
1

On Network Monitoring for Intrusion Detection
Tobias Limmer∗ and Falko Dressler†

∗Siemens CERT, Munich, Germany
†Institute of Computer Science, University of Innsbruck, Austria

tobias.limmer@siemens.com, falko.dressler@uibk.ac.at

Abstract—Network-based intrusion detection approaches are
frequently in use to track down malicious activities. However, all
approaches in the field have always been struggling to cope with
increasing network speeds. This article investigates the reasons
behind this fact by providing a detailed analysis of method-
ologies that are commonly used by Network-based Intrusion
Detection Systems (NIDSs), thereby focusing on the layer of
packet capturing and data filtering. Recently, the performance
of NIDSs has been greatly improved by new software-based and
hardware-based techniques. On the one hand, improvements and
optimizations within the processing chain allow faster packet
capturing and analysis, and on the other hand, the advance of
multi-core processors encourages the parallelization of NIDSs,
thus achieving further speedups. Especially in the area of passive
data analysis with only limited control on the incoming data rate,
Amdahl’s law poses strict limits on parallelization and achievable
processing speeds for NIDSs.

I. INTRODUCTION

Many different techniques are available for the detection
of malicious software that is being executed on computers.
The most popular methods are host-based concepts like
virus scanners. On the other hand, network-based detection
methods, even though known already for a long time, are
used with varying success depending on the requirements
and the operational environment of the deployed systems [1].
Nevertheless, network-based intrusion detection has become
an integral part of many defense systems. This article intends
to explore one of the current challenges in Network-based
Intrusion Detection Systems (NIDSs): performance issues,
which have always been a concern for algorithms developed
in the computing world, and, of course, also for NIDSs with
today’s network link speeds of 10GBit/s and more [2]–[6].

The amount of processed data heavily depends on the
placement of monitoring sensors, i.e., on the amount of sensors
and the locations within a network where data is captured.
Therefore, we will investigate optimal placement of sensors in
more detail and analyze their effects on the performance of
NIDSs. In general, we can differentiate between two types of
monitoring sensors: dedicated and integrated sensors. Dedicated
systems usually receive read-only data from network taps.
These network taps can either be separate devices that only
mirror one specific link, or managed network switches or
routers, where specific ports or subnets can be selected for
mirroring. In contrast, integrated sensors are directly embedded
in switches or routers and typically aggregate monitored
packets to flows. These flows are then exported using protocols
like Netflow or Internet Protocol Flow Information Export
(IPFIX) [7], [8]. When routing devices directly monitor and

(a) Small local network (b) Large network with multiple uplinks

Fig. 1: Placement options of monitoring sensor

aggregate data, no extra dedicated device needs to be set up
to monitor the link.

The location where monitoring systems and Intrusion Detec-
tion Systems (IDSs) are to be placed depends on the size of
the network: small networks usually only have a single Internet
uplink, an example is shown in Figure 1a. If these links are
monitored, the vast majority of attacks will detected, as they are
transferred over these links coming from an external network,
usually the Internet. The bigger a network becomes, the more
difficult the placement of monitoring points will be. Networks
will not be at a central location any more, but distributed
over multiple branches, each probably having multiple uplinks
to communicate with each other and to external networks
(Figure 1b). To detect attacks from the Internet, all uplinks
have to be monitored.

Another problem arises with bigger network sizes: the larger
the network becomes, the more people have access to it and so-
called insider attacks are made more probable. Insiders, either
voluntarily or involuntarily, bypass Internet gateways, e.g.,
using infected mobile devices. A recent example is the worm
Stuxnet that was designed to attack from inside a network [9]:
the malware spread primarily via USB stick. Once attached
to a computer, it exploited a vulnerability in the Windows
operating system and infected the host. From this point on,
the malware spread within the local network using multiple
vulnerable services on Windows hosts. It was not designed to
spread using external networks or the Internet, so sensors placed
at the Internet uplink would not necessarily have detected the
malware. Only sensors placed within the local network would
have been able to detect the virus’s spreading – in effect,
the general principle of data mining, the more input data is
available, the better the results will be, also applies to network
monitoring and intrusion detection.

