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Abstract—Unmanned aerial vehicles (UAVs) can be employed
to collect sensory data in remote wireless sensor networks (WSN).
Due to UAV’s maneuvering, scheduling a sensor device to trans-
mit data can overflow data buffers of the unscheduled ground
devices. Moreover, lossy airborne channels can result in packet
reception errors at the scheduled sensor. This paper proposes a
new deep reinforcement learning based flight resource allocation
framework (DeFRA) to minimize the overall data packet loss in
a continuous action space. DeFRA is based on Deep Determin-
istic Policy Gradient (DDPG), optimally controls instantaneous
headings and speeds of the UAV, and selects the ground device
for data collection. Furthermore, a state characterization layer,
leveraging long short-term memory (LSTM), is developed to
predict network dynamics, resulting from time-varying airborne
channels and energy arrivals at the ground devices. To validate
the effectiveness of DeFRA, experimental data collected from a
real-world UAV testbed and energy harvesting WSN are utilized
to train the actions of the UAV. Numerical results demonstrate
that the proposed DeFRA achieves a fast convergence while
reducing the packet loss by over 15%, as compared to existing
deep reinforcement learning solutions.

Index Terms—Unmanned aerial vehicles, Flight trajectory,
Resource allocation, Deep deterministic policy gradient, Long
short-term memory, Experimental datasets

I. INTRODUCTION

W IRELESS sensor networks (WSN) have been widely
studied for sustainable monitoring of remote, human-

unfriendly environments, e.g., rural farmlands, forest, or dis-
aster stricken areas [1]. In such harsh environments, terrestrial
cellular infrastructures are unavailable or unreliable due to the
lack of power supplies [2], [3]. Exploiting unmanned aerial
vehicles (UAVs) as aerial data collectors for distributed ground
devices can bring significant benefits in WSN [4]. A UAV can
freely maneuver at high/low altitudes to achieve a line-of-sight
(LoS) link with ground devices, thereby enabling a high data
rate for the air-ground communications under all terrains [5].

Fig. 1 presents a typical UAV-assisted energy harvesting
WSN in smart farming, where sensing devices monitor crop
growth in a remote farmland, e.g., precipitation changes, soil
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Fig. 1: A typical UAV-assisted WSN is deployed for monitoring crop
growth conditions in smart farming. The UAV continually adjusts its
heading and the cruising velocity along the trajectory, while selecting
the ground devices to transmit data.

moisture and acidity, and environment temperature [6]. The
ground sensing device can be equipped with sun powered
boards, or wind control generators, and renewable energy
harvested from surroundings is used to energize its battery [7].
The harvested energy is stored to continue operation when
the energy sources are not available [8]. Sensory data of the
ground device is queued in its buffer, awaiting to be uploaded
to the UAV. The UAV equipped with an inertial measurement
unit (consisting of three-axis accelerometers, gyroscopes, and
magnetometers) and a radio transceiver is employed to patrol
over the target farmland. It can also be equipped with solar
panels to charge its onboard lightweight rechargeable batter-
ies [9]. Moreover, the UAV changes adaptively its heading and
cruising velocity along the flight trajectory, while the ground
devices are scheduled by the UAV to transmit data [10].

Due to time-varying data arrivals, the data queue lengths of
the ground devices can be substantially different from each
other. The ground device scheduled by the UAV for data
collection has a short queue length, while other unscheduled
ground devices can suffer from buffer overflows. The unsched-
uled ground devices may have to drop the newly arrived data
if their buffers are already full. Moreover, scheduling a ground
device, which undergoes a poor link quality, results in packet
transmission errors.
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The battery levels and capacities of the ground devices and
the UAV have a strong impact on the design of flight control.
On the one hand, the flight of the UAV is powered by its
battery, and so is the transmission of a ground device. On the
other hand, the batteries of the UAV and ground devices are
recharged by renewable sources, and the energy harvesting
(i.e., recharging) processes are stochastic processes. In this
sense, the flight trajectory of the UAV and its communication
schedule with the ground devices heavily rely on the energy
harvesting processes of the UAV and ground devices, while the
energy harvesting processes are reflected by the changes of the
battery levels at the UAV and ground devices. For this reason,
the battery levels are important parameters for the optimization
of the flight trajectory and communication schedule. The
recharging stops when the battery levels reach the capacities
(or in other words, the batteries are fully charged).

In practical scenarios, the instantaneous information of the
data queue backlogs, battery levels, and link qualities between
the UAV and the ground device is unlikely to be known.
Therefore, it is critical to minimize data packet loss, which
is resulted from data queue overflows and packet transmission
errors, by jointly optimizing flight resource allocation (in terms
of the trajectory planning of the UAV and the data collection
scheduling).

In this paper, we investigate a deep reinforcement learning
based flight resource allocation in a continuous action space,
where network dynamics are predicted to train the actions of
the UAV. The contributions of this paper are as follows:

1) A new onboard Deep Deterministic Policy Gradient
(DDPG) based flight resource allocation framework (DeFRA)
is proposed, where the network state consists of the battery
levels and data queue backlogs of the ground devices, the
timestamps of the UAV’s visits to the devices, the battery
levels of the UAV, and channel conditions between the ground
devices and the UAV. DeFRA continuously learns online the
actions of the UAV, i.e., its instantaneous heading, speed and
selection of ground devices for data collection.

