
Adaptive Load Balancing for Parallel IDS on
Multi-Core Systems using Prioritized Flows

Tobias Limmer∗ and Falko Dressler†

∗Dept. of Computer Science, University of Erlangen, Germany
†Institute of Computer Science, University of Innsbruck, Austria

limmer@cs.fau.de, dressler@ieee.org

Abstract—We describe a load balancing system for parallel
intrusion detection on multi-core systems using a novel model
allowing fine-grained selection of the network traffic to be ana-
lyzed. The system receives data from a network and distributes
it to multiple Intrusion Detection Systems (IDSs) running on
individual CPU cores. In contrast to related approaches, we do
not assume a static association of flows to IDS processes but
adaptively determine the load of each IDS process to allocate
network flows for a limited time window. We developed a priority
model for the selection of network data and the assignment
process. Special emphasis is given to environments with highly
dynamic network traffic, where only a fraction of all data can
be analyzed due to system constraints. We show that IDSs
analyzing packet payload data disproportionately suffer from
random packet drops due to overload. Our proposed system
ensures loss-free analysis for selected data streams in a specified
time interval. Our primary focus lies on the treatment of dynamic
network behavior: neither data should be lost unintentionally,
nor analysis processes should be needlessly idle. To evaluate
the priority model and assignment systems, we implemented a
prototype and evaluated it with real network traffic.

I. INTRODUCTION

The analysis of network traffic has become common practice
in current networks. Depending on the use case of the analysis,
methods require different levels of aggregation for input data.
Typical examples include simple metering for accounting and
billing purposes, network flow analysis for the estimation of
traffic properties, and Deep Packet Inspection (DPI) or anomaly
detection in the field of network security [1]. One of the
computationally most expensive methods currently in use is
payload-based detection, in use in Intrusion Detection Systems
(IDSs) such as Snort. Even though network link speeds of
10GBit/s are becoming common in modern networks, such
payload-based IDSs already struggle to cope with a tenth of
that speed [2]. More complex analyses like virus and spam
detection are simply not possible at those data rates. In the
scope of this paper, we study the applicability of payload-based
intrusion detection in high-speed networks, which, according
to the mentioned performance limitations, is not possible for
each individual packet.

In previous years, Moore’s law ensured steadily increasing
processing speeds of CPU cores, so that single IDS instances
were able to process increasing amounts of data. With the
spread of multi-core CPUs, processing capabilities have been
further advanced and overall performance of multi-core systems
shows excellent performance increases [3]. To exploit the power

of multi-core systems, IDSs have been parallelized and the
incoming network traffic is distributed by a load balancer to
individual instances for further analysis [3]–[6]. According
to Amdahl’s law, high performance advantages from parallel
processing are unlikely if fine-grained coordination between
the parallel tasks is required. Therefore, one of those instances
typically represents a fully self-contained IDS.

Assuming a realistic data processing performance of about
200MBit/s for a single IDS instance running Snort with a
common ruleset, at least 100(!) instances would be needed to
process a fully loaded 10GBit/s duplex link without data loss.
To distribute incoming data to parallel IDS instances, static
hashing is commonly used [4]. This approach heavily relies
on the hash function to distribute traffic evenly to all available
instances. In dynamic environments, such a static assignment
will not keep a balanced configuration. So, several approaches
have been introduced in the past to dynamically adjust to
changes [7]. This concept works very well in scenarios where
incoming data rates can easily be processed by all available
IDS instances. However, if network data rates become too high,
packets will be randomly dropped by the system.

The challenging problem is to operate an IDS in a way that
as many events can be detected as possible, even though it
may be impossible to analyze all the received packets. We
will show that distributed processing alone is not sufficient to
handle security-related events: signatures may have to match
multiple packets in a flow, thus, the assignment needs to be
fixed for a minimal time before re-allocating the flow to another
IDS instance. One way to solve this problem is to perform
intelligent data filtering within individual connections [8]–[10],
or data filtering of whole connections [11].

