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Continuous Maneuver Control and Data Capture
Scheduling of Autonomous Drone in Wireless

Sensor Networks
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Abstract—Thanks to flexible deployment and excellent maneuverability, autonomous drones are regarded as an effective means to
enable aerial data capture in large-scale wireless sensor networks with limited to no cellular infrastructure, e.g., smart farming in a
remote area. A key challenge in drone-assisted sensor networks is that the autonomous drone’s maneuvering can give rise to buffer
overflows at the ground sensors and unsuccessful data collection due to lossy airborne channels. In this paper, we propose a new
Deep Deterministic Policy Gradient based Maneuver Control (DDPG-MC) scheme which minimizes the overall data packet loss
through online training instantaneous headings and patrol velocities of the drone, and the selection of the ground sensors for data
collection in a continuous action space. Moreover, the maneuver control of the drone and communication schedule is formulated as an
absorbing Markov chain, where network states consist of battery energy levels, data queue backlogs, timestamps of the data
collection, and channel conditions between the ground sensors and the drone. An experience replay memory is utilized onboard at the
drone to store the training experiences of the maneuver control and communication schedule at each time step. Numerical results
demonstrate that the proposed DDPG-MC achieves 15.2% and 47.6% lower packet loss rate than deep Q-learning-based flight control
and non-learning scheduling policies, respectively.
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1 INTRODUCTION

R ECENT advances of wireless sensing techniques allow
for deploying a large number of sensing devices for

sustainable environmental monitoring [1], [2]. Sensory data
are generated and stored in a data queue at the sensor,
awaiting to be uploaded to a remote base station. Data
collection in large-scale wireless sensor networks is difficult
since sensors can be airlifted to remote, human-unfriendly
environments, e.g., disaster stricken areas, rural vineyards,
or battlefields [3]. In such harsh environments, conven-
tional terrestrial communication networks requiring persis-
tent power supplies are unavailable or unreliable. Thanks
to their flexible deployment and excellent maneuverability,
autonomous drones provide an effective means to collect
data from the ground sensors, offload command or software
patch, or restore communications [4], [5]. The drone can
move sufficiently close to a ground sensor, leveraging a
dominant line-of-sight (LoS) between the drone and the
sensor [6]. The drone maneuver can enhance the network
coverage while the LoS link enables a high data rate for the
drone-sensor communications. Several international initia-
tives have been launched to study the feasibility of using
drones for providing wireless access for ground sensor
networks. For example, SoftBank company partnered with
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NASA and U.S. aerospace company AeroVironment devel-
oped a high-altitude autonomous drone to provide commu-
nication connectivity from the sky [7]. Optus and Ericsson
delivered Australia’s first 5G teleoperated drone controlled
over a live 5G network to track and identify objects [8].
Verizon tested different types of drones to improve network
connectivity [9]. The 3rd Generation Partnership Project
(3GPP) studied capability of the Long Term Evolution (LTE)
to support drones [10].

Figure 1 illustrates an application of drone-assisted sen-
sor networks for precision agriculture. Specifically, a large
number of energy harvesting powered sensors are deployed
in a vineyard for sensing and monitoring temperature, soil
moisture, and illumination time. The ground sensor can
be equipped with solar panels, wind power generators,
or wireless power receiver to harvest renewable energy
from ambient resources for opportunistically recharging its
battery [11]–[13]. A drone equipped with a wireless radio
and onboard data processors hovers over the vineyard.
The drone is typically powered by batteries, which leads
to a finite cruising time. Moreover, the heading and patrol
velocity of the drone can adaptively change and select the
ground sensors for data collection along the flight trajectory.

A low battery level of the ground sensor can potentially
prevent data inside the finite buffers from being transmitted
in time, hence resulting in the overflow of the buffers upon
the arrivals of new data. Specifically, the newly arrived data
packets are generally queued in the buffer of a ground
sensor, until the battery level of the ground sensor is suf-
ficient to complete the transmissions of the earlier packets
and power the transmissions of the newly arrived packets.
The battery of the ground sensor is recharged by harvesting
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Fig. 1: A large number of sensors are deployed in a vineyard
for precision agriculture. The autonomous drone adjusts the
heading and the patrol velocity to maneuver over the target
field, while selecting the ground sensors to transmit data.

renewable energy from solar, wind, or other renewable en-
ergy sources. The energy harvesting depends heavily on the
environmental conditions. For example, a cloudy or rainy
weather, or a windless day would result in a small amount
of harvested energy [14].

Despite their consistent sampling intervals, the sensory
data arrivals at the transmit buffer of the ground sensors
can have large variations. This is because in many cases,
only changes get reported to reduce the communication
overhead of a system and the energy requirement of the
transmitter [15]. In many other cases, the packet generation
of the ground sensors can be event-triggered, e.g., wildlife
camera traps which shoot photos only when their infrared
sensors are triggered by passing animals. In the above cases,
it is reasonable to assume that the ground sensors undergo
random data arrivals (at their transmit buffers). Some sen-
sors may periodically generate packets. The periodic packet
arrivals in the data queue are predictable; while the battery
energy levels and channel conditions still experience time-
varying randomness, depending on the environments.

Selecting a ground sensor for data collection may result
in a buffer overflow at other unselected sensors, since new
data arrivals at those sensors may have to be dropped if
their buffers are already full and overflow. Despite memory
chips and storage capacity of sensors have been contin-
uously improving, the data buffer can still overflow for
two reasons. Firstly, according to queueing theory, a queue
grows infinitely, as long as the incoming data rate into
the queue is higher than the outgoing data rate from the
queue. In the situation where the network has too many
sensors to get their data collected in a timely manner or the
drone’s trajectory is poorly planned, the queues would build
up and the sensors would suffer from buffer overflows.
Secondly, there is a trend of increasingly large data sizes
being exported in emerging sensing platforms, e.g., weed
identification or wildlife monitoring with cameras [16], [17],
and insect detection based on optoacoustic sensors [18]. The
typical sizes of high-resolution images and acoustic data

are several megabytes. However, many off-the-shelf sensors
have a limited data memory with the consideration of the
cost and market competitiveness.

Moreover, selecting a ground sensor with a poor channel
condition gives rise to packet errors of the transmissions or
buffer overflows at other sensors. In practice, the instanta-
neous knowledge of the battery energy levels, data queue
backlogs, and channel conditions of the ground sensors is
not available at the drone. Therefore, the joint optimization
of the maneuver control of the drone and the selection of the
ground sensors is crucial to minimize packet losses resulting
from buffer overflows and fading channels in the drone-
assisted sensor network.

In this paper, we investigate the continuous maneuver
control and data capture scheduling of autonomous drone
in wireless sensor networks. The main contributions can be
summarized as follows:

1) To the best of our knowledge, this is the first attempt to
investigate the joint optimization of the continuous maneu-
ver control of an autonomous drone and the communication
schedule to minimize the data loss. The drone-assisted data
collection in wireless sensor networks is formulated as an
absorbing Markov chain, where the network states consist
of the battery energy levels, data queue backlogs, Time-To-
be-Alive (TTA) values, and the channel conditions between
the ground sensors and the drone.

