a Gaussian random variable N (µR, σR). The computing
power of sender cars is µ(1)

C . From the remaining cars in the
micro cloud, 70% also have the computing power µ(1)

C while
the remainder of the cars have the computing power µ(2)

C ,

TABLE I: Computing and communications resources and
parameters used in simulations

Parameter Value Parameter Value

T 1 s ηR 0.2

[µ
(1)
C , µ

(2)
C , µ

(3)
C] [1 5 10] GHz N ′ 30

µR 50 Mb/s σR 5 Mb/s

ηS 0.2 UV2V ∞
ULTE 24 Mb/s

TABLE II: Parameter of image and point cloud processing
tasks used in simulations

Parameter ck dk τk

Image 1E9 20 KB 0.6 s

Point cloud 2E8 400 KB 0.6 s

where µ(2)
C > µ

(1)
C . The computation power µ(2)

C corresponds
to high-end vehicles that have abundant computation power
compared to regular vehicles. Finally, the computing power
of the edge server is µ(3)

C .
We assume that there is one TT per sender per each

optimization period and that all of the TTs have the parameters
dk, ck and τk in common. We obtain a reference for the
values of these parameters from some reported traces of
computer vision computing tasks [10]. The simulations are
performed for two generic types of computing tasks, one
representing image processing tasks such as edge detection,
and one representing radar point cloud processing tasks such
as a SLAM operation. The point cloud type has a higher
computational load ck than the image type but a lower data
size dk. The values of parameters used in simulations are given
in Tables I and II.

As a benchmark for our resource assignment algorithm,
we use random resource assignment. With random resource
assignment, all senders are assigned to process their own
TTs and each of the remaining workers and the edge servers
are randomly assigned to a TT at maximum capacity. The
transmission resources Ysk,k,w at each sender are equally split
across the workers that process its TTs. Naturally, with this
random assignment approach we cannot guarantee that the
constraints (C1-C5) will be satisfied.

A. Image processing

We first analyze and compare the offloading approaches for
image processing tasks. The performance metric is the number
of tasks per second per sender that can be processed without
exceeding the maximum delay for this task. The results are
shown in Fig. 2. with a limit ULTE = 24 MB/s on the amount
of LTE transmissions and without any limit on LTE traffic.

The LTE uplink limit can restrict the number of tasks that
can be offloaded to the edge over a period T . The results in
Fig. 2a demonstrate what the performance may look like if the
uplink limit becomes the bottleneck. Vertical offloading does
not provide a significant benefit in terms of the processing
rate. However, horizontal offloading with the help of vertical
offloading (hybrid offloading) can still double the processing

0.0 0.2 0.4 0.6 0.8 1.0
V2V penetration

0

1

2

3

4

5

6

7

P
ro

ce
ss

in
g

ra
te

(t
as

ks
/s

/s
en

de
r)

Hybrid

Hybrid random

Vertical

No offloading

(a) With LTE cap

0.0 0.2 0.4 0.6 0.8 1.0
V2V penetration

0

2

4

6

8

10

12

P
ro

ce
ss

in
g

ra
te

(t
as

ks
/s

/s
en

de
r)

Hybrid

Hybrid random

Vertical

No offloading

(b) Without LTE cap

Fig. 2: The processing rate of image tasks.

0.0 0.2 0.4 0.6 0.8 1.0
V2V penetration

0.0

0.2

0.4

0.6

0.8

1.0

D
el

ay
(s

)

Hybrid

Hybrid - TX

Hybrid random

Hybrid random - TX

Vertical

Vertical - TX

No offloading

No offloading - TX

Fig. 3: The average processing delay, which consists of
transmit and computing delay, for image tasks. The transmit
delay is represented by the dotted line.

rate compared to the case of no offloading. The number of
tasks processed by horizontal offloading is unaffected by the
LTE cap but it does depend on the V2V penetration defined
as the share of cars other than senders and receivers that are
equipped for V2V communication and hence able to serve
as workers. Without an LTE data transmission limit, vertical
offloading doubles the processing rate on its own. However,
this scenario is unrealistic as it does not recognize the financial
cost that can be incurred due to LTE upload.

We observe that with hybrid offloading and random as-
signment the system resources are underutilized, and the
performance only slightly increases with higher penetration.
When tasks are offloaded to randomly selected vehicles, the
communication rate to the selected vehicles may not always be
sufficient to deliver the frames fast enough and so less frames
are successfully processed. However, we should note that this
is not a one-to-one comparison to our algorithm since with
random assignment the uplink limit constraint is not always
satisfied, which is why with no V2V penetration the random
assignment seemingly performs better in Fig. 2a.

We also analyze how offloading affects the average delay
of the processing of the frames. The results are shown in Fig.
3 for the case with an LTE traffic limit. The delay consists
of transmission delay to the processor, if a task is offloaded,
and the compute delay at the processor. We assume that the
transmission delay of the output results is negligible. The
average transmission delay of hybrid offloading is higher than
that of vertical offloading because a DSRC connection, which

0.0 0.2 0.4 0.6 0.8 1.0
V2V penetration

0

2

4

6

8

10

12

P
ro

ce
ss

in
g

ra
te

(t
as

ks
/s

/s
en

de
r)

Hybrid

Hybrid random

Vertical

No offloading

Fig. 4: The processing rate of point cloud tasks.

is utilized for horizontal offloading, has a lower rate than an
LTE connection. The transmission delay increases with V2V
penetration since larger share of tasks is offloaded horizontally
therefore the average transmission delay is larger. The average
compute delay (the transmission delay subtracted from the
total delay) moderately decreases with V2V penetration since
some tasks are being offloaded to the high-end vehicles. Over-
all, offloading image tasks is only suitable in the scenarios
where it is acceptable to incur an additional processing delay
in order to achieve a higher rate.