We propose a novel load balancing approach that is specifi-
cally suited for environments where available computational
power cannot cope with incoming data rates. The selection
method used for incoming network packets is based on a
priority model. To the best of our knowledge, this is the
first time that a host-based priority model is used in the
context of adaptive load balancing of flows to IDS instances.
We allow to assign a weight value to each host within the
local subnetwork, which defines a preference model where,
for example, security-critical servers can be preferred over
non-critical systems in the selection process. This way, it is
possible to increase the monitoring time per host. We show
that random packet drops cause disproportionately high false-
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negative event rates for payload-based IDSs like Snort. Fighting
this problem, the load balancer ensures a minimal monitoring
time for each monitored host. During the monitoring time, our
adaptive load balancer interacts with the IDS by measuring
its performance and by observing the fill level of queues in
the system. This prevents packet drops as well as possible
and ensures uninterrupted data analysis at the respective IDS
instance. Our load balancing algorithm uses two levels with
a per-packet and interval-based selection mechanism. The
per-packet selection process is extremely lightweight and is
designed to be directly implemented on hardware-based filters
in the network interface for higher speeds [11].

II. RELATED WORK

Performance deficiencies in the field of payload-based IDSs
have been tackled by various means: speed improvements of
algorithms within the IDS [12], offloading computation to
specialized hardware [13], intelligent data filtering [8]–[10],
and, of course, parallel execution of multiple IDS instances.

A central component, commonly called a load balancer,
distributes traffic to parallel IDS instances. In early approaches,
each of these instances was running on a separate host, and a
central splitter was used for distributing the network packets.
Static hashing methods operating on network and transport
layer header fields determined the IDS instance the packet
was forwarded to [14]. These static techniques were further
improved with hashing algorithms that dynamically adapted
to the current load [4], [15]. As employed IDS instances
were usually disjoint and did not share state, a protocol for
exchanging state information has been introduced [6]. This
technique enabled pattern matching and anomaly detection
across multiple connections. However, due to the high amount
of shared states, synchronization proved to be difficult. The
trend to multi-core environments has been exploited in [3],
where a model for an intrusion prevention system based on
the IDS Bro was introduced. This approach exploits multi-core
and multi-thread CPU architectures by splitting data processing
in multiple stages and optimizes them for high-performance.

In common practice, there are currently two open-source
systems in use for performing parallelized payload-based
network intrusion detection: Suricata1, a parallelized version
of the IDS Snort, and Snort in combination with the packet
capturing framework PF RING for load balancing [11].

III. ADAPTIVE LOAD BALANCING FOR IDS

This section covers the methodology used by our proposed
traffic selection and load balancing system. We use the follow-
ing terms in the description: the load balancing component
decides about incoming packets whether to drop or forward
them, packets are forwarded to analyzers or IDSs, whereas
single disjunct instances of these systems are called analyzer
instances or IDS instances, each usually running on a separate
CPU core.

1http://www.openinfosecfoundation.org/

A. Considerations and assumptions about the environment

In the following, we will discuss important aspects of the
overall system and how these aspects differ from a typical load
balancing scenario used for actively serving requests.

Very high data rates in combination with traffic bursts:
With current network link speeds of up to 10GBit/s, hardware
provided for network monitoring cannot cope with observed
data rates. Buffers are commonly used to temporarily alleviate
spikes in the traffic, but, due to the high data rates, buffering
can only be used in a limited way: In a web server scenario,
buffered requests only require a few KiB’s. A high number of
requests can be easily cached and processed at a later time [16].
In a passive monitoring system, all incoming data needs to be
stored in a buffer. Assuming a data rate of 10GBit/s, a cache
holding only 10s of data would require a buffer of 12.5GiB.

Hard real-time requirements for analysis: In contrast to other
load balancing scenarios, passive network monitoring systems
cannot influence incoming data rates. If the incoming data rate
is too high and internal buffers are full, the system will have
to drop incoming packets and lose information.

Serving all requests is not compulsory: It is beneficial when
all network traffic can be analyzed by the system, but not
compulsory. Normal network operation is not affected by an
overloaded passive monitoring system.

In summary, high data rates in combination with hard real-
time requirements are the main problems to tackle in a dynamic
load balancing system. These problems lead to considerations
about the frequency of the selection process, i.e. how often it
should be decided what data will be dropped or forwarded. For
load balancing systems with disjoint requests and low request
rates, this can be decided for each individual request. When the
decision is reached, all packets belonging to the request will
automatically be forwarded with little overhead. In a network
monitoring scenario with high data rates, it is not feasible to
perform complex calculations for the selection decision due to
the hard real-time requirements. This is also valid for decisions
about groups of packets that do not need to be performed per
packet. In our solution, we use a two-stage selection process
where a lightweight algorithm performs per-packet decisions.
Periodically, this algorithm is configured by a more complex
decision process.