2) An onboard Deep Deterministic Policy Gradient based
Maneuver Control (DDPG-MC) is proposed to optimize
the continuous maneuver control of the drone, which is
typically with large state and action spaces. The onboard
DDPG-MC jointly optimizes the online maneuver control
and communication schedule through online training ac-
tions of the drone, i.e., the instantaneous headings, patrol
velocities, and the real-time selection of the transmitting
ground sensors. An experience replay memory is utilized to
store the training experiences of the maneuver control and
communication schedule at each time step, which stabilizes
the training of DDPG-MC and improves sample efficiency
by repeatedly reusing experience tuples.

3) To verify our design, we implement DDPG-MC in
Python 3.5 running on top of Google TensorFlow. Numerical
results demonstrate that the proposed DDPG-MC achieves
at least 47.6% reduction in the overall packet loss, as com-
pared to existing non-learning heuristics.

The rest of this paper is organized as follows. Section 2
reviews the related work on the trajectory planning of
drones and communication scheduling schemes. Section 3
presents the flight model of autonomous drones and the
channel model. The joint optimization of the maneuver
control and communication schedule is formulated as the
absorbing Markov chain in Section 4. In Section 5, a new
onboard DDPG-MC scheme is designed to optimize the
decision process of the absorbing Markov chain, thereby
optimizing the headings and patrol velocities, as well as
the transmission schedule of the ground sensors. Numerical
results are presented in Section 6. Section 7 concludes the
paper.
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2 RELATED WORK

2.1 Trajectory planning

A trajectory planning algorithm is presented in [19] to
reduce the communication delay of data collection. Given
the predetermined waypoints, the radius of the trajectory
is adjusted to alleviate data traffic congestion according to
data buffer occupancy at the drone. The communication
delay between the drone and the ground nodes can be
reduced via the trajectory planning and the communica-
tion scheduling [20]. The propulsion energy of the drone
can be the dominant factor determining the throughput-
energy tradeoff in air-ground communications. In [21], an
energy tradeoff is studied, where the transmission energy
reduction at the ground sensor is at an increasing cost of
the propulsion energy at the drone. The energy tradeoff
is characterized by a circular or straight-line trajectory in
accordance with the transmit power allocation of the ground
sensors. The authors of [22] present a trajectory planning
algorithm based on the data uploading time and the elapsed
time since the drone leaves the radio coverage of the sensor.
It is shown that the trajectory corresponds to the shortest
Hamiltonian path in the ground sensor network, where
the distance between the two sensors indicates their inter-
visit time. In [23], the trajectory planning is formulated
as a mixed integer non-linear programming to reduce the
average path loss between the drone and the ground sensor.
The trajectory planning is decoupled between multiple sub-
problems which separately schedule the ground sensors’
transmissions, trajectories, and altitudes of the drone.

In [24], drones provide emergent wireless coverage to a
remote area. The deployment time of the drone depends on
the velocity, altitude and radio coverage radius. The drone
deployment algorithm is developed to reduce the deploy-
ment time given the same initial or different dispatching
locations. A trajectory planning algorithm based on random
tree generation is studied in [25] to avoid collisions with
moving obstacles. The random tree generated by sampling
the waypoints adds the trajectory with no collision to a
graph as a candidate feasible path. The trajectory of the
drone can also be designed with a continuous-time formu-
lation for collision avoidance [26]. A replanning system is
constructed from mapping to trajectory generation, where
the trajectory responds to some previously unknown or
unseen obstacles. In [27], a trajectory planning algorithm is
developed for data sender localization. The waypoints are
generated at the drone to reduce the localization uncertainty,
while a maximum likelihood estimator estimates the data
sender’s location based on the ground sensor measure-
ments.

In [28], a number of charging stations on the ground
are uniformly deployed to satisfy the energy needs of the
drone. The drone is assigned to serve the entire area in
a sustainable way. The charging stations are allocated to
charge the drone along its flight trajectory. In [29], the
trajectory of a drone is designed to improve the energy
efficiency of a point-to-point communication between the
drone and a ground device, by taking into account the
propulsion energy consumption of the drone. An algorithm
is developed to maximize the energy efficiency, subject
to the constraints on the drone’s trajectory, including its

initial/final locations and velocities, and maximum speed.
The drone can adapt its displacement direction and distance
to serve the ground users’ wireless traffic [30]. The optimal
displacement distance is designed to improve the average
throughput for variable-rate applications and the success
probability for fixed-rate applications.

2.2 Communication scheduling

Energy harvesting drones are employed to extend network
coverage and wireless access for ground sensors in [31].
The energy consumption of a drone is reduced by adapting
the ground sensor assignment, the trajectory, and transmit
power of the drone. In [32], the trajectory of the drone
and the communication schedules are designed to improve
network throughput of OFDMA users on the ground. Since
the network throughput decreases with the increasing trans-
mit rate of the OFDMA user, the throughput gain arising
from the drone’s mobility becomes less significant. The
work in [33] focuses on network congestion prediction for
drone-assisted data communications. A drone deployment
algorithm is developed to reduce the transmit power of
the drone, while reducing the propulsion energy based on
the predicted network traffic. In the drone-assisted sensor
network, the wake-up schedule of the ground sensors and
the trajectory of the drone are jointly optimized to lower the
energy consumption of the ground sensors [34]. The opti-
mization also ensures the required amount of data collected
from each ground sensor.

3 AUTONOMOUS FLIGHT AND CHANNEL MODEL

In this section, we present the flight model of the au-
tonomous drone and the channel model. A communication
protocol for the drone-assisted data collection in wireless
sensor networks is also studied. Specific notations used in
this article are summarized in Table 1.

TABLE 1: The list of fundamental variables defined in sys-
tem model

Notation Definition
N total number of ground sensors
ei(t) battery energy level of ground sensor i

at time t
di(t) data buffer length of ground sensor i at

time t
Pi(t) transmit power of the ground sensor at

time t
edrone(t) battery energy of the drone at time t
θ(t) turning angle of the drone at time t
v(t) patrol velocity of the drone at time t
hi(t) channel condition between the drone

and sensor i at time t
τi TTA value of the ground sensor
A total number of absorbing states in the

formulated Markov chain
α, β network states of the formulated

Markov chain
ζepisode random process for action exploration
δ discount factor
Uα the action taken by the drone at state α
K minibacth size of the experience replay
M number of episodes in the proposed

DDPG-MC framework
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3.1 Flight model of the autonomous drone
Let (x(t), y(t), z) denote the position of the drone at time
t. The drone is assumed to manoeuvre in an altitude hold
mode [35], i.e., the altitude of the drone can be maintained
steady. The instantaneous patrol velocity of the drone is v(t),
where Vmin < v(t) ≤ Vmax. Vmin and Vmax are the min-
imum and the maximum velocities allowed, respectively.
Let ∆t denote the flight duration from (x(t), y(t), z) to
(x(t+1), y(t+1), z) and ∆v(t)/∆t = (v(t+1)−v(t))/∆t is
the acceleration of the drone. Consider Vmin ≤ v(t) ≤ Vmax,
where Vmin and Vmax are the minimum and the maximum
velocities of the drone, respectively. The acceleration of the
drone fulfills 0 ≤ ∆v(t)/∆t ≤ (Vmax − Vmin)/∆t. For
example, we set Vmax = 15 m/s, Vmin > 0, and ∆t = 1 s, the
acceleration of the drone ∆v(t)/∆t is within [0, 15) m/s2.