2) A new state characterization layer based on long short-
term memory (LSTM) is developed in DeFRA to predict the
time-varying airborne channels, energy and data arrivals at
ground devices. The prediction is based on the reports of the
ground devices when they are selected for data collection. The
LSTM layer addresses the partial observability of the UAV on
the states of the devices, approximating the obscure states of
unselected devices at every instant for DDPG implementation.
This is the first effort, to the best of our knowledge, to explore
LSTM with DDPG to optimize the flight resource allocation
to minimize data packet loss.

3) DeFRA is implemented in Google TensorFlow with
Python 3.5. Experimental data of airborne channels and energy
arrivals at the ground devices are collected from a real-world
UAV testbed and energy harvesting-powered sensors. The state
characterization layer enables the actions of the UAV to be
trained in the presence of real-world network dynamics. The
effectiveness of DeFRA is validated with the experimental
data. Numerical results show that DeFRA achieves fast con-
vergence while reducing the packet loss by over 14%, as
compared to existing deep reinforcement learning solutions.

The rest of this paper is structured as follows. The related
work on the UAV-assisted WSN and reinforcement learning
based UAV networks is reviewed in Section II. Section III
presents the system model. In Section IV, DeFRA is proposed
to optimize the flight resource allocation. Section V demon-
strates testbed setup, datasets collection, and numerical results.
Section VI concludes the paper.

II. RELATED WORK

This section reviews the related work on flight resource
allocation in UAV-assisted WSNs.

A. UAV-assisted data collection

In [11], a nonorthogonal multiple access (NOMA)-based
UAV-assisted data collection protocol is studied to improve
the sum rate of multiple ground devices. The placement of the
UAV is determined according to a channel hypergraph based
sensor grouping and power control of NOMA. The UAV’s
flight trajectory, altitude, velocity, and data links with ground
devices are designed in [12] to reduce the mission completion
time of the UAV, where trajectory planning is modeled as a
classic traveling salesman problem and the ground devices
are divided into groups. A trajectory planning algorithm is
developed to generate a visit order of the ground devices
based on the groups. The authors of [13] aim to reduce the
age of information in a UAV-assisted WSN, which consists of
the data uploading time and the time elapsed since the UAV
receives the data. A ground device association and trajectory
planning strategy is developed to balance the uploading time
and the UAV’s cruising time. A trajectory planning strategy
is studied to reduce the energy consumption of the UAV
and/or ground devices, while accomplishing a data gathering
tour [14]. The communication scheduling is formulated as a
clustering problem, where the trajectory is planned by using
a traveling salesman problem solution. In [15], probabilistic
LoS channel models are used in the flight resource allocation
to improve the average data collection rate. A hybrid offline-
online method is studied to design the UAV’s trajectory in an
offline phase, while scheduling the transmission of the ground
devices in an online phase.

The UAV is used as a flying data collector and wireless
power source in UAV-assisted WSN, in [16]. The hovering
waypoints and duration of the UAV are designed to extend
the network lifetime under data collection and UAV energy
consumption constraints. In [17], a TDMA-based scheduling
model is developed to allow parallel transmissions of multi-
ple wireless powered ground devices to improve the energy
efficiency of the UAV. The scheduling model also allocates
resources for clustering the ground devices, and determines the
hovering time of the UAV and the wireless powering duration.

B. Reinforcement learning-based UAV networks

In [18], a UAV is employed as a jammer to help the legit-
imate UAV transmitter defend against ground eavesdroppers,
where the legitimate UAV transmitter sends confidential infor-
mation to the ground devices. The UAV jammer sends artificial
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noise signals to the ground eavesdropper. Deep reinforcement
learning is used to improve the secure capacity by learning
the trajectory of the UAV, the transmit power and the jamming
power. A reinforcement learning based training environment is
developed for the altitude control of the UAV [19]. A learning
architecture is presented, which utilizes a digital twin layer to
reduce the effort required to implement the trained controllers.

Energy-efficient trajectory planning of a UAV is studied
to provide fair communication coverage for the ground de-
vices [20]. The trajectory planning is modeled by using mean
field theory with a large state space. Since the trajectory
planning of the UAV requires complex control strategies, deep
reinforcement learning is applied to solve the problem for
practical applications. Energy-efficient trajectory planning is
also studied in edge computing networks to improve data
freshness and accessibility to ground devices [21]. Deep rein-
forcement learning with experience replay is used to solve the
energy-efficient UAV navigation problem under the constraints
of the trajectory and age of information. Deep reinforcement
learning is also used in [22] to improve the communication
coverage, energy efficiency and connectivity of UAV networks.