Full packet information: Depending on the techniques used in
the analyzer, it is important to control which packets are sent to
the same analyzer instance. Methods that operate statelessly by
examining individual packets, like pattern matching on header
data or payload matching for individual packets (sometimes also
called DPI), do not pose any requirements on the load balancing
process. However, most techniques keep state between packets,
either for unidirectional flows like as required for flow aggrega-
tion, or for bidirectional 5-tuple flows representing single UDP
or TCP connections as required by many payload-based IDSs
tracking connections on the application layer. Another aspect
is the required level of detail: payload-based IDS requires the
full packet payload, whereas many anomaly detection schemes
only require aggregated statistics about network flows.



Figure 1. Overview of our proposed load balancing system

In our load balancing scenario, we assume that analyzers
require whole packets for analysis, as this is the standard
case for payload-based IDSs like Snort. Our view is to
separate analysis techniques that perform payload matching
from algorithms which are able to operate on aggregated data.
Algorithms operating on aggregates do not need to be served
by a packet-level load balancing system but may be integrated
in a separate flow aggregation system.

Host-based packet selection: Commonly used load balancing
methods for parallel IDSs are based on hashes over the packets’
5-tuple, so all packets belonging to the same connection
are forwarded to the same analyzer instance. Our approach
additionally assumes that the analyzer keeps state for local hosts,
as this is the case in some malware detection systems [17]. To
preserve important semantics inherent in the network data, we
forward all packets related to the same local host, that means
all packets that were sent or will be received by the host, to
the same analyzer.

As our selection mechanism is based on the packets’
relationship to local hosts, we may assign weights to these
hosts and use them as a configurable selection criterion. Local
networks often include hosts with high security risks such as
authentication servers, and hosts with lower importance such as
common workstations. Depending on the security requirements,
the total time a host’s traffic is forwarded to an analyzer should
depend on the configured weight of the host. Furthermore,
hosts located behind a Network Address Translation (NAT)
gateway within the local network are disadvantaged, as the
load balancer regards the NAT gateway as a single host, thus
assigning monitoring time for a single host to the gateway.
Raising the NAT gateway’s priority rectifies this issue.

B. System overview

Figure 1 shows an overview of the proposed system. Packets
captured from the network are processed by a packet selection
module, which uses a lightweight decision algorithm that
determines whether the received packet should be dropped
or forwarded to a connected IDS instance. At the same
time, all packets are fed into a flow aggregation module that
produces standard conform IP Flow Information Export (IPFIX)
records. This module can easily be integrated into hardware

implementations of routers or switches that also support IPFIX
– in that case, our system would receive flow data directly from
such a device. The flow data is used by the host selection
module to predict traffic. Anomaly detection algorithms may
process the flow data for detecting conspicuous traffic and report
anomalies to the host selection module in order to immediately
select affected hosts for monitoring. The host selection module
works interval-based. After each interval (also called a round), a
set of hosts in the local network is assigned to each IDS instance
and the configuration is transferred to the packet selection
module. In addition, statistics such as the number of forwarded
packets or packets dropped due to overload are reported. The
host selection module performs local calculations based on
these statistics and the received flow data. Logging functionality
is integrated to collect information about forwarded and dropped
packets for later forensic analysis, providing exact statistics
about the packets that were analyzed by the IDS instances. All
modules except the IDS instances have been implemented in
a prototype using our monitoring framework Vermont [18]2.

C. Selection process
Our selection process is separated into two parts: A

lightweight packet selection module that decides for each
incoming packet, whether it should be dropped or forwarded to
one of the IDS instances; and an interval-based host selection
module that prepares selection criteria using a computationally
more expensive algorithm. We assume that the configured local
network is only on one side of the monitored link, i.e. we do
not observe traffic exchanged between local hosts. This ensures
that traffic can be grouped into disjoint sets by the local hosts
that will receive or sent the packets.