By applying the proposed DDPG-MC framework, (x(t+
1), y(t + 1), z) and v(t + 1), are learned and optimized
given the location (x(t), y(t), z) and the velocity v(t) at
the location. Given the current and the next locations and
their associated speeds, and the current heading, the tan-
gential acceleration ∆v(t)/∆t can be evaluated by satisfying
∆v(t)/∆t ≤ (Vmax − Vmin)/∆t, the rotation center and
radius can be specified, and the heading at the next location,
i.e., θ(t+ 1), can be specified accordingly.

Figure 2 describes the flight model of the drone, where
θ(t) is the heading at t [36], [37], and the coordinates of
the circle centre are (xc(t), yc(t), z). Therefore, the drone’s
location at time t+ 1 is given by

x(t+ 1) = xc(t) +
[
(x(t)− xc(t)) cos θ(t)−

(y(t)− yc(t)) sin θ(t)
]

y(t+ 1) = yc(t) +
[
(x(t)− xc(t)) sin θ(t)+

(y(t)− yc(t)) cos θ(t)
] (1)

where θ(t) ∈ (0, π]. In particular, θ(t) = π indicates that
the drone moves forward without changing the heading. It
is assumed that the drone does not move backward, i.e.,
θ(t) 6= 0.

The drone flies along a trajectory which consists of a
large number of waypoints (x(t), y(t), z). The instantaneous
headings and patrol velocities of the drone can be adjusted
online according to the proposed DDPG-MC framework.
The drone also collects sensory data from the ground sen-
sors. Beamforming is enabled at the drone to enhance the
received signal strength (RSS) in both directions and reduce
the bit error rate (BER) in the uplink.

The battery level of the autonomous drone is denoted by
edrone(t), which can be measured by the onboard sensors.
The drone has to suspend the cruise when the propulsion
energy of the drone drops below the minimum energy level
emindrone.

3.2 Channel model
We consider thatN ground sensors are deployed in a remote
area. Sensor i ∈ [1, N ] can harvest renewable energy from
the ambient environment to recharge its battery and power
its operations, e.g., sensing, computing and communication.
The battery level of sensor i is denoted by ei(t) ≤ E, where
E is the battery capacity of the ground sensor. The data

θ(t1)
θ(t2)

θ(t3)

(x(t1),y(t1),z)

(xc(t1),yc(t1),z)
(x(t2),y(t2),z)

flight trajectory

turning angle

Fig. 2: The flight model of the autonomous drone.

queue length of the ground sensor is di(t) ∈ [1, D], where
D is the buffer size. In addition, the ground sensors undergo
random data arrivals, and buffer the data to be collected by
the drone. The buffers are finite, and the new data arrivals
have to be dropped if the buffers are full and overflow.

The drone moves at a low altitude for data collection,
where the probability of LoS between the drone and the
ground sensors is given by [38]

PrLoS(t) =
1

1 + a exp(−b[ϕi(t)− a])
(2)

where a and b are two Sigmoid function parameters. ϕi(t) is
the elevation angle between the drone and sensor i at time
t. Furthermore, the path loss between the drone and sensor
i is given by

hi(t) = PrLoS(ϕi(t))(ηLoS − ηNLoS) + 20 log(R secϕi(t))

+ 20 log(fc) + 20 log(4π/vc) + ηNLoS (3)

where R, fc, and vc are the radius of the radio coverage
of the drone, the carrier frequency, and the speed of light,
respectively. ηLoS and ηNLoS stand for the excessive path
loss of LoS and non-LoS, respectively. The value of (ηLoS,
ηNLoS) pair can be (0.1, 21), (1.0, 20), (1.6, 23), or (2.3, 34),
corresponding to suburban, urban, dense urban, or highrise
urban scenarios [39].

The complex coefficient of the reciprocal wireless chan-
nel between the drone and the ground sensor can be known
by channel reciprocity. Given the data rate of the ground
sensor ri(t), the transmit power of the ground sensor, de-
noted by Pi(t), can be given by

Pi(t) ≈
κ−1

2 ln κ1

ε

‖hi(t)‖2
(2ri(t) − 1), (4)

where κ1 and κ2 are two channel constants [40]. ε is the
required BER between the ground sensors and the drone.

4 FORMULATION OF ABSORBING MARKOV CHAIN

Let ei(t), di(t), and hi(t) denote the battery level and the
queue length of the ground sensors, and the channel quality,
respectively. At each time slot t, a ground sensor, e.g., the
ith sensor, is selected by the drone for data transmission.
To estimate the battery level and the queue length of the
ground sensors, the TTA value, denoted by τi, is recorded
and updated at the drone for sensor i. τi increases by 1 at
time t if sensor i is not selected, and τi returns to 0 when a
new packet is collected from i.
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Due to the limited battery energy of the drone, the
maneuver control of the drone and communication schedule
can be modeled as an absorbing Markov chain. The network
state α is given by

α = 〈edrone(t), ei(t), di(t), hi(t), τi(t)〉 (5)

where i ∈ [1, N ], and the absorbing states are referred to as
network states with edrone(t) = emindrone.

LetA denote the number of the absorbing states in which
edrone(t) = emindrone. Assume that the number of transitions
from state α to the absorbing state is B. In other words,
the drone can take B actions for the maneuver control
and communication scheduling until the drone depletes
the propulsion energy. Moreover, the absorbing Markov
chain can be characterized by using the following transition
matrix Z in the canonical form:

Z =
( X Y

0 1

)
(6)

where 0 is an A × B zero matrix, 1 is an A × A identity
matrix, X is a B × B transition probability matrix with the
elements of {Pri{β|α}} (α, β = [1, B]) that specifies the
transition probability of i from state α to state β, and Y is
the absorbing probability matrix containing the probabilities
{Pri{β′|α}} of the transition from state α to the absorbing
state β′.