In our earlier works [23], [24], scheduling strategies of a
UAV are obtained by deep reinforcement learning to minimize
the packet loss of a WSN, with consideration of battery
levels and data queue lengths of ground devices. The training
environment of deep reinforcement learning is generated by
using a deep feed-forward neural network to approximate the
Q-function for action inference. In [23], a DDPG based flight
control scheme is developed in which the UAV carries out the
trajectory planning actions in a continuous space. In [24], a
deep Q-network (DQN) is used to determine the next waypoint
of the UAV in a discrete action space, and the transmit powers
of the ground devices.

In contrast, this paper focuses on a new deep reinforcement
learning framework, where the state characterization layer is
integrated with DDPG to learn online the actions of the UAV
with real-world datasets of network dynamics. Particularly, the
state characterization layer exploits a recurrent neural network
(RNN), i.e., LSTM [25], to predict the time-varying channel
conditions, data and energy arrivals at the ground devices
for accurately training the DDPG. In addition, the solutions
developed in [23] and [24] are simulated as benchmarks in this
paper to assess the performance achievements of the proposed
DeFRA, as will be shown in Section V.

III. SYSTEM MODEL

In this section, we present the system model of the con-
sidered UAV-assisted WSN. Notations used in this paper are
summarized in Table I.
N ground devices (i ∈ [1, N ]) are deployed in a remote

area of interest. Renewable energy, e.g., solar power, can be
harvested to charge the battery of the ground device. Let
bi(t) ≤ E denote the battery level of device i at t, where
E (in Joules) is the battery capacity of the ground device.
Onboard sensors of the UAV can measure the battery level of
the UAV, denoted by bUAV(t).

The data queue length of the ground device is Q (in
packets). The queue length at time t is qi(t) ∈ [1,Q]. The

TABLE I: Notation and definition

Notations Definitions
N number of ground devices
qi(t) buffer length of i
bi(t) battery levels of i at time t
Q buffer size of the ground device
γi(t) timespan of the ground device
v(t) patrol velocity of the UAV
bUAV(t) battery levels of the UAV
gi(t) link quality between the UAV and the ground device
δ discount factor
aα actions of the UAV at state α
α, β network states
M number of episodes
ζepisode random process for action exploration
K size of the minibacth in experience replay

sensory data are randomly generated, thus, data arrivals at
the ground devices are random with an unknown Poisson
distribution. The data are queued in the buffer, and await to be
collected by the UAV, following a first-in-first-out discipline.
With the finite buffer size of the device, the newly arrived
data packets have to be dropped if qi(t) = Q, i.e., the buffer
overflows.

The UAV maneuvers at a low altitude over the targeted
field to collect the sensory data, where the LoS probability
between the UAV and the ground devices can be known
in [26]. Moreover, the UAV and the ground devices can apply
channel reciprocity [27] to obtain the channel gain, once a
ground device is scheduled to transmit. The transmit power
of a ground device is a function of its transmit rate and its
channel gain to the UAV [28], [29].

The coordinate of the UAV is (x(t), y(t), z), and the UAV
remains at the altitude of z meters [30]. With a safety
consideration, the instantaneous speed of the UAV, denoted
by v(t), has to be between the minimum and the maximum
speeds, i.e.,

Vmin < |v(t)| ≤ Vmax. (1)

Moreover, ∆v(t) and ∆t are the acceleration of the UAV
and the time for the UAV to fly from (x(t), y(t), z) to
(x(t+1), y(t+1), z), respectively. The UAV is assumed not to
move backward. The instantaneous speed and heading of the
UAV are adjusted online according to the proposed DeFRA
framework. The details are provided in the next section.

Furthermore, the propulsion energy consumption of the
UAV can be obtained by [31]

∆EUAV(t) =P0

(
1 +

3v(t)2

ω(t)2

)
+ P ′0

(√
1 +

v(t)4

4v40
− v(t)2

2v20

)1/2
+

1

2
ξdragρairξrotorSrotorv(t)3 (2)

where P0 and P ′0 are constants. ω(t) is the tip speed of
the rotor blade. v0 is the mean rotor induced velocity in
hover. ξdrag and ξrotor denote the fuselage drag ratio and rotor
solidity, respectively. ρair and Srotor denote the air density and
rotor disc area, respectively.
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IV. DEEP REINFORCEMENT LEARNING-BASED FLIGHT
CONTROL AND RESOURCE ALLOCATION

In this section, we formulate the continuous online control
problem of the UAV’s flight and communication schedule. The
proposed DeFRA employs onboard DDPG to minimize the
overall data loss of the ground devices, where the instanta-
neous heading and speed of the UAV, and the selection of
the ground devices are trained and optimized in a continuous
action space. An LSTM-based state characterization layer is
developed in DeFRA to help effectively predict the unobserv-
able states of all ground devices, i.e., time-varying energy
harvesting, data arrivals, and channel conditions, when the
ground devices are beyond the coverage of the UAV.