This principle also applies on a larger scale: Rajab et al. [10]
analyzed how detection effectiveness of self-propagating worms
improves when the monitoring sensors are not clustered at



2

geographically close locations, but distributed in different parts
of the Internet. They assume a non-uniform distribution of
worms in the network and build a simulation model based
on data from the DShield project.1 Their results show that
detection times are 4 to 100 times shorter with distributed
sensors compared to a single sensor monitoring the same total
network size, where strategic placement of the sensors close
to vulnerable networks plays an important role. It is disputable
whether the authors’ assumption for the malware distribution
is realistic, but the problem of insider threats should not be
underestimated [11]. Thus, sensors placed only at the Internet
uplinks of large networks may not provide enough network
coverage for adequate detection qualities. Furthermore, in local
networks, packets for bidirectional communication are usually
not broadcast to all stations. So, to capture all transferred data,
all network links or interconnecting devices within a network
need to be monitored. This is not feasible even within small
networks due to the very high data rates.

As can be seen, performance is still a very important issue
for network-based intrusion detection. This article describes the
basics of NIDS providing a basis discussions of the challenges
in NIDS. Although specialized hardware-based solutions for
very fast intrusion detection have been available for years,
often off-the-shelf hardware is preferred for NIDS. For these
systems, performance is a concern for current network speeds,
so we describe optimized software-based packet capturing and
detection techniques that focus on performance aspects. In
the second part, we present a specific example relying on
parallelization in multi-core systems.

II. NETWORK-BASED INTRUSION DETECTION

In general, NIDSs can be differentiated in active and
passive approaches. Passive approaches just monitor (observe)
and analyze the network traffic without influencing it, e.g.,
by duplicating the data transferred over the network under
observation. It is not possible to alter the transferred traffic. In
contrast, active approaches directly influence the transferred
traffic to gain more information about hosts in the network (e.g.,
network scanners), or to remove suspected malicious data from
the network stream. Systems in this category are frequently
called Intrusion Prevention Systems (IPSs). Active approaches
that modify the network streams may influence delays and
adjust contents of the packets. Especially for timing-critical
network applications like video conferencing, this effect may
be problematic.

Depending on the type of input data, NIDS techniques can
be differentiated in payload-based and header-based classes.
Payload-based methods may analyze all data contained within
network packets. On the other hand, header-based approaches
only analyze data contained in network packet headers, and
payload is dropped beforehand. The amount of data that needs
to be processed by those header-based approaches is only a
fraction of the data, so in general, header-based approaches
show a better performance compared to payload-based methods.
Assuming an average packet size of 700B and a header size
(network and transport layer) of 60B per packet, this results

1http://www.dshield.org/

in a fraction of roughly 1
10 th of the original amount of data.

Furthermore, the data processing of header-based and payload-
based methods differs significantly: header-based algorithms
need to look up data within the packet headers, which have a
predefined structure. Often, packets may be aggregated using
preprocessing stages like flow aggregation, further reducing the
data to be processed. In contrast, payload-based methods need
to recreate the original data that was transmitted by the sending
application. In the case of stream-based protocols, separate
packets need to be reassembled to the original data stream. This
process is called IP defragmentation for the network layer and
TCP reassembly for the transport layer. This preprocessing stage
further slows down the operation of payload-based detection
approaches.2

A. Performance of Packet Capturing

The performance of NIDSs is influenced by multiple factors
and on different levels: the packet capturing layer attempts
to capture packets from the networking hardware as fast
as possible and provides this information to the detection
algorithm layer. As the packet capturing system handles all
incoming packets, it needs to be as efficient as possible to
prevent packet drops. Packets are described as dropped or lost
when they were not forwarded by the packet capturing module.
The goal for all monitoring systems is to prevent (random)
packet drops to enable succeeding analysis systems to gather
as much information as possible.

In general, two approaches can be differentiated: software-
based capturing solutions that have no special requirements
for the networking interface, and hardware-based solutions
specialized on custom hardware that are designed to offload
computational costs to hardware for higher performance. If
packet capturing solutions need to be cost-effective, end
users often favor software-based solutions using off-the-shelf
hardware. Linux is currently a very good choice for a packet
capturing system, because there are high-performance libraries
available optimizing the Linux kernel specifically for this task.