At state α, a sensor, i.e., sensor i, is selected by the
drone and the sensor transits to the next state, i.e., state β.
The transition probability depends on the following possible
transitions.
• (ei(α), di(α), edrone(α)) transits to (ei(β) = ei(α) +

∆ei, di(β) = di(α) + 1, edrone(β) = edrone(α) − ∆edrone):
Herein, di(β) = di(α) + 1 indicates a new data packet is
buffered; or in other words, the data transmission of sensor i
is unsuccessful. The drone’s battery at state β is edrone(β) =
edrone(α)−∆edrone, where ∆edrone is the propulsion energy
consumption of the drone. Let Pr∆e denote the probability
that the ground sensor harvests the energy. If the sensor
manages to harvest the energy (i.e., ∆ei > 0), then

Pri{β|α} = λ(1− (1− ε)D)Pr∆e. (7)

Otherwise, energy harvesting is unsuccessful, i.e., 1−Pr∆e,
and ∆ei = 0, we have

Pri{β|α} = λ(1− (1− ε)D)(1− Pr∆e). (8)

Moreover, if the drone does not have sufficient propulsion
energy, then state α is the absorbing state, i.e., edrone(α) −
∆edrone ≤ 0. The transition probability is Pri{β|α} = 0.
• (ei(α), di(α), edrone(α)) transits to (ei(β) = ei(α) +

∆ei, di(β) = di(α) − 1, edrone(β) = edrone(α) − ∆edrone):
Here, di(β) = di(α) − 1 indicates that the buffer of the
selected sensor i decreases by 1; or in other words, the data
transmission is successful. If the battery of the drone is non-
empty at state β, i.e., edrone(α)−∆edrone > 0 and the energy
∆ei(> 0) is harvested by sensor i, the transition probability
is given by

Pri{β|α} = (1− λ)(1− ε)DPr∆e, (9)

where 1 − λ indicates that there is no new packet arrival at
state α. If the energy harvesting of sensor i is unsuccessful,
i.e., ∆ei = 0, then

Pri{β|α} = (1− λ)(1− ε)D(1− Pr∆e). (10)

In addition, Pri{β|α} = 0 if state α is the absorbing state,
i.e., edrone(α)−∆edrone ≤ 0.
• (ei(α), di(α), edrone(α)) transits to (ei(β) = ei(α) +

∆ei, di(β) = di(α), edrone(β) = edrone(α)−∆edrone): Here,
di(β) = di(α) indicates that the buffer of the selected
ground sensor remains unchanged, due to either a success-
ful transmission with a new packet arrival (which gives
λ(1 − ε)D), or a failed transmission with no new packet
arrival (which gives (1− λ)(1− (1− ε)D)). If the harvested
energy ∆ei > 0 and edrone(α)−∆edrone > 0,

Pri{β|α} = [(1− λ)(1− (1− ε)D) + λ(1− ε)D]Pr∆e.
(11)

If ∆ei = 0, then

Pri{β|α} = [(1− λ)(1− (1− ε)D)+

λ(1− ε)D](1− Pr∆e). (12)

Otherwise, state α is the absorbing state and Pri{β|α} = 0.
For the unselected ground sensors j ∈ [1, N ] and j 6= i,

at the next state, their buffers can either remain unchanged
(dj(β) = dj(α)) or increase by 1 due to a new packet
arrival (dj(β) = dj(α) + 1). Consequently, we have the state
transition probability, as follows.
• (ej(α), dj(α), edrone(α)) transits to (ej(β) = ej(α) +

∆ej , dj(β) = dj(α), edrone(β) = edrone(α)−∆edrone): If ∆ej
is harvested and edrone(α)−∆edrone > 0, then

Prj{β|α} = (1− λ)Pr∆e. (13)

If the energy is not harvested, i.e., (1− Pr∆e), then

Prj{β|α} = (1− λ)(1− Pr∆e). (14)

Otherwise, state α is the absorbing state and Prj{β|α} = 0.
• (ej(α), dj(α), edrone(α)) transits to (ej(β) = ej(α) +

∆ej , dj(β) = dj(α)+1, edrone(β) = edrone(α)−∆edrone): In
this case, a new packet is buffered with probability λ, thus

Prj{β|α} =

{
λPr∆e, if ∆ej > 0;

λ(1− Pr∆e), otherwise.
(15)

At the absorbing state α, Prj{β|α} = 0.
The optimal policy in the absorbing Markov chain can

be obtained by classical approaches, e.g., value iteration
or policy iteration. The value iteration method repeatedly
updates the estimate of the optimal action-value function
until the Bellman optimality equation converges. The policy
iteration method evaluates the optimized policy at each
of iterations, which is a protracted iterative computation
involving multiple sweeps through the state set. However,
both the value iteration and policy iteration methods re-
quire the transition probabilities of all states to be known
at the drone in prior. In contrast, this paper is interested
in a practical scenario where the drone has no a-priori
knowledge on Pri{β|α}. Reinforcement learning can solve
Markov decision processes in the absence of the knowledge
of the state transition probabilities, i.e., Pri{β|α}. One of the
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popular reinforcement learning techniques is Q-learning,
where an agent interacts with the environment to minimize
the long-term cost. Q-learning typically supports discrete
state and action spaces, and therefore is not suitable for the
continuous state and action spaces in the drone maneuver
problem considered here. Even after being discretized, the
state and action spaces in the drone-assisted sensor network
are typically large. Q-learning would suffer from the well-
known curse-of-dimensionality [41], and therefore is not
adequate to solve the online maneuver control and com-
munication schedule.

5 DDPG FOR MANEUVER CONTROL AND COM-
MUNICATION SCHEDULING

In this section, we propose to use DDPG-MC to solve the
Markov decision process with the large and continuous
state and action spaces. As an effective deep reinforcement
learning technique, DDPG-MC can optimize the continu-
ous maneuver control and communication schedule in the
absence of the a-priori knowledge of the state transition
probabilities, i.e., Pri{β|α}, and minimize the long-term
accumulated costs of the system (i.e., the packet loss of all
ground sensors).

5.1 DDPG-MC framework

DDPG is a learning approach that concurrently learns an
action-value function and a policy. DDPG utilizes an Actor-
Critic architecture to combine the value iteration and the
policy iteration to implement the proposition of the contin-
uous state space and the continuous action space by using
deep reinforcement learning. This is different from deep
Q-networks which focus on a discrete action space. More-
over, DDPG can enlarge the state space of the absorbing
Markov chain compared with reinforcement learning which
suffers from the well-known curse of dimensionality [42].
Therefore, in this paper, the joint optimization of the online
continuous maneuver control and communication schedule
is developed based on DDPG.

As a form of stochastic policy gradient, deterministic
policy gradients enable a deterministic mapping from the
network state to the optimal actions of the drone in the
absorbing Markov chain. The structure of the proposed
DDPG-MC framework is depicted in Figure 3, where DDPG
is trained onboard at the drone for the maneuver control
and the ground sensor selection. The actions of the drone in
DDPG-MC define

Uα = (θ(α), v(α), {iα ∈ [1, N ]}), (16)

where Uα ∈ A, and A contains all the actions that the drone
can carry out for optimization of the maneuver control and
communication schedule.