A. State, Action, and Reward

Let bi(t) and qi(t) represent the battery level and the
data buffer length of device i, respectively. gi(t) denotes the
channel gain between the UAV and the ground device at time
t. A device, e.g., the i-th ground device, is scheduled by the
UAV to transmit data at time slot t. For estimating the energy
and data arrivals at the unscheduled ground devices, a timespan
parameter (denoted by γi(t)) is maintained at the UAV for the
ground devices. γi(t) increases by 1 if ground device i is not
scheduled by the UAV; or γi(t) returns to 0, otherwise.

The joint control of the UAV’s maneuver and the commu-
nication schedule is a Markov decision process (MDP) in the
presence of time-varying energy harvesting, packet arrival, and
channel fading. The network state of the MDP consists of bi(t)
and qi(t) (i ∈ [1, N ]) of all ground devices, and bUAV(t),
(x(t), y(t), z), γi(t) and gi(t) of the UAV. The network state
α can be given by

α = {bUAV(t), bi(t), qi(t), gi(t),γi(t), (x(t), y(t), z);

∀i ∈ [1, N ]}. (3)

Therefore, we have the battery level of the UAV at time t,
which gives

bUAV(t) = bUAV(t− 1) + ∆bUAV(t)−∆EUAV(t), (4)

where ∆bUAV(t) is the harvested solar power of the UAV at t.
In particular, let BUAV denote the battery level threshold for
the UAV to return to the charging station. The UAV is required
to hold the constraint bUAV(t) ≥ BUAV. ∆EUAV(t) is the
energy consumption of the UAV; see (2). Since ∆EUAV(t)
depends on the speed v(t) of the UAV, the battery level of
the UAV bUAV(t) in the network state depends on the cruise
control of the UAV.

At state α, the action of the UAV, including the next location
and speed of the UAV and the selected ground device for data
collection, is written as

aα = ((x′(α), y′(α), z), (vx(α), vy(α)), iα), (5)

where (x′(α), y′(α), z) is the next location of the UAV.
(vx(α), vy(α)) is projection of the speed of the UAV on x
or y plane at state α. iα indicates the selected ground device
at state α. aα ∈ A, and A collects all actions that the UAV
can take to optimize the next location and speed of the UAV
and the selected ground device for data collection.

The reward (or penalty) L{β|α, aα} measures the packet
loss when the UAV carries out action aα and the network state
transits from α to β. In other words, L{β|α, aα} computes the
number of dropped or lost packets during the state transition,
resulting from both buffer overflows and channel fading.

B. Onboard DDPG

The proposed DeFRA is depicted in Fig. 2, which consists
of the DDPG-based onboard deep reinforcement learning and
the LSTM-based state characterization layer. DeFRA leverages
the actor-critic neural network structure to develop the DDPG-
based onboard deep reinforcement learning [32]. DeFRA trains
the DDPG onboard at the UAV to optimize instantaneous
heading and speed of the UAV, and the selection of the ground
devices in a continuous action space, where the UAV has no
a-priori information on the state transition probabilities, i.e.,
Pr{β|α}. The packet loss of all ground devices (i.e., network
cost) is minimized over the large, continuous state and action
spaces.

DDPG applies a policy gradient scheme that applies a
stochastic behavior policy for exploration but estimates a
deterministic target policy. The deterministic policy gradients
of the DDPG enable to optimally update the current policy
by deterministically mapping network states to a specific
action of the UAV. Moreover, the replay memory of the UAV,
denoted by ∆replay, is used to store the experience tuple(
α, β, aα, L{β|α, aα}

)
at each training step. K minibatches

of experience are randomly sampled from ∆replay to train the
DDPG onboard along with state α of the environment.

The UAV can only observe the states of itself and
its scheduled ground device at any moment, includ-
ing its data buffer lengths, battery levels, and chan-
nel gains. With ground device iα selected at state α,
the observed part of the network state at the UAV is
{bUAV(α), biα(α), qiα(α), giα(α), (x(α), y(α), z)}. The UAV
evaluates the packet loss resulting from the device selection,
based on the observed part of the network state. An experience
replay from the replay memory in the DDPG complements
the remaining part of the network state, i.e., the states of the
unselected ground nodes at state α, which cannot be observed
instantaneously at the UAV. The historical records in the
experience replay memory (or predictions derived from a new
LSTM-based characterization layer, as will be described in
Section IV-C) have to be utilized for the packet loss evaluation.
With the experience replay of the unscheduled ground devices
(in addition to the observations of the selected ground devices),
the UAV approximates the new states of the ground devices,
evaluates lost data packets, and generate a piece of training
experience.

With the continuous flight resource allocation, the action-
value function Q{αt, aα} is differentiable in respect of the
actions of the UAV. This allows for the setup of a gradient-
assisted training µ{αt} to optimize the action of the UAV.
Instead of to minimize Q{αt, aα}, In particular, the proposed
DeFRA approximates the optimal actions of the UAV for the
flight resource allocation with Q{αt, µ{αt}}, which refrains
from exhaustively evaluating all the actions in DDPG.
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Fig. 2: The architecture of DeFRA, where the new state characterization layer predicts the time-varying network dynamics in the environment,
while the onboard DDPG optimizes the continuous flight resource allocation.