1) Per-packet level selection: High-performance selection
processes for network packets are usually based on simple
table lookups, using key elements at fixed positions in observed
packets (in most cases from the header). Examples include
IP addresses, ports, protocols, or other transport layer-specific
fields. We only use the IP address fields for the per-packet
selection process. If either the source or destination IP address
is in a predefined list of addresses, the packet will be forwarded
to the corresponding IDS instance. If this instance is not
able to process the forwarded traffic, hosts will be dropped
from this list. We will call these forcibly dropped hosts. The
algorithm will be described in detail in Section III-G. In our
implementation, we are using a hash table for the lookup.
Recent off-the-shelf network interfaces provide programmable
hardware-based filtering and load balancing techniques [19]
that may be used to implement this simple selection algorithm.
Further software-based speed improvements are possible using
Bloom filters.

2) Interval-based level selection: In a configurable interval
t, we build the configuration needed for the per-packet decision.
Essentially, a set of hosts is prepared for each analyzer
instance defining the packets to be forwarded to this IDS.
So, our algorithm differentiates single hosts from all hosts
H = {h0,h1, . . . ,hn−1}, |H|= n within the local network.

2Released under the GPLv2 on http://vermont.berlios.de



Algorithm 1 Regular priority updates
1: HM ← hosts hi with highest priorities that were contigu-

ously monitored for mtmin, |HM| ≤ mmax
2: for all pi ∈ P do {Adjust priorities of monitored hosts}
3: if hi ∈ HM then
4: p′i← pi(r−1)− 1

wi
5: else
6: p′i← pi(r−1)
7: end if
8: end for
9: for all pi ∈P do {adjust all priorities to ensure that ptotal =

∑pi∈P pi(r)}

10: pi(r)← p′i +
ptotal−∑

n−1
j=0 p′j(r)

n
11: end for

a) Priority system: The selection process is primarily
based on the priority system. A priority value is assigned to
each host and is updated in each round. Only hosts with the
highest priorities are selected for analysis. So, each host hi is
assigned a dynamic priority pi, and we get a set of priorities
P = {p0, p1, . . . , pn−1}. Variables like pi change over time,
so we describe a variable’s value v at a specific round r as
v(r). At the starting round r = 0, we set all priorities to a
uniformly distributed random value ri in the range [0,1), so
pi(0) = ri ∀ 0≤ i < n. We require that the sum of all priorities
ptotal remains constant for each round r:

ptotal =
n−1

∑
i=0

pi(r) =
n−1

∑
i=0

ri (1)

mi(r) describes the number of rounds that a host hi was
analyzed from round 0 to round r−1. To specify the relative
importance of hosts and to control the total amount of time
a specific host is selected, each host hi is assigned a weight
wi. Between each round, a selection algorithm ensures that
hosts with highest priorities are selected and assigned to the
analyzers. As will be discussed in Section IV-A, the time a
host is contiguously monitored should be as high as possible.
Therefore, we introduce a minimal time mtmin as configurable
parameter that specifies how long a host needs to be monitored
without interruption. When a host has been monitored for mtmin
without interruption, its priority pi is decreased according to its
weight. If the host was removed from IDS assignment ahead ot
time, its priority will not be decreased. It is possible to formally
prove that for r→ ∞ a host’s weight factor is proportional to
the total time the host is monitored (proof omitted due to space
limitations).

Algorithm 1 outlines the procedure to update each hosts’
priority. Every round r, all hosts are sorted according to
their priority pi. At maximum, the top mmax hosts that were
monitored for a time of at least mtmin are included in set HM
(line 1). Then, the priorities of all hosts h ∈ HM are decreased,
because they were successfully analyzed (lines 2–8). To ensure
that the sum of all hosts’ priorities stays at ptotal , each pi ∈ P
is increased by a constant value that is equal for all hosts.

b) Preventing unstable models: Unfortunately, there are
cases possible in which priorities may rise or fall indefinitely.
In the following, we show how to avoid such cases.