In Figure 3, the network states, including ei(t) and
di(t) (i ∈ [1, N ]) from the ground sensors, and edrone(t),
(x(t), y(t), z), τi and hi(t) from the drone, are observed
in the environment for training DDPG-MC. C{β|α,Uα} is
the network cost when action Uα is taken and the system
transits from state α to state β. C{β|α,Uα} is measured by
the packet loss of the system. In other words, C{β|α,Uα}
counts the number of packets dropped or lost during the
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Fig. 3: An illustration of the DDPG-MC architecture, where
deep reinforcement learning with experience relay is carried
out at the drone to optimize its actions.

state transition. The packet loss can be caused by both buffer
overflows and channel fading during the state transition.
Moreover, the experience tuple

(
α, β, Uα, C{β|α,Uα}

)
is

stored in the replay memory Mreplay of the drone at each
training step. K samples (or minibatches) of the experience
in Mreplay are used along with the input states from the
environment to train the DDPG-MC onboard.

DDPG-MC is built based on the actor-critic neural net-
work structure [43]. Due to the continuity of the maneuver
control of the drone, the action-value function Q

{
α,Uα

}
is presumed to be differentiable with respect to the ac-
tion argument. This allows us to set up a gradient-based
learning rule for the maneuver control and communication
scheduling policy µ(α). Instead of exhaustively evaluating
the entire action space to minimize Q

{
α,Uα

}
, DDPG-MC

approximates the optimal actions of the maneuver control
and communication schedule with Q

{
α, µ(α)

}
.

The actor neural network in DDPG-MC generates the
actions of setting θ(t) and v(t), and selects the ground
sensor {it ∈ [1, N ]}. The critic neural network approximates
the optimal action-value function Q

{
α,Uα

}
that calculates

the expected accumulated network cost, i.e., the overall data
loss, after observing the state α and taking the action Uα.
Let µ

{
α
∣∣∣ϑµ} and µ′

{
α
∣∣∣ϑµ′} denote the actor’s policy of

maneuver control and sensor selection, and the target actor
function, respectively. ϑµ and ϑµ′ are the two weights for
policy update.

As shown in Figure 3, the critic network learns the
optimal Q

{
α,Uα

}
using the Bellman equation to minimize

the approximation loss ∆loss that defines

∆loss =
1

K

∑
k

(C{β|α,Uα}k+δQ′
{
αk+1, µ

′
{
αk+1

∣∣∣ϑµ′}∣∣∣
ϑQ′
}
−Q

{
αk, Uαk

∣∣∣ϑQ})2

(17)

where δ is the discount factor, and Q
{
αk, Uαk

∣∣∣ϑQ} is pa-
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rameterized by the weight ϑQ in the critic network. Q′
{
·
}

is the target action-value function in the critic network.
The objective of DDPG-MC is to minimize the expected

packet loss of the ground sensors, i.e., E
[
Q
{
α,Uα

}]
. The

actor network in DDPG-MC is updated by applying the
chain rule on the expected packet loss from the initial
distribution J with respect to the actor weights ϑµ. The
gradient of the DDPG-MC policy is given by

∇ϑµJ ≈ Eαt
[
∇ϑµQ

{
α,Uα

∣∣∣ϑQ}|α=αt,Uα=µ(αt|ϑµ)

]
(18)

Furthermore, the policy in DDPG-MC is also trained with
K minibatches of experience in Mreplay, as depicted in
Figure 3. Hence, ∇ϑµJ can be calculated by the mean of
the sum of gradients from the experience replay, which is

∇ϑµJ ≈
1

K

∑
k

∇UαQ
{
α,Uα

∣∣∣ϑQ}|α=αk,Uα=µ(αk)×

∇ϑµµ
{
α
∣∣∣ϑµ}∣∣∣

αk
(19)

According to the DDPG-MC architecture in Figure 3,
Algorithm 1 is formulated to demonstrate the DDPG-MC
implementation with deep reinforcement learning. Given a
total ofM episodes and a training time of tlearning, action Uα
is carried out by the drone at every time step with a random
process ζt for action exploration, as given by

Uα = µ
{
α
∣∣∣ϑµ}

t
+ ζt, (20)

The experience of maneuver control and sensor selection,
i.e.,

(
α, β, Uα, C{β|α,Uα}

)
, is stored in Mreplay, and K

samples are used to minimize ∆loss. Moreover, the actor
policy is updated at the drone with the sampled policy
gradients according to (19). With the optimized actor policy,
the two target neural networks can be updated onboard at
the drone, where{

ϑQ′ ← εϑQ + (1− ε)ϑQ′

ϑµ′ ← εϑµ + (1− ε)ϑµ′
(21)

The drone can only observe the network state of it-
self and the selected ground sensor at any moment, in-
cluding the sensor’s battery level, queue length, chan-
nel quality, and TTA. Suppose that sensor i is se-
lected at time t. The observed network state is αi =
〈edrone(t), ei(t), di(t), hi(t), τi(t)〉. The drone can evaluate
the packet loss pertaining to the selection, based on this
observation and the records of the rest of the ground nodes
in the experience replay memory. In the experience replay
memory, each record is associated with a timestamp, i.e.,
TTA, indicating how many slots have elapsed since the
latest observation of a node. By replaying the memory of
the unselected sensors based on their TTAs, the drone can
approximate the network state (in addition to the obser-
vation of the selected sensors), evaluate the packet loss,
and produce a piece of training experience. As part of the
network state, the TTA can have a strong impact on the
actions of the drone. In particular, a ground sensor with
a large TTA value potentially has a long data queue and
is likely to suffer from a buffer overflow. Moreover, with
the increasing TTA of a sensor, the experience replay can
become less accurate at the drone. To this end, the proposed

Algorithm 1 DDPG-MC framework

1: 1. Initialize:
2: α, β ∈ S , Uα ∈ A, learning time → tlearning, and

experience replay capacity→Mreplay.
3: The critic network Q

{
α,Uα

∣∣∣ϑQ} and the actor net-

work µ
{
α
∣∣∣ϑµ} are randomly initialized, where the two

weights are ϑQ and ϑµ.
4: Initializing target networks Q′ and µ′ with the weights
ϑQ′ ← ϑQ and ϑµ′ ← ϑµ.

