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Abstract—In wireless powered sensor networks (WPSN), data
of ground sensors can be collected or relayed by an unmanned
aerial vehicle (UAV) while the battery of the ground sensor can be
charged via wireless power transfer. A key challenge of resource
allocation in UAV-aided WPSN is to prevent battery drainage
and buffer overflow of the ground sensors in the presence
of highly dynamic lossy airborne channels which can result
in packet reception errors. Moreover, state and action spaces
of the resource allocation problem are large, which is hardly
explored online. To address the challenges, a new data-driven
deep reinforcement learning framework, DDRL-RA, is proposed
to train flight resource allocation online so that the data packet
loss is minimized. Due to time-varying airborne channels, DDRL-
RA firstly leverages long short-term memory (LSTM) with pre-
collected offline datasets for channel randomness predictions.
Then, Deep Deterministic Policy Gradient (DDPG) is studied
to control the flight trajectory of the UAV, and schedule the
ground sensor to transmit data and harvest energy. To evaluate
the performance of DDRL-RA, a UAV-ground sensor testbed is
built, where real-world datasets of channel gains are collected.
DDRL-RA is implemented on Tensorflow, and numerical results
show that DDRL-RA achieves 19% lower packet loss than other
learning-based frameworks.

Index Terms—UAV, WPSN, Deep reinforcement learning,
LSTM, Wireless power transfer

I. INTRODUCTION

Wireless powered sensor networks (WPSN) are deployed
to sustainably monitor surroundings [1] or charge electric
vehicles [2]. The data of distributed ground sensors that are
deployed in harsh areas can be collected by using unmanned
aerial vehicles (UAVs). The UAV can also charge the ground
sensors remotely via wireless power transfer (WPT) [3] to
power sensory data generation and wireless transmission. At

different altitudes, the UAV is able to communicate with
ground sensors. Thanks to line-of-sight (LoS) communica-
tions, transmit rate of WPSN and the UAV is highly im-
proved [4].

Fig. 1 depicts a UAV-aided WPSN for precision agriculture,
where ground sensors are deployed on a remote farmland for
sensing the environment, e.g., acid precipitation, and ambient
temperature and humidity [5], [6]. When the UAV approaches
a ground sensor, the ground sensor equipped with a WPT
receiver is charged by the UAV [7]. When the UAV flies away
from the ground sensor, the ground sensor uses the harvested
energy that is stored in the battery for the sensing operation.
Moreover, the UAV can fly along its flight trajectory, and
schedule the data transmission of the sensors [8], [9]. The
transmit data queue of the sensor can be used to buffer sensory
data that is transmitted to the UAV when the UAV is not
around.

The number of packets in the queue of the ground sensor is
distinctive from each other, due to time-varying data arrivals.
When the UAV schedules a ground sensor which has a short
queue to transmit data and WPT, the data buffer of the
unscheduled sensors can be already full, and the newly arrived
data can overflow the buffer. Moreover, packet transmission
errors increase if a ground sensor experiencing a poor link
quality is scheduled by the UAV, and the ground sensor can
suffer from insufficient energy harvesting. In practice, the
UAV is hardly to know the time-varying network dynamics,
e.g., number of packets in the queue, WPT charging, and
channel link qualities between the UAV and the ground
sensor [10]. Additionally, the time-varying network dynamics



Fig. 1: UAV-aided WPSN for precision agriculture.

and waypoints of the UAV consists of a large number of
real-time values, which results in an extremely large flight
resource allocation space [11]. Therefore, it is difficult to
jointly optimize the trajectory control and the scheduling
of data transmission and WPT in a continuous domain, for
minimizing buffer overflows and communication errors.