Assuming a scenario, where all hosts are monitored by the
system and have different weights W = w0,w1, . . . ,wn−1. It is
trivial to show that the priority of all hosts with a weight wi
higher than the average weight w will rise indefinitely. Without
loss of generality, we additionally assume that the minimal
monitoring time is set to mtmin ≤ t, and there exists a maximum
weight wmax of at least one host hmax. To prevent an infinite rise
of hmax’s priority, the following inequality must be fulfilled:

1
wmax

≥ M(r)TŴ
n

[
=

ptotal−∑
n−1
j=0 p′j(r)

n

]
, (2)

whereby Ŵ = (1/w0,1/w1, . . . ,1/wn−1)
T , and M(r) is a

vector of length n whose element at index i is set to 1 if
hi was monitored for at least mtmin time, else it is set to 0. As
we assume that all hosts are monitored, M(r) = 1. In this case,
Inequality 2 can only be fulfilled if wi = w j,∀wi,w j ∈W . This
contradicts our assumption, thus, some priorities may rise and
others may fall indefinitely.

In order to resolve this problem, we introduce a parameter
m that limits the number of monitored hosts whose priority
is decreased for each round, regardless of the actual number
of hosts that are monitored. Again, we assume the worst case
where the right side of Inequality 2 is highest, i.e. if all hosts
with the lowest weight w are monitored. Mminw(r,m) is derived
from M(r), whereby in Mminw, at maximum m elements are
set to 1 for the monitored hosts with lowest weights. Now, we
choose m such that

1
wmax

≥ Mminw(r,m)TŴ
n

. (3)

NB: m should be chosen as high as possible, as the more
priorities are unadjusted each round, the more information is
lost about the current selection state of the system. In our
current implementation, we calculate an upper bound of m at
system startup.

D. Host assignment method

Our interval-based selection process allows regular selection
of hosts in the system for monitoring. As we employ several
IDS instances executed in parallel on multiple cores, the
selected hosts need to be assigned to individual IDS instances.
We assume that for each host hi in interval r we have the
priority pi(r), the traffic tei(r) expected to be transferred in
this interval by hi, and the traffic transferred in the previous
interval ti(r− 1). Only when the minimal monitoring time
mtmin has elapsed, a host may be transferred to another IDS or
removed from the set of monitored hosts. Therefore, mti(r) = 0
when hi was not monitored in round r− 1. We have q IDS
instances with IDS= {ids0, ids1, . . . idsq−1}. It has been shown
that the CPU load of a payload-based IDS is proportional to
the rate of the processed traffic [20]. So, we use the processed
traffic as a measure for the utilization of an IDS. The maximum
data rate of idsi is defined as tmaxi. All hosts assigned to idsi



Algorithm 2 Host assignment to succeeding IDSs instances
1: Remove forcibly dropped hosts from each Mi
2: for all idsi ∈ IDS and h j ∈Mi do
3: if mt j(r)≥ mtmin then
4: Mi←Mi rh j
5: end if
6: end for
7: for all idsi ∈ IDS do
8: while ∑ j∈Mi te j(r)> tmaxi do
9: hk← host in Mi with lowest priority pk

10: Mi←Mi rhk
11: end while
12: end for
13: Sort hosts in R with decreasing priority
14: for all idsi ∈ IDS and h j ∈ R do
15: Remove hosts hk from Mi with lowest priorities and

pk < p j until te j(r)≤ tmaxi−∑hm∈Mi tem(r)
16: add host h j to Mi
17: end for

are in the set Mi. Thus, all monitored hosts are in the set⋃q−1
i=0 Mi, and the others are contained in R = H r

⋃q−1
i=0 Mi.

The problem of assigning hosts with priorities and expected
traffic to IDSs with limited processing rate corresponds to
the well known computational complex knapsack problem.
However, much simpler heuristics can be used because of
the large variance in the data rates of individual hosts and
the usually high number of hosts monitored by a single IDS
instance. Our proposed algorithm is shown in Algorithm 2.
First, all hosts are removed that were forcibly dropped in the
previous round by the per-packet level selection process. Then
we iterate through the IDS instances and remove all monitored
hosts hk with mtk(r)>mtmin (lines 2–6). We ensure that no IDS
instance is overloaded by removing hosts having the lowest
priorities so that the maximum data rate tmaxi of IDS i is
not exceeded (lines 7–12). NB: we do not measure mtk of
the removed hosts. Finally, we compare the monitored hosts’
priority pk with the host’s priority p j of R. As long as hosts
hk ∈Mi with priorities pk < p j can be removed from Mi, new
hosts h j will be added to Mi. To determine whether h j will
fit into Mi, the expected host data rates te j(r) are used in the
calculation. This process is repeated for each IDS instance
until no hosts can be added any more (lines 14–17).