5: 2. Learning:
6: for episode 1→M do
7: The drone observes network state α. Random process

for exploration→ ζt.
8: while t ≤ tlearning do
9: Action Uα is carried out by the drone, where

Uα = µ
{
α
∣∣∣ϑµ}

t
+ ζt, which sets θ(α) and v(α) of

the drone, and selects a sensor for data collection.
10: The drone calculates C{β|α,Uα}, and obtains a

new state observation β.
11: Onboard at the drone: (α, β, Uα, C{β|α,Uα}) →

Mreplay.
12: The drone randomly takes a minibatch of K sam-

ples from the onboard memoryMreplay.
13: For each sample k, yk = C{β|α,Uα}k +

δQ′
{
αk+1, µ

′
{
αk+1

∣∣∣ϑµ′}∣∣∣ϑQ′}.
14: Minimizing the loss function onboard at the drone,

where ∆loss ← 1
K

∑
k(yk −Q

{
αk, Uαk

∣∣∣ϑQ})2.
15: According to (19), the drone updates the actor pol-

icy with the sampled policy gradients.
16: With the optimized actor policy, ϑQ′ ← εϑQ + (1−

ε)ϑQ′ and ϑµ′ ← εϑµ + (1− ε)ϑµ′.
17: end while
18: end for

approach is effective, as reduces the TTAs of the sensors and
improves the learning accuracy.

The observation and evaluation are also used to update
the experience replay memory of the drone. Specifically,
the training experience of selecting the particular sensor,
including the packet loss and the timestamps of all the rest
of the sensors, is associated with the TTA of the sensor
and added to the experience replay memory. By carrying
out the experience replay, DDPG-MC can learn online the
underlying patterns of the data and energy arrivals, and the
channel dynamics of the ground sensors.

Some sensors may periodically generate packets. The
periodic packet arrivals in the data queue are predictable,
while the battery energy levels and channel conditions
still experience time-varying randomness, depending on
the environments. The proposed DDPG-MC can optimize
the actions of the drone by learning the dynamics of these
elements.

5.2 Complexity analysis

To minimize ∆loss, the complexity of the proposed DDPG-
MC lies in updating the actor policy with ∇ϑµJ and con-
ducting the experience replay for training the four neu-
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ral networks. Moreover, the drone observes a network
state from the environment at each training episode. This
leads to O(S), where S is the total number of network
states. Consider W and G fully connected layers in the
actor and critic networks, respectively. The computations
of activation layers in DDPG-MC lead to the complexity
of O(

∑W−1
w=0 ntensorw ntensorw+1 +

∑G−1
g=0 n

tensor
g ntensorg+1 ), where

ntensorw is the number of tensors at the w-th layer in the
actor network, and ntensorg is that in the critic network.
Therefore, the overall time complexity of DDPG-MC is
O(S) +O(

∑W−1
w=0 ntensorw ntensorw+1 +

∑G−1
g=0 n

tensor
g ntensorg+1 ).

6 PERFORMANCE EVALUATION

In this section, we first demonstrate the implementation of
the proposed DDPG-MC framework on Google TensorFlow
(the symbolic math library for numerical computation) [35].
Numerical results are presented to evaluate the packet loss
rate against the maneuver control of the drone, the number
of ground sensors, the data buffer size and the data arrivals
of the ground sensor.

6.1 Implementation of DDPG-MC on TensorFlow
DDPG-MC is implemented in Python 3.5 on TensorFlow.
A desktop with 4-core Intel i7-6700K 4GHz CPUs and 16G
memory based on 64-bit Ubuntu 16.04 is used for the
TensorFlow setup. DDPG-MC is trained for 300 episodes,
where M = 300, while tlearning = 200 epochs. The onboard
memory Mreplay keeps 10,000 training records, while each
training episode can use the mini-bacth of 100 samples.

The area of interest is set to be a square area with a size
of 1,000 m × 1,000 m. N ground sensors are distributed in
the region, where N is from 100 to 600. The data packets
are generated at each sensor according to the packet arrival
probability λ = 0.5. The maximum transmit power is 100
milliwatts. The battery energy of the ground sensor has 800
Joules, while the battery capacity of the drone has 2.5× 105

Joules. The drone has the highest patrol velocity V = 15 m/s.
In addition, we assume that the BER needs to be no greater
than 0.05%, i.e., ε ≤ 0.05%, to achieve correct detection and
decoding at the drone. Thus, the required transmit power of
the ground sensor can be given in (4).

6.2 Performance of DDPG-MC
For performance comparison, DDPG-MC is compared with
three other onboard online trajectory planning and commu-
nication scheduling policies as

• Sequential visiting and Random Scheduling policy
(SeqRS). The area of interest is evenly divided into 25
subareas, where each subarea contains one waypoint.
The drone sequentially visits all the 25 waypoints,
while the drone randomly selects one ground sen-
sor to collect data at each time slot. The maneuver
control and communication schedule of SeqRS are
independent of the battery and buffer length of the
ground sensor, or channel variation.

• Sequential visiting and Channel-Aware scheduling
policy (SeqCA). The drone sequentially visits the 25
predetermined waypoints, where a-prior knowledge
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Fig. 4: Network cost, i.e., packet loss, in terms of the episodes
of DDPG-MC.

on the channels in the target field is assumed to be
known to the drone. At each time slot, the ground
sensor with the highest SNR is given the highest
priority to transmit data.

• Deep Q-Networks based transmission scheduling
policy (DQN) [44]. Given the predetermined trajec-
tory of the drone, DQN is trained to schedule the
data transmission of the ground sensors by learning
the change of their battery levels, buffer lengths, and
channels.

6.2.1 Network cost of DDPG-MC

The total number of episodes, i.e., learning iterations, is set
to 300, each of which contains a series of consecutive train-
ing epochs. The ground sensors are uniformly distributed in
the target area. Figure 4 shows the network cost, i.e., packet
loss, at each training episode of the proposed DDPG-MC,
given N = 100 or 600, and tlearning = 100 or 200, respectively.
Generally, DDPG-MC has a high network cost at the first 10
episodes of the training process. With an increasing number
of episodes, the network cost drops significantly until it
reaches a relatively stable value. It confirms the fact that
DDPG can converge after a number of episodes when the
actor and the critic neural networks are sufficiently trained.
Particularly, the network cost of DDPG-MC with tlearning =
100 is about 2968 packets lower than the one with tlearning

= 200, when N = 600. The reason is that more data packets
are generated at the ground sensors in an extended tlearning,
which leads to more overflowed buffers.

6.2.2 Maneuver control

Figures 5(a), 5(b), and 5(c) study the trajectories of the drone
with regard to three deployments of the ground sensors, i.e.,
uniform distribution, normal distribution, and ring-shaped
distribution, where N = 100. Moreover, Figure 5(d) presents
the network cost of DDPG-MC according to the above three
deployments. As observed, the maneuver control of the
drone is persistently adapted by DDPG-MC given different
deployments of the sensors. This is because DDPG-MC
optimizes θ(α) and v(α) in the continuous action space
while learning the network state dynamics, to determine
the optimal trajectory as well as the ground sensor for
minimizing the network cost.