In this paper, a flight resource allocation, named as DDRL-
RA, is proposed based on deep deterministic policy gradient
(DDPG). DDRL-RA enables the UAV to learn the battery
energy charged by WPT, and number of packets in the data
queue of the sensors, and the link qualities. The UAV, i.e.,
trajectory planning and data transmission scheduling of ground
sensors Since the trajectory of the UAV, battery energy and
channel link qualities consist of a large number of real num-
bers, DDRL-RA needs to be trained in a continuous domain.
We also investigate Long short-term memory (LSTM) with
DDRL-RA for predicting the airborne channel qualities in
terms of data transmission and WPT. The LSTM addresses the
partial observability of the UAV on the states of the sensors,
approximating the obscure states of unselected sensors at every
instant for DDPG implementation.

In this paper, we present the literature review in Section II.
The network model is studied in Section III. Section IV
develops DDRL-RA to train the flight resource allocation at
the UAV. In Section V, datasets of channel gains are collected
from a UAV-ground sensor testbed, and the performance is
evaluated. We conclude this paper in Section VI.

II. RELATED WORK

In [12], the ground nodes’ utilities are adjusted to determine
a packet delivery and energy transfer policy for the UAV.
Graph-based Markov Decision Process is used to formulate
the problem. A mean-field approximation algorithm is studied
to choose the best policy for each system state. The UAV’s
flight trajectory can be designed to increase the minimum

received energy among all ground sensors given the maximum
UAV flying speed limit [13]. The UAV-speed-constrained
trajectory can be transformed into an equivalent UAV-speed-
free problem, which is solved via Lagrange dual method. UAV-
aided WPT is used to charge the ground sensors in [14]. Given
different deployment of the ground sensors, the location of
the UAV is designed to improve the sum harvested energy of
the ground sensors, according to the power consumption of
the UAV. In [15], the UAV’s trajectory planning and ground
sensors’ scheduling scheme is studied to satisfy UAV’s flying
constraints from two WPT perspectives, i.e. the sum harvested
energy of all ground sensors and the minimum received energy
among all ground sensors. A resource allocation algorithm is
presented to solve the problem by alternately adjusting wake-
up scheduling of the ground sensor according to the UAV
trajectory plan. A radio-map-based design approach is studied
in [16], in which the UAV exploits the information of channel
propagation environments for finding waypoints of the UAV.
The objective is to increase the minimum energy transferred
to all ground sensors over a particular charging duration. A
basic two-ground sensor scenario is considered in [17]. The
UAV’s trajectory is designed to improve the amount of energy
transferred to the two ground sensors during a given charging
period. It shows that when the distance between the two
sensors is smaller than a certain threshold, the boundary of
the energy region is found when the UAV hovers above a
fixed location between them.

Some preliminary results of using a DDPG-based trajectory
planning are presented in our recent work [18], where actions
of the UAV are trained without the channel prediction. Dif-
ferent from previous works that only provided solutions based
on known knowledge of the network, this paper focuses on a
practical scenario where the UAV has no a-priori knowledge
on the network state. A new data-driven deep reinforcement
learning is developed to exploit DDPG with LSTM to train
the trajectory and the scheduling of data collection and WPT.

III. FLIGHT, CHANNEL, AND WPT MODELS

In this section, we study the flight, channel, and WPT
models of the considered UAV-aided WPSN.

A. Flight model of the UAV

We denote the location of the UAV as (x(t), y(t), z) on
a Cartesian plane, and the altitude of the UAV maintains at
z [19]. The patrol speed of the UAV is v(t), and we have

Vmin ≤ |v(t)| ≤ Vmax, (1)

where Vmin and Vmax represent the minimum and the max-
imum speeds, respectively. Moreover, the UAV can conduct
∆v(t) to accelerate the flight from (x(t), y(t), z) to (x(t +



1), y(t + 1), z), where the timespan is ∆t. As the angular
velocity of the UAV is θ(t)/∆t, we have

∆v(t) = θ(t)/∆t× c, (2)

where θ(t) ∈ (0, 180◦] and c is the distance between the
circle centre and the position of the UAV. The accelera-
tion/deceleration of the UAV fulfills

(Vmin − Vmax) ≤ ∆v(t) ≤ (Vmax − Vmin), (3)

where ∆v(t) < 0 stands for the deceleration, and ∆v(t) ≥ 0

is for the acceleration.
Thus,

(Vmin − Vmax) ≤ θ(t)/∆t× c ≤ (Vmax − Vmin). (4)

Given the maximum speed Vmax = 15m/s for most of
commercial UAVs, we assume θ(t) ∈ (0◦, 15◦], where c = 1m
and ∆t = 1s.