This assignment process ensures that all hosts with highest
priorities will be assigned to an IDS instance as soon as
possible, while displacing hosts with lower priorities from
assignment without regarding their monitoring time mt. The
higher the priority, the higher the possibility that the host will
be consecutively monitored for mtmax. Additionally, by only
decreasing a monitored host’s priority after it was removed
from the assignment and was monitored for at least mtmax, the
order of hosts regarding their priority will not change in the
sets Mi ∀ i ∈ 0, . . .q−1. This is caused by the mechanism that
increases all priorities to ptotal .

E. Data rate prediction for hosts

The prediction of each host’s data rate in the next round
works as follows. Assuming a standard on-off traffic distribution
for each host with switching intervals higher than our round
length, we use the measured data rate ti(r) of host hi as a basis
for our prediction. This works for all hosts that transmitted
data in the last round, i.e. the data rate was larger than zero. In
this case, we set the expected data rate tei(r+1) = ti(r). If we
set tei(r+1) for all other hosts to tei(r+1) = ti(r) = 0, there
is a certain probability that these hosts will transfer data in the
next interval, i.e. the overall prediction of the hosts’ data rate
will not be correct and the IDS will be overloaded. To avoid
this problem, we calculate an average data rate for all hosts
that transfered no data in the round r−1, i.e. ti(r−1) = 0. Let
DR0(r−1) be the set of hosts with ti(r−1) = 0, then we can
derive the expected rate for all hosts in DR0(r) as follows:

dr0(r) =
1

|DR0(r−1)| ∑
hi∈DR0(r−1)

ti(r).

Now we can set the expected data rates for these hosts: ∀hi ∈
DR0(r) : tei(r+1) = dr0(r).

This results in a slight overestimation of the expected traffic,
but solves the problem of IDS overloading by hosts that did not
transfer data in the previous round. In addition, the assignment
algorithm favors hosts with lower data rates when the hosts’
priority is equal, as the lower a host’s data rate is, the higher
the probability that it can be assigned to an IDS instance.

To balance the effects of traffic under- and overestimation,
we introduced a feedback loop that dynamically adjusts a ratio
for all estimated traffic data rates.

F. Maximum data rate prediction for IDS instances

The host assignment algorithm must know the maximum
data rate tmaxi that each IDS instance idsi is able to process.
This value may change dynamically during execution time,
because of the stateful analysis of packet streams and also due to
system-related aspects (e.g., the influence of external processes).
We implemented an interval-based estimation algorithm that
is based on the amount of dropped d(r) and forwarded f (r)
octets at the interface to the IDS instance. The maximum IDS
data rate tmaxi(r + 1) is calculated as follows. If d(r) = 0
and f (r) > 1

2 tmaxi(r), we set tmaxi(r+1) = a× tmaxi(r). If
d(r)> 0 and f (r)< tmaxi(r), we set tmaxi(r+1)= tmaxi(r)/a.
In all other cases, tmaxi(r+1) = tmaxi(r). In our prototype,
sensible values for idsi(0) and a were 500KiB/round and 1.01,
respectively.

G. Data forwarding to IDS instances

Efficient data transfer to the asynchronously executed IDS
instances is a challenging issue at the envisioned data rates. In
Unix operating systems, commonly POSIX pipes are used for
unidirectional data transfer between processes. In these pipes,
data is copied between user and kernel-space. We avoided
the overhead of those copy operations by implementing a
lock-free ring buffer [21] of size n in shared memory. As
the forwarded traffic is highly dynamic, the IDS instance is
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Figure 2. Runtime graph of the data rate transferred by the ring buffer to
one IDS instance with a data aggregation interval of 10ms

not always able to process the incoming packets in time and
the connecting ring buffer will fill up and lead to random,
uncontrolled packet dropping. Our implementation alleviates
this problem and introduces controlled packet dropping. This
method works by continuously monitoring the fill level of the
buffer. If it exceeds a threshold t1 (in our implementation this is
set to b n

2c at the start of each interval), packets will be dropped
in a controlled way. Within the per-packet selection module, an
ordered set S1 is stored containing all hosts whose packets are
forwarded to the IDS instance. All hosts in this set are ordered
by their priorities. If the buffer’s fill level exceeds the threshold,
the ordered set is split into two halves S1 = H1∪L1 whereby
all hosts within H1 have greater or equal priority compared
to all hosts within L1. Packets belonging to hosts within L1
will be dropped (previously also called forcibly dropped hosts)
from this moment on. Additionally, a new threshold ti+1 will
be used with ti+1 = n−b 1

2 (n− ti)c for the next iteration, as
well as Si+1 = Hi.