Furthermore, we also observe in Figure 5(d) that the
network cost of DDPG-MC with the uniform deployment
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Fig. 5: The trajectories and the velocities of the drone, and the network cost of DDPG-MC with regard to three deployments
of the ground sensors.

of the sensors is slightly higher than the ones with the
ring-shaped and the normal deployment. This is reasonable
because the ground sensors within the radio coverage of
the drone can be selected for the data collection, while the
others may experience buffer overflows. Therefore, a dense
deployment of the ground sensors is likely to reduce the
packet loss stemming from overflowing buffers.

Figure 5(e) shows that the velocity of the drone is dy-
namically adjusted by DDPG-MC according to the sensor
deployment. The velocity has the largest fluctuation, rang-
ing between 2 m/s and 10 m/s, when the ground sensors
are uniformly deployed. The velocity fluctuates between 3.5
m/s and 6 m/s given the ring-shaped deployment of the
sensors. In addition, the velocity in the normal deployment
is between 4 m/s and 8 m/s, which is smaller than the one in
the uniform deployment, while the value is generally higher
than the one in the ring-shaped deployment. Figure 5(e)
indicates that the regular shape of the sensor deployment
leads to the stable velocity control carried out by DDPG-

MC, while the sparse deployment can fluctuate the velocity
in a wide range.

6.2.3 Packet loss rate

In this case, the deployment of the ground sensors follows
the uniform distribution. Figure 6 presents the packet loss
rate of DQN, SeqRS, SeqCA, and the proposed DDPG-MC
with regards to the number of ground sensors, the buffer
sizes, the packet arrival probabilities, and the altitudes of the
drone. The altitude of the drone is maintained at 100 meters
during the flight, unless otherwise specified. In Figure 6(a),
DDPG-MC achieves the smallest packet loss rate. When N
= 100, the packet loss rate of DDPG-MC is smaller than
SeqRS and SeqCA by 82.2% and 23.5%, respectively. The
performance gains keep growing with N . The reason is that
DDPG-MC learns the ground sensors’ buffer lengths, bat-
tery levels, and channel states, so that the maneuver control
and the node selection can minimize the data packet loss
of the entire network. Furthermore, DDPG-MC generally
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Fig. 6: Packet loss rate with regards to the number of ground sensors, the packet arrival probabilities, the buffer sizes, and
the altitudes of the drone. Each error bar presents the standard deviation over 10 experiments.

achieves 18.6% lower packet loss rate than DQN. This is
because the action space in DQN is discrete, where the
drone adapts the heading and the velocity intermittently.
As a result, some maneuver control and communication
scheduling policies that can achieve a smaller network cost
are not explored by DQN. In contrast, θ(α) and v(α) in
DDPG-MC are optimized in the continuous action space,
which adjusts the trajectory in real time while scheduling
more potential ground sensors for minimizing the packet
loss rate.

Figure 6(b) shows that the packet loss rate of DQN,
SeqCA, and SeqRS grows to 55.3%, 79.6%, and 96.3%, re-
spectively, when the packet arrival rate λ increases from 0.1
to 0.5. On the contrary, the packet loss rate of DDPG-MC
increases to 40.1% which is lower than the other three bench-
marks. The reason is that DDPG-MC optimizes the future
maneuver control and communication schedules at every
location of the drone by taking advantage of the learning
experience in the replay memory, which controls θ(α) and
v(α) adapting to the data traffic. It can also be observed
from Figure 6(b) that the performance gap decreases with λ.
This is reasonable because a larger λ leads to more buffer
overflows at the ground sensors, while one ground sensor
can be selected by the drone for the data transmission.

Figure 6(c) depicts the packet loss rate when the buffer
size of the ground sensor, D, is extended from 100 to 500.
In general, the packet loss rate drops with an increased
D. Particularly, DDPG-MC outperforms DQN, SeqCA, and
SeqRS on the packet loss rate by 15.2%, 47.6%, and 60.3%,
respectively, when D = 500. Although DQN can also learn
the actions of the drone based on the experience replay,
DDPG-MC trains the actions in the continuous action space

that is much larger than the one with DQN. Therefore,
DDPG-MC obtains the actions that can further minimize the
network cost than the DQN policy.

As shown in Figure 6(d), the packet loss rates of DDPG-
MC, DQN, SeqCA, and SeqRS generally grow when the
altitude of the drone increases from 50 meters to 300 meters,
due to the increasing large-scale fading. DDPG-MC achieves
the lowest packet loss rate when the drone is under the
different altitudes. In addition, when the altitude increases
from 50 m to 300 m, the packet loss rate of DDPG-MC
increases by 20%, which is much lower than the 30% of
DQN, 41% of SeqCA, or 40% of SeqRS.

6.2.4 Goodput of the ground sensors

In this case, we study the goodput of the ground sensors,
which is illustrated by the number of generated (stored in
the data queue) and transmitted packets. The deployment
of the ground sensors follows a uniform distribution with
the average density of 0.5 per square meter. Given N = 100,
it can be observed in Figure 7 that all the ground sensors are
scheduled to transmit the data to the drone. This is benefited
from the joint optimization of maneuver control and node
selection in DDPG-MC. Interestingly, we also see that most
of the ground sensors have similar number of transmitted
packets given a specific data buffer size. This is because the
TTA value τi recorded at the drone increases by 1 if sensor i
is not selected to transmit data. Sensor i can have a large
number of buffer overflows with the growth of the TTA
value. Therefore, DDPG-MC adapts the drone maneuver to
collect data of sensor i to minimize the packet loss.

We also adopt Jain’s index, denoted as J , as the fairness
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TABLE 2: Jain’s fairness index with regard to the three
deployments of the ground sensors

J
Uniform 0.98
Normal 0.99
Ring-shaped 0.94

measurement of the transmitted packets in the following:

J =

(
N∑
i=1

dtxi

)2

N
N∑
i=1

(dtxi )2

, (22)

where dtxi is the number of transmitted packets of sensor
i. Table 2 shows the Jain’s fairness index under the three
deployment schemes of the ground sensors. The indexes
achieved by DDPG-MC are over 0.93 under all the three
deployments. This is because DDPG-MC can adjust the
drone maneuver to visit and schedule the ground sensors,
to minimize the packet loss of the sensors. The index is
0.94 under the ring-shaped deployment, lower than 0.98
under the uniform deployment or 0.99 under the normal
deployment. This is due to the fact that the drone tries
to align its trajectory with the circular deployment of the
sensors, as shown in Figure 5(c). The trajectory can be too
long to have all sensors visited. The delay can be too high
between two visits to every sensor. If the delay is longer than
the average interval between packet arrivals at a sensor, the
buffers of the sensors would overflow. In this case, the drone
has to bypass some sensors, take a shortcut, and reduce the
number of sensors undergoing buffer overflows, costing the
fairness of the bypassed sensors.