Packet capturing performance is mainly dependent on the
incoming packet rate, not on the packet size (i.e., the resulting
incoming data rate). This is because of the overhead that is
induced by every received packet: all structures in software
and hardware processing systems are designed to handle
individual packets, so there is a specific overhead that is
caused by each processed packet. For example, individual
packet-specific checks have to be performed for implemented
structures, pointers need to be updated, critical sections need
to be adhered, and so on. Because of this, packet capturing
systems are generally able to process higher data rates when the
average size of captured packets is high. But on the other hand,
large packets also influence the performance due to copying
operations of packet contents in the RAM. Additionally, CPU
caches tend to provide fewer cache hits due to larger packet
buffer sizes, thus leading to cache thrashing and a higher
number of accesses to slower memory types.

2Compared to the performance of the actual detection algorithm, this pre-
processing stage may cause only marginal overhead, as is the case for many
popular payload-based NIDSs like Snort.



3

These problems can be partly alleviated if a snap length
is configured for monitoring. This configuration parameter
specifies the data buffer size that is used for capturing network
packets. If the size of a network packet exceeds the buffer size,
it is truncated. Using snap lengths, the real packet length does
not matter, as only the data buffer size is important for the
succeeding processing steps.

The de-facto standard of receiving network packets from the
operating system is Packet Capturing (PCAP). It is an open-
source library for capturing network traffic and is available
for various operating systems. It offers capturing packets from
network interfaces and provides packet filtering capabilities.
For use in high-speed networks, PF RING by Luca Deri [12]
offers an improvement to the memory-mapped version of the
PCAP library. In contrast to PCAP, PF RING does not forward
received packets to upper layers of the network stack by
default. Network capturing usually uses dedicated network
interfaces and all packets arriving on this interface need not to
be processed by the network stack. The ring buffer is memory-
mapped to user-space and can be directly accessed by the
monitoring application. As a result, PF RING shows higher
performance than the memory-mapped PCAP library with small
packets. Deri also introduced DNA (Direct NIC Access) for
further performance improvements [13], where he modified
network card drivers so that they directly write packet data
into PF RING’s buffer. This technique circumvents Network
API (NAPI) and achieves even higher packet capturing rates.

In contrast to monitoring in networks with data rates below
1GBit/s, monitoring of higher data rates requires hardware
support for processing the incoming data. Hardware-based
systems have commonly been based on network monitoring
adapters using FPGA technology for fast data preprocessing
and a large packet buffer for data transfer to the monitoring
system. The FPGA is geared to offering flexible packet
filtering and aggregation capabilities like flow aggregation.
Using this method, a significant part of the processing time
can be offloaded from the CPU to the monitoring hardware.
Additionally, packet bursts can be remediated by the buffer
with no influence on the CPU caches.

In order to improve monitoring in high-speed networks, off-
the-shelf network interfaces for 1GBit/s and 10GBit/s networks
already support multiple techniques to offload computations to
the networking hardware. Examples are checksum offloading
that calculates all packets’ checksums on the networking
interface, or TCP Segmentation Offload that splits big data
chunks into multiple TCP packets according to the current Max-
imum Transmission Unit (MTU). Recently released 10GBit/s
networking interfaces additionally offer hardware support
for optimized network monitoring techniques and multi-core
CPUs.3

B. NIDS Optimization Techniques

After capturing packets from the network, they need to be
analyzed by detection algorithms. The performance of these
algorithms is mainly influenced, of course, by the amount of
input data that actually has to be processed by the algorithm,

3An example is the Intel X520 networking interface.

and the performance of the algorithm itself. As the field
of proposed detection techniques is very diverse, we only
focus on the most popular type of algorithms, signature-based
techniques that process packet payload and explain methods
for preprocessing their input data to improve performance.