To obtain µ{αt}, the actor neural network takes the actions
of setting (x′(t), y′(t), z) and (vx(t), vy(t)), and the selection
of device it (1 ≤ it ≤ N). With the observed state α and
action aα, the optimal action-value function Q{αt, aα} is
approximated by the critic neural network, which obtains the
expected overall data loss, i.e., the network cost. We denote
µ{αt|wµ} and µ′{αt|wµ′} as the flight control and device
selection policy of the actor neural network, and the target
actor’s policy, respectively. wµ and wµ′ are their weights for
the policy update. Fig. 2 depicts that the optimal Q{αk, aαk}
is learned by the critic neural network, where K samples
are taken from the experience memory. By adjusting the
weight of the critic neural network wQ, the critic neural
network minimizes the approximation loss Φloss to minimize
the following Bellman equation:

Φloss =
1

K

∑
k

(
L{βk|αk, aαk}+δQ′{αk+1, µ

′{αk+1|wµ′}|

wQ′} −Q{αk, aαk |wQ}
)2
(6)

where δ is the discount factor. In the target critic neural
network, Q′{·} gives the action-value function for evaluating
the µ′{αt|wµ′}.

The onboard DDPG conducted at the UAV aims to minimize
the expected network cost, i.e., E[Q{αt, aα}]. DeFRA updates
the µ{αt|wµ} by applying the chain rule to obtain the expected
data loss. Given the initialized distribution Z according to wµ,
we define the gradient of the DDPG policy as

∇wµZ ≈ Eαt
[
∇wµQ{αt, aα|wQ}|aα=µ(αt|wµ)

]
(7)

Furthermore, Fig. 2 presents that K minibatches in the replay
memory ∆replay are used to train the actions of the UAV. Thus,

�t

� input gate

hidden state  
at t-1

Ct

�t

tanh

hidden state  
at t-1

� forget gate

hidden state  
at t

�t
hidden state  

at t-1

tanh

�
output gate

�t

hidden state  
at t-1

Fig. 3: The LSTM cell at the state characterization layer, where
the historical information of αt is taken as the input sequences. The
hidden states αhid

t are returned to make accurate prediction of the
network dynamics.

by taking an average value of the sum of the gradients from
the ∆replay, we can obtain the ∇wµZ in (7), i.e.,

∇wµZ ≈
1

K

∑
k

∇aαQ{αk, aα|wQ}|aα=µ(αk)×

∇wµµ{αk|wµ} (8)

C. LSTM-based state characterization layer

The network dynamics resulting from time-varying data ar-
rivals, energy harvesting, and channel fading, lead to unknown
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network state transitions, increase learning uncertainties, and
reduce learning accuracy. In particular, the UAV running the
DeFRA onboard cannot observe the instantaneous, complete
states of all the ground devices. It can only make the obser-
vation of a device, when the device is selected and transmits
its state information to the UAV. The incomplete knowledge
of the states of the devices can compromise the learning
efficiency and accuracy of the DDPG-based DeFRA. For this
reason, a state characterization layer is developed to predict
the states of the devices which are not observable, and feed
the predicted states into the DDPG-based decisions of flight
resource allocation. The state characterization layer is based
on LSTM.

LSTM is widely used in deep neural networks when the
input data is time-varying, because of its ability to capture
long-term (often unknown) dependencies of sequential data.
LSTM consists of cell memory that stores the summary of the
past input sequence, and the gating mechanism by which the
information flow between the input, output, and cell memory
is controlled. As shown in Fig. 2, the network states are fed
into LSTM one by one (one at each step). The last hidden
state αhid

t is returned as the output of the state characterization
layer.

Let ot, Ct, ft, and pt denote the output gate, cell activation
vectors, forget gate, and input gate of the LSTM layer at time
t, respectively. According to the LSTM cell structure in Fig. 3,
the LSTM processes the input sequence of αt by adding new
information into a memory, and using the gates that control
the extent to which new information is memorized, old infor-
mation is discarded, and current information is utilized. The
hidden states αhid

t is calculated by the following composite
function.

αhid
t = ot tanh(Ct) (9)

ot = σ(Woαt +Woα
hid
t−1 +WoCt + eo) (10)

Ct = ftCt−1 + pt tanh(Wcαt +Wcα
hid
t−1 + ec) (11)

ft = σ(Wfαt +Wfα
hid
t−1 +WfCt−1 + ef ) (12)

pt = σ(Wpαt +Wpα
hid
t−1 +WpCt−1 + ep) (13)

where σ is the logistic sigmoid function, {Wo,Wc,Wf ,Wp} ∈
RN×2N is the weight matrix, and {eo, ec, ef , ep} ∈ R is the
bias matrix.

The LSTM-based state characterization layer learns from
past observations to adjust the weight and bias to predict future
states of the devices (i.e., energy and data arrivals) and assist
with the DDPG-based decisions. As illustrated in Fig. 2, we
propose that for each ground device, an LSTM is maintained
at the UAV. Whenever the UAV selects a device, the device
reports its past and unreported states (associated with each of
the time slots since the last report of the device). The reports
are sequentially fed into to the LSTM as the input. By this
means, the LSTM can obtain the complete (yet outdated) states
of a device, based on which the future states of the device are
predicted and exported to the DDPG.