We consider the smooth turn mobility model of the UAV
with aeronautics and practicality consideration. Fig. 2 illus-
trates the flight model of the UAV, where θ(t) is a turning
angle at time t, and the coordinates of the circle centre at
time t are (xo(t), yo(t), z). Thus, we have [20]

θ(t) = arctan
( y(t+ 1)− yo(t)
x(t+ 1)− xo(t)

)
− arctan

( y(t)− yo(t)
x(t)− xo(t)

)
(5)

Particularly, it is assumed that the UAV does not move
backward. The UAV flies along a trajectory, where the instan-
taneous heading of the UAV is adjusted online according to
the proposed DDRL-RA framework. The details are provided
in the next section.

B. UAV-ground channels

Given constant Sigmoid parameters a and b, the LoS prob-
ability of the UAV-ground channel is

PrLoS(t) =
1

1 + a exp(−b[ϕi(t)− a])
. (6)

Let ϕi(t) denote an elevation angle of sensor i [21]. The path
loss of the data transmission to the UAV is

hi(t) = PrLoS(ϕi(t))(ηLoS − ηNLoS) + 20 log(R secϕi(t))

+ 20 log(fc) + 20 log(4π/vc) + ηNLoS (7)

where the radius of the communication range of the UAV is
R. The radio frequency is fc, and vc gives the speed of light.
ηLoS is the excessive path loss of LoS, and ηNLoS is the non-
LoS one, where their values can be set for different application
scenarios [22].

The UAV and the ground sensor can carry out channel
reciprocity to be aware of the complex coefficient of the
reciprocal UAV-ground channel. We denote the data rate and
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Fig. 2: The flight model of the UAV.

transmit power of sensor i as ri(t) and Pi(t), respectively.
According to [23], we have

Pi(t) ≈
κ−12 ln κ1

ε

‖hi(t)‖2
(2ri(t) − 1), (8)

where κ1 and κ2 are two channel constants, and ‖ · ‖ denotes
norm.

C. WPT model

The distance between the UAV and sensor i along the flight
trajectory at t is qi(t). The WPT transceiver alignment between
the UAV and the ground sensor is γi(t). The WPT efficiency
factor φ(qi(t), γi(t)) depends on the distance between the
UAV and the ground sensor, as well as the WPT transceiver
alignment. Thus, the power transferred from the UAV to the
ground sensor via WPT can be given by

P̃i(t) = φ(qi(t), γi(t))P
tx
UAV‖hi(t)‖2, (9)

where P txUAV is the transmit power at the UAV on WPT.

IV. DATA-DRIVEN DEEP REINFORCEMENT LEARNING

In this section, the data-driven deep reinforcement learning,
DDRL-RA is developed, which minimizes data losses due to
buffer overflows and time-varying channels.

A. Problem formulation

Suppose that the number of ground sensors in the WPSN is
N , where sensor i ∈ [1, N ]. E denotes the battery capacity of
the sensors, and the battery energy of sensor i has ei(t) ≤ E.
Sensor i experiences random data arrivals, and the data to
be transmitted is buffered in the queue. The number of data
packets in the queue of sensor i is di(t) ∈ [1, D]. The buffers
are finite with capacity of D, and the new data arrivals have to
be dropped if di(t) > D and start overflowing. The network
state contains ei(t), di(t), eUAV(t), (x(t), y(t), z), and hi(t),
where i ∈ [1, N ]. Therefore, the battery energy of the UAV at
t is

eUAV(t) = eUAV(t− 1) + ∆eUAV(t)−∆EUAV(t), (10)

∆EUAV(t) = P̃i(t) ∗ t, (11)



where ∆EUAV(t) denotes the energy consumption on WPT,
and ∆eUAV(t) is the amount of energy that the UAV harvests
from its onboard solar panels.