This behavior can be observed in Figure 2. We show the data
rate forwarded to one IDS instance for one round of 500ms.
The two vertical lines mark the times when the ring buffers’
thresholds t1 and t2 were exceeded. Each time, one group of
hosts was removed from the forwarding table by controlled
packet dropping. The set L1 is removed at t1, and the set L2
is removed at t2. This mechanism ensures that hosts with the
highest priorities will remain in the set as long as possible.
The decision which hosts to remove from the set is not based
on the hosts’ current data rates. As can be seen in Figure 2,
multiple iterations of controlled dropping may be necessary,
e.g. at t2 the set L2 is dropped although only little data was
caused by those hosts.

IV. EVALUATION

A. IDS detection performance in non-optimal conditions

Payload-based signature matching uses different prepro-
cessing methodologies depending on the protocol type of
the analyzed flow. For UDP and other non-stream-oriented
protocols, packets have to be parsed separately. For streaming
protocols like TCP, a stream is reassembled from the captured
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random packet loss

packets and pattern matching is performed on the reconstructed
stream. To detect evasion and spoofing techniques, packets with
payload are commonly only accepted if an acknowledgment has
been observed from the peer. If acknowledgments are dropped
due to overload at the IDS, this may lead to the loss of a large
portion of TCP-payload related events.

We evaluated this effect in an experimental setup using the
IDS Snort with the EmergingThreats ruleset3, using a 4100s
network packet trace from our University’s network with an
average data rate of 430Mbit/s. For each run, we prepared
the packet trace and randomly dropped packets at a rate p ∈
{0.0, . . .0.9} and recorded all reported events. We removed
events from the trace that required multiple detections within
a specified timespan and events requiring no content matching.

Figure 3 shows the results. The horizontal axis specifies the
packet loss rate p, and the vertical axis shows the ratio np

nt p ,
where np is the number of events reported during a run with
packet loss p, and nt is the total number of events without
packet-loss. To show the loss of unique events within the
trace, the dotted lines mark results for which we removed
duplicate events for the same connection. The results confirm
our assumptions and show that for stream-based connections,
there is a higher probability of losing events than the overall
packet-loss rate suggests, e.g. for the filtered TCP trace with a
packet-loss rate of 50%, 62% of all events were not detected.
In contrast to TCP, UDP-related signatures did not show any
disproportionate impairment by the packet-loss.

If, at a packet loss rate p, a TCP segment with payload
was received matching a signature, the probability that the
succeeding acknowledgment packet will be received is also p.
This leads to a probability of p2 that both packets are success-
fully received by the IDS. Our observed probability is much
higher than p2. This is caused by longer TCP connections that
contain multiple acknowledgments after the packet containing
the matched payload. At least one acknowledgment packet
needs to be received by the IDS from the peer as a cumulative
acknowledgment. The probability to capture at least 1 packet

3http://www.emergingthreats.net, downloaded on 29/9/2010
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Figure 4. Multiple results as normalized histogram of the load balancer in a
24h run. The mean is marked with a dashed vertical line

out of n is 1− (1− p)n. So the resulting probability of event
matches is highly dependent on the connection lengths of the
trace. Even for short connections with one request and one
response, it can be assumed that at least two acknowledgment
packets are transferred, one for the payload, and one for a
successful connection shutdown using FIN flags.

B. Prototype

We implemented a prototype of the load balancing system
using the monitoring framework Vermont, and customized the
IDS Snort to receive packets via our shared memory-based
ring buffer.

1) Runtime performance: To evaluate the performance of
our load balancing system in a realistic environment, we
experimented with our prototype4 that received live data from
our University’s Internet uplink. Vermont was configured to
capture packets from the network interface with PF RING [22]
and a 32kpkt ring buffer. The load balancer distributed the
packets to three instances of the IDS Snort and used an
assignment interval of 500ms.