Algorithm 1 summarizes the DeFRA with the LSTM-based
characterization layer. The number of training episodes is M ,
where the length of each episode is tlearning. At every time

Algorithm 1 Training of DeFRA

1: 1. Initialize:
2: α, β ∈ S, aα ∈ A, bUAV(t), tlearning, and ∆replay.
3: The critic neural network Q{αt, aα|wQ} and the actor

neural network µ{αt|wµ}.
4: The target critic neural networks Q′ with wQ′ ← wQ. The

target actor neural network µ′ with wµ′ ← wµ.
5: The state characterization layer with {Wo,Wc,Wf ,Wp}

and {eo, ec, ef , ep}.
6: 2. Learning:
7: for episode 1, · · · ,M do
8: Train the state characterization layer based on the

datasets → αhid
t .

9: State α is observed by the UAV.
10: while t ≤ tlearning do
11: Update bUAV(t) according to Eq. (4).
12: if bUAV(t) >= BUAV then
13: The UAV carries out an action aα to set

(x′(α), y′(α), z) and (vx(α), vy(α)), and select a
ground device. aα = µ{αt|wµ}+ ζt.

14: The UAV calculates L{βt|αt, aα}. A new state
observation β is obtained.

15: (α, β, aα, L{β|α, aα})t → ∆replay.
16: K minibatches are randomly taken from the

∆replay onboard at the UAV.
17: yk = L{βk|αk, aαk} +

δQ′{αk+1, µ
′{αk+1|wµ′}|wQ′}. Minimizing

Φloss in (6).
18: Based on (8), the actor policy is updated with the

sampled policy gradients.
19: With the optimized actor policy, wQ′ ← εwQ +

(1− ε)wQ′ and wµ′ ← εwµ + (1− ε)wµ′.
20: else
21: The UAV returns to the charging station.
22: end if
23: end while
24: end for

step, the UAV takes an action aα with a random process ζt
for exploring the action space. Thus, we have

aα = µ{αt|wµ}+ ζt. (14)

∆replay is applied to store the experience of training flight con-
trol and the selection of device i, i.e., (α, β, aα, L{β|α, aα})t.
K minibatches are sampled in ∆replay to minimize Φloss.
Furthermore, DeFRA utilizes the sampled policy gradients
in (8) to update the actor policy at the UAV. As the µ{αt|wµ}
is optimized, the Q′{·} (in (6)) and µ′{αt|wµ′} onboard at the
UAV are updated by{

wQ′ ← εwQ + (1− ε)wQ′;
wµ′ ← εwµ + (1− ε)wµ′,

(15)

where the parameter ε is typically set to a small value
such that the target networks are slightly updated. In our
implementation, we set ε = 0.001.

DeFRA updates the ∆replay based on the observation and
evaluation of the actor and critic neural networks. Particularly,
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the training experience – in terms of the ground device
selection, the data loss and the state information of all the
unscheduled ground devices – is associated with the timespan
in the network state, which is added to the ∆replay. By per-
forming the experience replay, DeFRA optimizes the actions of
the UAV by learning online the latent energy and data arrival
patterns, as well as the channel dynamics between the UAV
and the ground device.

V. IMPLEMENTATION AND VALIDATION

In this section, we first present the implementation of
DeFRA on Google TensorFlow, which is a symbolic math
library based on dataflow and differentiable programming.
Numerical results show the packet loss according to the
training episodes and number of ground devices. The flight
resource allocation achieved by DeFRA is also evaluated under
different learning settings, and compared with existing deep
reinforcement learning solutions.

A. Experimental datasets for training LSTM-based state char-
acterization layer

A UAV-based communication testbed is built, as summa-
rized in [33], where the UAV (as shown in Fig. 4(a)) patrols
along a predetermined trajectory to relay sensory data of
the ground devices. Outdoor experiments are conducted to
measure the real-time channel gain between the UAV and
the ground device. Fig. 4(b) plots 2500 data samples in the
collected dataset, where the channel gains are dramatically
effected by the movement of the UAV. The channel gain
increases when the UAV gets closer to the ground device.

An energy harvesting-powered WSN [34] is deployed to
monitor surrounding environmental information. As shown in
Fig. 4(c), the sensor node is equipped with solar panels to
charge its battery. Fig. 4(d) presents the voltage readings of
the battery over 9 days. It can be observed that the battery is
periodically charged with a high energy since the solar panel
harvests energy during the day time.

The datasets of channel gains and solar charging voltages
are used to train the state characterization layer of DeFRA. The
datasets are firstly normalized in TensorFlow. Then, LSTM is
implemented in Keras (the Python deep learning library [35])
to predict the future channel gain or solar charging energy. In
addition, DDPG is configured in TensorFlow to minimize the
training loss.