6.2.5 Runtime measurements
Figure 8 shows the runtime measurements of DDPG-MC,
where N and tlearning are set to 100 or 600, and 100 or 200.
The runtime of DDPG-MC with N = 100 and tlearning = 100
is around 0.52 ms, and it increases to 1.12 ms when tlearning

grows to 200. This is because the increased tlearning leads
to more training iterations in DDPG-MC, which consumes
extra time on updating the onboard neural networks. More-
over, the runtime increases from 1.12 ms to 3.49 ms when
N = 600. This is because the increased N enlarges the state
space. Nevertheless, the relative increase in the runtime is
much slower than that in the number of ground sensors.
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Fig. 8: Runtime measurements of DDPG-MC with regards to
the number of ground sensors and the learning iterations.

This is because the action space does not grow dramatically
with N . In particular, given a network state, the actions that
the drone can take are limited by its current position and
the number of sensors within the radio coverage.

7 CONCLUSIONS AND DISCUSSIONS

This paper investigates the joint maneuver control of the
drone and communication schedule. The drone-assisted
data collection is formulated as an absorbing Markov chain
to minimize the data lost due to buffer overflows at the
ground sensors and fading airborne channels. Given the
continuous action space of the maneuver control, onboard
DDPG-MC is proposed to optimally determine the instanta-
neous headings and patrol velocities as well as the selection
of the ground sensor for the data collection. The proposed
DDPG-MC utilizes the experience replay to train the policy
gradients for minimizing the approximation loss between
the actor-critic neural networks and the target neural net-
works. DDPG-MC is implemented on Google TensorFlow.
Numerical results demonstrate that DDPG-MC dynamically
adapts the maneuver control for minimizing the packet loss
under diverse deployments of the ground sensors. More-
over, DDPG-MC significantly reduces the packet loss rate
with regards to different number of ground sensors, buffer
sizes, and packet arrival probabilities, compared to the state-
of-the-art strategies.

The proposed DDPG-MC scheme is elemental to drone-
assisted sensor networks, and can be potentially extended in
the scenarios where multiple drones are employed to collect
the data of ground sensors. The multiple drones individ-
ually or collaboratively make their decisions of maneuver
control and communication schedule based on their ob-
served network states. DDPG-MC can be conducted at each
of the drones to train its action, according to its observed
network states which implicitly reflect the actions of the rest
of the drones.

ACKNOWLEDGEMENTS

This work was partially supported by National Funds
through FCT/MCTES (Portuguese Foundation for Sci-
ence and Technology), within the CISTER Research Unit
(UIDB/04234/2020); also by the Operational Competitive-
ness Programme and Internationalization (COMPETE 2020)



12

under the PT2020 Partnership Agreement, through the Eu-
ropean Regional Development Fund (ERDF), and by na-
tional funds through the FCT, within project(s) POCI-01-
0145-FEDER-029074 (ARNET).

REFERENCES

[1] Z. Li, Y. Jiang, Y. Gao, L. Sang, and D. Yang, “On buffer-
constrained throughput of a wireless-powered communication
system,” IEEE Journal on Selected Areas in Communications, vol. 37,
no. 2, pp. 283–297, 2018.

[2] S. Sudevalayam and P. Kulkarni, “Energy harvesting sensor nodes:
Survey and implications,” IEEE Communications Surveys & Tutori-
als, vol. 13, no. 3, pp. 443–461, 2010.

[3] D. S. Ghataoura, J. E. Mitchell, and G. E. Matich, “Networking
and application interface technology for wireless sensor network
surveillance and monitoring,” IEEE Communications Magazine,
vol. 49, no. 10, pp. 90–97, 2011.

[4] H. Wang, H. Zhao, J. Zhang, D. Ma, J. Li, and J. Wei, “Survey
on unmanned aerial vehicle networks: A cyber physical system
perspective,” IEEE Communications Surveys & Tutorials, 2019.

[5] B. Li, Z. Fei, and Y. Zhang, “UAV communications for 5G and
beyond: Recent advances and future trends,” IEEE Internet of
Things Journal, vol. 6, no. 2, pp. 2241–2263, 2018.

[6] A. Fotouhi, H. Qiang, M. Ding, M. Hassan, L. G. Giordano,
A. Garcia-Rodriguez, and J. Yuan, “Survey on UAV cellular com-
munications: Practical aspects, standardization advancements,
regulation, and security challenges,” IEEE Communications Surveys
& Tutorials, vol. 21, no. 4, pp. 3417–3442, 2019.

[7] S. Corp., “Softbank corp. develops aircraft that
delivers telecommunications connectivity from the
stratosphere,” April 2019. [Online]. Available:
https://www.softbank.jp/en/corp/news/press/sbkk/2019/2019
0425 02/

[8] A. Garcia, “Optus and Ericsson complete Australia’s first
5G drone flight,” November 2019. [Online]. Available:
https://www.optus.com.au/about/media-centre/media-
releases/2019/11/optus-and-ericsson-complete-australias-first-
5g-drone-flight

[9] C. Ashraf, “How verizon 5G ultra wideband is lifting drone
technology to the next level,” December 2019. [Online]. Avail-
able: https://www.verizon.com/about/our-company/5g/how-
verizon-5g-ultra-wideband-lifting-drone-technology-next-level

[10] J. Meredith, “3GPP: study on enhanced support
for aerial vehicles,” Janurary 2018. [Online]. Available:
http://www.3gpp.org/dynareport/36777.htm

[11] K. Lee, J.-R. Lee, and H.-H. Choi, “Learning-based joint optimiza-
tion of transmit power and harvesting time in wireless-powered
networks with co-channel interference,” IEEE Transactions on Ve-
hicular Technology, 2020.

[12] A. Jushi, A. Pegatoquet, and T. N. Le, “Wind energy harvesting for
autonomous wireless sensor networks,” in Euromicro Conference on
Digital System Design (DSD). IEEE, 2016, pp. 301–308.

[13] K. Li, W. Ni, L. Duan, M. Abolhasan, and J. Niu, “SWPT: A joint-
scheduling model for wireless powered sensor networks,” in IEEE
Global Communications Conference (GLOBECOM). IEEE, 2017, pp.
1–6.

[14] K. Li, C. Yuen, B. Kusy, R. Jurdak, A. Ignjatovic, S. S. Kanhere,
and S. Jha, “Fair scheduling for data collection in mobile sensor
networks with energy harvesting,” IEEE Transactions on Mobile
Computing, vol. 18, no. 6, pp. 1274–1287, 2018.

[15] F. Wang, S. Wu, K. Wang, and X. Hu, “Energy-efficient clustering
using correlation and random update based on data change rate
for wireless sensor networks,” IEEE Sensors Journal, vol. 16, no. 13,
pp. 5471–5480, 2016.

[16] A.-J. Garcia-Sanchez, F. Garcia-Sanchez, F. Losilla, P. Kulakowski,
J. Garcia-Haro, A. Rodrı́guez, J.-V. López-Bao, and F. Palomares,
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