We analyzed a 24h run of the load balancing system, focusing
on statistics from the first IDS instance. In this run, we
observed a mean data rate of 650MBit/s. The load balancing
system dropped less than 0.1% of packets in PF RING’s
buffer. Figure 4 shows the normalized distribution of the
following variables: actual load measured in one round of the
IDS instance, data rate estimated in the previous round, data
that was dropped by our controlled packet drop mechanism, and
data that was unintentionally dropped. The estimated data rate
is often directly related to the estimation of the IDS instance’s
maximum data rate, because the load balancing algorithm tries
to use up as much available data rate as possible. The actual
received load from the network shows a very high variance with
a mean of 167MBit/s. Controlled packet drop was performed
at a mean data rate of 14MBit/s, and effectively prevented most
uncontrolled packet drops with a mean data rate of 2.7MBit/s.
Ensuring a lower packet drop rate would either require larger
buffers, or a lower utilization of the IDS instances. Both aspects

4Intel Core2 Quad CPU@2.83GHz; Intel 82572EI Ethernet controller
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Figure 5. Runtime plot of a data transfer to one IDS instance with aggregated
values over 24h (left) and a short non-aggregated excerpt (right)

lead to compromises that need to be considered: larger buffers
would cause a higher amount of cache misses within the CPU
cores, resulting in slower execution, and a lower utilization
of the IDS instances would reduce the amount of analyzed
network traffic.

A runtime plot of the same run is shown in Figure 5. The
left graph shows a timespan of 24h, and each plotted value
is a mean of 200s, whereas the right graph shows an excerpt
of non-aggregated values. The figure additionally includes
the maximum data rate estimated for the IDS instance by our
algorithm. During the night at runtime 450min to 1000min, the
load balancing system was able to process almost all incoming
traffic. Thus, the utilization of the IDS instances decreased and
less packets were dropped, which, in turn, leads the effect that
the load estimation algorithm increased the estimated maximum
load. This wrong estimation has no serious consequences, as
the algorithm adapts very quickly to load changes. This cannot
be seen in the runtime plot, as it displays the mean value
over 400 single data points, whereas the non-aggregated values
oscillated. We included an excerpt on the right side of Figure 5
to visualize one of the key problems: the high variance of the
received traffic’s data rate. Obviously, the estimated load of
the IDS instance varies with time.

2) Event detection performance: To compare our load
balanced parallel IDS with a normal IDS in conditions with
packet-loss, we conducted another experiment using the same
packet trace described in Section IV-A. In Figure 6, we
show the number of TCP and UDP related events reported
by Snort for processing the trace with different packet drop
ratios, whereby duplicate events for the same connection were
omitted. Additionally, we performed multiple runs with our load
balancing algorithm configured with mtmin = 10s. To obtain
realistic results, we processed the packet trace in real-time
and limited the processing rate of each Snort instance to get
comparable drop ratios. A lower packet loss rate than 40% was
not possible, as the three IDS instances were at maximum load
and could not process the needed data rates. At a packet loss
rate of 85%, the load balanced IDSs run detected 44% more
events compared to the IDS run with random packet drops.
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Figure 6. Number of detected events with random packet losses compared
to the load balancing system. Left/right graph: TCP/UDP-related events

This is due to the minimal monitoring interval, which ensures
that all consecutive packets in a certain interval are forwarded
to the IDS. Similarly, rules matching UDP content were more
often reported by the load balancing system. This is due to a
high number of events matching DNS queries. The involved
DNS servers did not produce much traffic at the Internet uplink,
so the load balancer often temporarily assigned the servers to
an IDS which led to a higher amount of reported UDP events.

V. CONCLUSION

We introduced a novel approach for load balancing special-
ized for parallel payload-based IDSs on multi-core systems
using prioritized flows. We primarily target the use in high-
speed networks where it is only feasible to analyze a fraction
of the network traffic. Using a prototype, we experimentally
evaluated the performance of our system both in quality and
quantity. The system is able to cope with highly fluctuating
data rates, which is a common property of our todays Internet
network traffic. A key feature is the minimal monitoring interval
ensuring that consecutive packets needed for pattern matches
will be forwarded to the IDS with a high probability. This
capability leads to improvements of up to 44% in the event
detection rate compared to systems dealing with random packet
loss. Using our prototype, we performed multiple experiments
on real network traces that confirmed the expected throughput
and detection ratios.
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