B. Implementation and Training of DeFRA

We implement the proposed DeFRA in Google TensorFlow
with Python 3.5. TensorFlow is set up on a Linux workstation
with 64-bit Ubuntu 18.04. DeFRA trains the flight resource
allocation for 1000 episodes, during which a session is created
in TensorFlow to enable DDPG with 2 hidden layers. The
holder of the network state and the network cost is initialized
to feed the knowledge of the current state and the next
state to the tensors. The average loss values are computed
across dimensions of the tensor, and the loss function Φloss is
minimized. The experience replay memory with capacity of

TABLE II: Simulation parameters

Parameters Values
Battery capacity of the ground device (E) 800
Data buffer size (Q) 100
Speed limit of the UAV (Vmax) 15
Air density in kg/m3 (ρair) 1.225
Rotor disc area in m2 (Srotor) 0.79
Tip speed of the rotor blade (ω(t)) 200
Fuselage drag ratio (ξdrag) 0.3
Rotor solidity (ξrotor) 0.05
Mean rotor induced velocity in hover (v0) 7.2
Battery level threshold of the UAV (BUAV) 100
Number of episodes (M ) 1000
Discount factor (δ) 0.99

10,000 training samples is created in DDPG, and stores the
learning experiences, i.e., (current state, next states, actions
of the UAV, network cost) at every step. Furthermore, the
predicted channel gain and solar charging, which is trained
by the state characterization layer, is memorized as hidden
states, and used to update the next state in DDPG.
N ground devices (N is from 50 to 300) are uniformly

distributed in the area of interest, which is a 1,000 m ×
1,000 m square area. Each of the ground devices is equipped
with a battery with capacity of 800 Joules, and the UAV is
equipped with a battery with capacity of 250 Kilojoules. The
speed limit of the UAV is 15 m/s. The number of epochs for
training the state characterization layer is set to 10, 100, or
500. A training ratio is configured to control the amount of
data in the datasets being utilized for the LSTM training in
the state characterization layer. Moreover, the learning rate for
the actor and critic in DDPG is 0.001, while the minibatch in
∆replay has 100 samples. Table II specifies the configuration
of simulation parameters.

C. Performance of DeFRA

Fig. 5 plots the packet loss rate at each episode, given
tlearning = 100, 400 and 800. The packet loss of DeFRA is high
at the beginning of the learning process. With an increasing
number of episodes, the acquired learning experience in the
∆replay increases. The packet loss drops significantly in the
first 400 episodes, and maintains a stable value afterward.
The convergence of DeFRA is because network dynamics are
predicted by the state characterization layer while the actions
of the UAV are sufficiently trained by the actor and the critic
neural networks in DDPG. Moreover, the packet loss rate of
DeFRA (tlearning = 400 or 800) is slightly higher than the
one with tlearning = 100. The reason is that a long tlearning
extends the data generation of the ground devices, thus, more
unscheduled ground devices suffer from buffer overflows.

Fig. 6 presents the prediction accuracy of the channel
gain and energy harvesting, which is achieved by the state
characterization layer in DeFRA. The difference value is cal-
culated according to |the predicted value - the ground truth|,
where the ground truth is the source data in the datasets. In
Fig. 6(a), the state characterization layer with LSTM training
epochs = 10 has the lowest prediction accuracy of the channel
gain, while the one with 500 training epochs of the LSTM
significantly reduces the difference value to 2 dB. This is also
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Fig. 4: Datasets of channel gains and solar charging voltages are collected from the real-world UAV (as shown in (a) [33]) and
the ground sensing device (as shown in (c) [34]) to train the state characterization layer. 2500 data samples in the collected
dataset are plotted in (b), and (d) presents the voltage readings of the battery over 9 days.
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Fig. 5: Packet loss rate of DeFRA with regards to the training
episodes.

observed in Fig. 6(b), which shows the difference value of
the solar charging voltage. The LSTM training epochs = 500
achieves the lowest difference between the prediction and the
ground truth.

Fig. 7 plots the flight trajectories of the UAV with regards
to different numbers of LSTM epochs and tlearning of DDPG.
As observed, DeFRA persistently adjusts the trajectory of the
UAV, where the actions of (x′(α), y′(α), z) and (vx(α), vy(α))
are optimized in the continuous action space. In Fig. 7(a),
the state characterization layer is unlikely to make accurate
prediction of network dynamics due to a short LSTM training
time. Thus, DeFRA hardly optimizes the flight resource allo-

cation of the UAV. Moreover, a small number of tlearning in
DeFRA result in insufficient experience in the replay memory,
which gives rise to incomplete trajectory planning of the UAV.
In Fig. 7(b), by extending the training of DeFRA, the state
characterization layer and DDPG are adequately trained to
minimize the approximation loss Φloss.

D. Performance comparison

For performance comparison, we compare the proposed
DeFRA with two deep reinforcement learning based policies
and two non-learning heuristics.
• DDPG based movement control (DDPG-MC) [23].