With random assignment, the transmission delay is very
significant because data frames spend extensive amount of
time in the transmission queue since the transmission rate
cannot satisfy the scheduled rate, i.e. the constraint (C1) is
not satisfied.

B. Point cloud processing

The processing rate for point cloud tasks is shown in Fig.
4. Since the data size of point cloud frames is small, the LTE
traffic is already below the cap that we set, and it does not have
an impact on the processing rate. Vertical offloading increases
the processing rate by around 100% in our scenario. Since
the transmission overhead is smaller than that of image tasks,
large gains are possible thanks to horizontal offloading and,
overall, multiple-fold gain is obtained with hybrid offloading.
Point cloud tasks lend themselves much better to offloading
compared to image tasks. This is further supported by the
delay profiles shown in Fig. 5. Since the compute load of
point cloud tasks is significantly larger than that of the image
tasks, their processing delay can be significantly reduced by
offloading them to more powerful processors. Indeed, we
observe a significant decrease in the processing delay with
both vertical and hybrid offloading in Fig. 5. due to offloading
to the edge server and to the powerful high-end cars. Overall,
offloading of point cloud tasks increases the processing rate
while decreasing the processing delay.

V. CONCLUSIONS

One of the main barriers in achieving cooperative percep-
tion information exchange is the limited computing power
available to individual cars. In these and other vehicular
computing-intensive applications, the processing rate can be
increased by offloading the computing to the local edge

0.0 0.2 0.4 0.6 0.8 1.0
V2V penetration

0.0

0.2

0.4

0.6

0.8

D
el

ay
(s

)

Hybrid

Hybrid - TX

Hybrid random

Hybrid random - TX

Vertical

Vertical - TX

No offloading

No offloading - TX

Fig. 5: The average processing delay, which consists of
transmit and computing delay, for point cloud tasks.

servers (vertical offloading) and to the nearby cars (horizontal
offloading). Our main contribution is an optimized resource
assignment and scheduling algorithm for hybrid offloading of
computing tasks for cooperative perception that maximizes
the rate at which frames are processed, while ensuring that
results are delivered within a deadline and also constraining
the cellular and V2V communication overhead. The algorithm
is tested in a simulated environment based on the LUST traffic
scenario and Veins vehicular network simulator. We observe
a significant increase in the processing rate of sensor frames
when using hybrid offloading compared to the no offloading
case or the case with only vertical offloading.

REFERENCES

[1] H. Qiu, F. Ahmad, F. Bai, M. Gruteser, and R. Govindan, “Avr:
Augmented vehicular reality,” in Proceedings of the 16th Annual In-
ternational Conference on Mobile Systems, Applications, and Services,
pp. 81–95, 2018.

[2] T. Higuchi, J. Joy, F. Dressler, M. Gerla, and O. Altintas, “On the fea-
sibility of vehicular micro clouds,” in 2017 IEEE Vehicular Networking
Conference (VNC), pp. 179–182, IEEE, 2017.

[3] G. Hattab, S. Ucar, T. Higuchi, O. Altintas, F. Dressler, and D. Cabric,
“Optimized assignment of computational tasks in vehicular micro
clouds,” in Proceedings of the 2nd International Workshop on Edge
Systems, Analytics and Networking, pp. 1–6, 2019.

[4] J. Feng, Z. Liu, C. Wu, and Y. Ji, “Ave: Autonomous vehicular edge
computing framework with aco-based scheduling,” IEEE Transactions
on Vehicular Technology, vol. 66, no. 12, pp. 10660–10675, 2017.

[5] C. Zhu, G. Pastor, Y. Xiao, Y. Li, and A. Ylae-Jaeaeski, “Fog following
me: Latency and quality balanced task allocation in vehicular fog
computing,” in 2018 15th Annual IEEE International Conference on
Sensing, Communication, and Networking (SECON), pp. 1–9, IEEE,
2018.

[6] F. Hagenauer, C. Sommer, T. Higuchi, O. Altintas, and F. Dressler,
“Vehicular micro clouds as virtual edge servers for efficient data
collection,” in Proceedings of the 2nd ACM International Workshop
on Smart, Autonomous, and Connected Vehicular Systems and Services,
pp. 31–35, 2017.

[7] L. Codeca, R. Frank, and T. Engel, “Luxembourg sumo traffic (lust)
scenario: 24 hours of mobility for vehicular networking research,” in
2015 IEEE Vehicular Networking Conference (VNC), pp. 1–8, IEEE,
2015.

[8] C. Sommer, R. German, and F. Dressler, “Bidirectionally coupled
network and road traffic simulation for improved ivc analysis,” IEEE
Transactions on mobile computing, vol. 10, no. 1, pp. 3–15, 2010.

[9] D. Jiang, Q. Chen, and L. Delgrossi, “Optimal data rate selection
for vehicle safety communications,” in Proceedings of the fifth ACM
international workshop on VehiculAr Inter-NETworking, pp. 30–38,
2008.

[10] A. Kattepur, H. K. Rath, and A. Simha, “A-priori estimation of com-
putation times in fog networked robotics,” in 2017 IEEE International
Conference on Edge Computing (EDGE), pp. 9–16, IEEE, 2017.