At network state St, the UAV can conduct an action to
determine the next location, i.e., (x′(St), y

′(St), z), and select
a ground sensor to transmit data. Thus, the action can be given
by

ut = ((x′(St), y
′(St), z), it), (12)

where it denotes the selected sensor ID. When an action
ut is carried out at St, the packet loss can be measured as
C{St+1|St, ut}, i.e., network costs, and the next state is St+1.

B. Data-driven deep reinforcement learning

Fig. 3 depicts the proposed DDRL-RA, where LSTM is used
to predict the time-varying channel fading in the environment.
With the future network state prediction, DDPG optimizes
the instantaneous heading of the UAV and sensor selection.
DDRL-RA concurrently learns an action-value function and
a policy. DDRL-RA utilizes an Actor-Critic architecture to
combine the value iteration and the policy iteration to im-
plement the proposition of the continuous state space and
the continuous action space by using deep reinforcement
learning. This is different from deep Q-networks (DQN) which
focus on a discrete action space. Moreover, DDRL-RA can
enlarge the continuous state and action space while minimizing
C{St+1|St, ut} compared with reinforcement learning which
suffers from the well-known curse of dimensionality [24].
The experience tuple

(
St, St+1, ut, C{St+1|St, ut}

)
at each

training step can be stored at the onboard replay memory
at the UAV. Let it denote the selected ground sensor at
state St. The network state that the UAV can observe is
{eUAV(St), bit(St), hit(St), dit(St), (x(St), y(St), z)}.

The action ut can be optimized by a gradient-assisted
training µ{St}. Specifically, an actor neural network decides
(x′(t), y′(t), z) and the scheduled sensor it (1 ≤ it ≤ N) to
train µ{St}. A critic neural network is trained to approximate
the optimal action-value function Q{St, ut} to obtain the
expected overall data loss. Moreover, µ{St|wµ} provides the
flight resource allocation policy of the actor neural network.
µ′{St|wµ′} is the target policy in the actor neural network.
wµ and wµ′ define the weights with regards to the policies
training. The approximation loss ∆loss can be minimized by
adjusting the weights wQ in the critic neural network.

Since the time-varying channel fading leads to unknown
network state transitions, the Actor-Critic architecture suf-
fers from learning uncertainties, which reduces the train-
ing accuracy of the actions. Particularly, the DDRL-RA is
carried out onboard at the UAV, where the network states
are not fully observable. It can only make the observa-
tion of the UAV itself and the selected ground sensor, i.e.,

Actor neural 
network

experience: 
(St, St+1, ut, 

C{St+1| St, ut})

Replay 
memory 

Target networkupdate

Critic neural 
network

Target networkupdate

Actions ut

Gradients of the 
DDPG policy

Min(Δloss)update

Shidt

Q {St,ut}
Q’{…}

network state St

LSTM predicts network 
state dynamics
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battery 
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data buffer 
lengths

battery 
levels

location

Fig. 3: The architecture of DDRL-RA, where LSTM is used
to predict the time-varying channel fading in the environment,
while DDPG optimizes the instantaneous heading of the UAV
and sensor selection.

{eUAV(St), bit(St), hit(St), dit(St), (x(St), y(St), z)}. As a
result, the deep reinforcement learning accuracy can be com-
promised. To address this issue, LSTM is developed with
DDRL-RA to predict the unobservable network states. The
network state prediction achieved by LSTM is feed into the
training environment of the DDPG. The output of the LSTM
gives hidden states Shid

t . The hidden state depends on the
network activation in the previous time steps. Thus, LSTM is
suitable for the proposed flight resource allocation problem, in
which we wish to extract useful features from the actions of
the UAV and predicted state dynamics, and reduce our state
space.