DDPG is carried out in the continuous action space
for the trajectory planning of the UAV. Particularly, the
network states in the training environment are randomly
generated. In other words, DDPG-MC is trained with no
predicted knowledge of network dynamics, which result
from time-varying airborne channels and energy arrivals
at the ground devices.

• Deep Q-Networks based flight resource allocation policy
(DQN-FRA) [24], [36]. DQN-FRAS maintains two sep-
arate neural networks at the UAV, an evaluation DQN
and a target DQN, which are alternatively updated to
minimize the network cost. Since DQN is expected to
the low dimensional discrete action space, the trajectory
of the UAV is discretized as 50 waypoints in DQN-FRA.
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Fig. 7: The flight trajectories of the UAV with regards to different number of LSTM epochs and training iterations of DDPG.

• Channel aware waypoint selection (CAWS). This heuris-
tic assumes that the UAV is aware of a-priori knowledge
on the channel gains. The next waypoint of the UAV
is designed to fly over and schedule the ground device
which has the highest channel gain.

• Planned trajectory random scheduling (PTRS). 50 way-
points are predetermined to cover the targeted field. The
UAV moves along the fixed trajectory, while one ground
device is randomly scheduled to transmit. Namely, the
trajectory planning and communication scheduling of
PTRS are independent of the time-varying network states.

Fig. 8 plots the packet loss rate of DeFRA, DDPG-MC, and
DQN-FRA, with the increase of training episodes. Without
loss of generality, we take three representative configurations
of the proposed DeFRA. We can see that in general, DeFRA
and DDPG-MC achieve faster convergence than DQN-FRA.
DeFRA achieves the smaller packet loss under the configura-
tion of 100 LSTM epochs and the training ratio of 0.7 than
it does under the other two considered configurations. The
reason is that with more epochs and more training data, the
state characterization layer of DeFRA can predict the time-
varying channel and solar charging more effectively in the
learning environment. Therefore, DDPG trains the actions of
the UAV with the state information of all the ground devices
to minimize the packet loss.

Fig. 9 depicts the packet loss rate of DeFRA, DDPG-MC,
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Fig. 8: Packet loss rate of DeFRA, DDPG-MC, and DQN-FRA, with
regard to the training episodes.

DQN-FRA, CAWS, and PTRS, where N ∈ [50, 300]. In
general, the packet loss rate grows with the network size since
more ground devices have to buffer their data while one device
is scheduled to transmit data. The deep reinforcement learning
based policies, i.e., DeFRA, DDPG-MC, and DQN-FRA,
outperform CAWS and PTRS since the deep neural networks
explore every possible action of the UAV to minimize the
packet loss. Particularly, the actor-critic based policies, i.e.,
DeFRA and DDPG-MC, achieve similar performance when
N is smaller than 150 devices. When the number of ground
devices is 300, the packet loss rate of the proposed DeFRA is
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Fig. 9: Packet loss rate in regard to N ∈ [50, 300]. The error bar
presents the standard deviation over 20 experiments.

about 15% and 19% lower than DDPG-MC and DQN-FRA.
This is because DeFRA with the state characterization layer
learns the network state dynamics of all the ground devices.
By taking advantage of the precise prediction of LSTM, the
hidden states stored in the experience replay memory are used
to train the actions of the DDPG, which leads to the minimized
approximation loss Φloss.

DDPG-MC and DQN optimize both UAV’s trajectory and
communication schedule with the ground devices in the current
paper. In contrast, the DQN developed in [23] only optimized
the communication schedule, where the trajectory of the UAV
was given in prior.

E. Ablation study for the state characterization layer

The proposed DeFRA is compared with DDPG-MC in
which the action of the UAV is trained without the LSTM-
based state characterization layer. The other modules and
configurations remain the same as described at the beginning
of this section. Figs. 8 and 9 show that the proposed LSTM-
based state characterization layer of DeFRA can effectively
deal with the partial observability of the UAV on the states of
the ground devices in the sense that it can help approximate
the obscure states of unselected devices at every instant for
the follow-on DDPG operation. Particularly, DeFRA with the
LSTM-based state characterization layer achieves 15% lower
packet loss rate than DDPG-MC, since historical information
can be encoded in the hidden state of the LSTM cell to
help make accurate prediction. DeFRA takes advantage of the
prediction of the network states to train the actions of the
UAV. Furthermore, the state characterization layer accelerates
the convergence of DeFRA. This is due to the fact that the
predicted network states enrich the training environment of
DDPG, and the training time of the actor and the critic neural
networks is shortened.

VI. CONCLUSIONS

This paper developed a new deep reinforcement learning
based flight resource allocation framework, namely DeFRA,
to minimize the overall data packet loss in a continuous
action space. DeFRA based on DDPG jointly optimizes the
instantaneous heading and cruising speed of the UAV, as well
as the selection of ground devices for data collection. The

new state characterization layer leverages LSTM to predict
the time-varying airborne channels, and the data and energy
arrivals at the ground devices. Experimental data was collected
from the real-world UAV testbed and the energy harvesting-
powered WSN, and utilized to train the actions of the UAV.
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