Payload-based detection algorithms use multiple methods
to reduce input data before payload is processed, and try to
speed up the processing of the payload itself. The following list
describes other techniques for popular payload-based systems
which are currently in use:

• Filtering based on header data is based on flow aggrega-
tion [7], [14]. Header data (e.g., source and destination
addresses, ports, packet size, protocol information and
flags) is checked by rules to filter data streams before the
payload is analyzed [4] – this way, much irrelevant data
may be filtered out before expensive pattern matching
algorithms process the payload.

• Use of efficient rules is important, as, besides simple string
matching, some signature-based IDSs support regular
expressions for pattern matching. In theory, finding a
match for regular expressions belongs to the class of
NP-complete problems [15], [16]. This property can be
exploited in signature-based IDSs if regular expressions
are supported by the system. Snort also supports regular
expressions, and evaluations have showed that specially
crafted network data may cause the system to take up
to one second per packet for pattern matching [17]. To
counter performance problems in normal network traffic,
regular expressions are often only evaluated if a simple
content match was successful.

• Optimization of pattern matching algorithms has been a
goal within computer science for a long time. Many new
algorithms have been proposed in recent years that deal
with controlling state-space explosion and reducing per-
flow state [18]–[20], but only offer limited improvements
in performance.

• Use of specialized hardware is another option. IDSs
are often software-based and do not require specialized
hardware. There have been several efforts that use hard-
ware acceleration for speeding up the payload matching
process, like graphic cards or FPGAs [5], [21], [22]. Chips
optimized for pattern matching reach speeds of up to
10GBit/s [18].

One of the most promising approaches to improve the
performance of the detection algorithms is to make use of
the current trend to parallelization in multi-core systems. In
general, two different approaches can be considered: incoming
data can be forwarded within a line of data processing modules,
where each module receives the output of the preceding
module. Parallelization is accomplished by executing tasks in
the modules within separate CPU cores. This approach is very
efficient when modules require a high amount of processing
power, so that CPU cores can operate at a high utilization
ratio. As an alternative, the whole processing pipeline may
also be placed on a single CPU core. Then all incoming data
has to be split up in equal parts and fed into disjunct parallel
processing pipelines. This solution is only feasible if a single



4

pipeline receives all data that is needed for processing. As an
example, a pipeline performing 5-tuple flow aggregation must
see all network packets belonging to the processed 5-tuple
flows. If the pipeline did not receive all packets relevant for the
aggregated flows, the data contained in the flow records would
be incomplete. To guarantee that all packets belonging to the
same flow are assigned to the same processing pipeline, hash
functions can be used for the assignment decision. Xinidis et
al. [23] proposed one solution that computes a hash value from
all flow key fields, and hardware-based acceleration cards, e.g.,
Intel X520, also uses hashing for distributing incoming packets
to succeeding queues [24].

To exploit the power of multi-core systems, NIDSs have
also been parallelized and the incoming network traffic is
distributed by a load balancer to individual instances for further
analysis [25]. According to Amdahl’s law, high performance
advantages from parallel processing are unlikely if fine-grained
coordination between the parallel tasks is required. Therefore,
one of those instances typically represents a fully self-contained
IDS. A central component, commonly called a load balancer,
distributes traffic to parallel IDS instances. The trend to multi-
core environments has been exploited in [26], where a model for
an intrusion prevention system based on the IDS Bro has been
introduced. This approach exploits multi-core and multi-thread
CPU architectures by splitting data processing in multiple
stages and optimizes them for high-performance.

III. CASE STUDY: ADAPTIVE LOAD BALANCING FOR NIDS

In this section, we describe a state-of-the art adaptive filtering
and load balancing system for NIDSs [3] to provide more
insights into the performance problems and propose possible
solutions. In this system, a load balancing component decides
about incoming packets whether to drop or forward them,
packets are forwarded to analyzers or IDSs, whereas single
disjunct instances of these systems are called analyzer instances
or IDS instances, each usually running on separate CPU cores.

A. Considerations and assumptions about the environment

In the following, we discuss important aspects of a load
balancer for NIDSs and how these aspects differ from a typical
load balancing scenario used for actively serving requests, such
as a load balancer that distributes incoming HTTP requests to
multiple web servers.