V. DATASETS AND PERFORMANCE EVALUATION

Datasets of channel gains are presented in this section, and
the proposed DDRL-RA is implemented on Google Tensor-
Flow. For performance evaluation, the packet loss is shown in
accordance to the training episodes.

A. Datasets of channel gains

As shown in Fig. 4(a), a UAV is employed to communicate
with a ground sensor to measure the channel gain, where the
UAV patrols along a predetermined trajectory and broadcasts
beacon packets to the ground sensor. Fig. 4(b) shows the
dataset that records the link qualities between the UAV and
the ground node. In particular, the link quality drops when the
UAV moves away from the ground sensor.

The collected datasets of channel gains are used to train the
proposed DDRL-RA, which enables LSTM for predicting the
time-changing channel fading. The dataset is firstly normalized
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Fig. 4: A real-world UAV patrols along its trajectory while broadcasting beacon packets to the ground sensor (as shown in
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by MinMaxScaler() in TensorFlow. Next, the LSTM model is
implemented by Sequential() in Keras to predict the future
channel gain. In addition, the LSTM model is configured
by LSTM model.compile (loss = ‘mean squared error’, opti-
mizer = ‘adam’), which applies adam optimizer in TensorFlow
for minimizing ∆loss.

B. Performance of DDRL-RA

Fig. 5(a), (b), and (c) study the cruise routes of the UAV
in terms of training duration of LSTM and DDPG. It is

observed that DDRL-RA can adjust the cruise control onboard
at the UAV in the continuous action space. The actions of
(x′(St), y

′(St), z) and it for data collection and WPT are
constantly optimized. In Fig. 5(a), as the experience in the
replay memory is not ample, the trajectory of the UAV and
sensor selection are hardly optimized given a small number of
LSTM epochs and learning iterations. In Fig. 5(b), the training
of LSTM and DDPG is extended to 500 and 100, respectively.
The UAV starts to adjust the flight to schedule more ground
sensors for data transmission and WPT. In Fig. 5(c), since
the training of DDRL-RA is extended, LSTM and DDPG are
sufficiently trained for minimizing ∆loss.

Fig. 6 plots the packet loss rate of the DDRL-RA, DDRL-
RA without LSTM, and DQN-based solution. The number
of sensors increases from 50 to 300. More ground sensors
will keep the data in the queue and wait for the UAV, until
the sensor that is scheduled finishes the data transmission
and WPT. As a result, the packet loss rate increases steadily
with the growth of the WPSN size. In the case of actor-critic
based policies such as DDRL-RA and DDRL-RA without
LSTM, their packet loss rates are similar when N ≤ 150

sensors. Moreover, the packet loss rate of DDRL-RA is about
15% and 19% lower than the DDRL-RA without LSTM and



DQN-based one when N = 300. This is because LSTM of
DDRL-RA predicts the channel dynamics of all the ground
sensors, which efficiently adapts the sensor selection for data
transmission and WPT to reduce the data packet loss.

VI. CONCLUSION

This paper studied a data-driven deep reinforcement learn-
ing to train resource allocation in UAV-aided WPSN for
minimizing the data loss. The proposed DDRL-RA lever-
aged LSTM to predict channel randomness while DDPG is
developed to determine the UAV’s trajectory as well as the
scheduling of data transmission and WPT. A UAV-ground
sensor testbed was built, which measures the link quality of the
UAV-ground channel in real world. The collected experimental
datasets were utilized to train the LSTM. DDRL-RA was
implemented on Tensorflow, and numerical results showed that
DDRL-RA achieves 19% lower packet loss than other deep
reinforcement learning frameworks.
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