Very high data rates in combination with traffic bursts:
With current network link speeds of up to 10GBit/s, hardware
provided for network monitoring cannot cope with observed
data rates. Buffers are commonly used to temporarily alleviate
spikes in the traffic, but, due to the high data rates, buffering
can only be used in a limited way: In a web server scenario,
buffered requests only require a few KiB’s. A high number of
requests can be easily cached and processed at a later time [27].
In a passive monitoring system, all incoming data needs to be
stored in a buffer. Assuming a data rate of 10GBit/s, a cache
holding only 10s of data would require a buffer of 12.5GiB.

Hard real-time requirements for analysis: In contrast to other
load balancing scenarios, passive network monitoring systems
cannot influence incoming data rates. If the incoming data rate

is too high and internal buffers are full, the system will have
to drop incoming packets and lose information.

Serving all requests is not compulsory: It is beneficial when
all network traffic can be analyzed by the system, but not
compulsory. Normal network operation is not affected by an
overloaded passive monitoring system.

In summary, high data rates in combination with hard real-
time requirements are the main problems to tackle in a dynamic
load balancing system. These problems lead to considerations
about the frequency of the selection process, i.e., how often it
should be decided what data will be dropped or forwarded. For
load balancing systems with disjoint requests and low request
rates, this can be decided for each individual request. When the
decision is reached, all packets belonging to the request will
automatically be forwarded with little overhead. In a network
monitoring scenario with high data rates, it is not feasible to
perform complex calculations for the selection decision due to
the hard real-time requirements. This is also valid for decisions
about groups of packets that do not need to be performed per
packet. In the presented solution, a two-stage selection process
is used where a lightweight algorithm performs per-packet
decisions. Periodically, this algorithm is configured by a more
complex decision process.

Full packet information: Depending on the techniques used in
the analyzer, it is important to control which packets are sent to
the same analyzer instance. Methods that operate statelessly by
examining individual packets, like pattern matching on header
data or payload matching for individual packets (sometimes
this is also called Deep Packet Inspection (DPI)), do not pose
any requirements on the load balancing process. However, most
techniques keep state between packets, either for unidirectional
flows as required for flow aggregation, or for bidirectional
5-tuple flows representing single UDP or TCP connections as
required by many payload-based IDSs tracking connections
on the application layer. Another aspect is the required
level of detail: payload-based IDS requires the full packet
payload, whereas many anomaly detection schemes only require
aggregated statistics about network flows.

Host-based packet selection: Commonly used load balancing
methods for parallel IDSs are based on hashes over the packets’
5-tuple, so all packets belonging to the same connection
are forwarded to the same analyzer instance. The presented
approach additionally assumes that the analyzer keeps state
for local hosts, as this is the case in some malware detection
systems [28]. To preserve important semantics inherent in the
network data, we forward all packets related to the same local
host, that means all packets that were sent or will be received
by the host, to the same analyzer.

As the presented selection mechanism is based on the
packets’ relationship to local hosts, weights may be assigned
to these hosts and be used as a configurable selection criterion.
Local networks often include hosts with high security risks,
such as authentication servers, and hosts with lower importance,
such as common workstations. Depending on the security
requirements, the total time a host’s traffic is forwarded to
an analyzer should depend on the configured weight of the
host. Furthermore, hosts located behind a Network Address
Translation (NAT) gateway within the local network are



5

Fig. 2: Overview of the load balancing system for NIDSs

disadvantaged, as the load balancer regards the NAT gateway as
a single host, thus assigning monitoring time for a single host
to the gateway. Raising the NAT gateway’s priority rectifies
this issue.

B. System overview

Figure 2 shows an overview of the load balancing system.
Packets captured from the network are processed by a packet
selection module, which uses a lightweight decision algorithm
that determines whether the received packet should be dropped
or forwarded to a connected IDS instance. At the same time, all
packets are fed into a flow aggregation module that produces
standard conform IPFIX records. This module can easily be
integrated into hardware implementations of routers or switches
that also support IPFIX – in that case, the presented system
would directly receive flow data. This flow data is used by the
host selection module to predict the traffic volume. Furthermore,
anomaly detection algorithms may process the flow data for
detecting conspicuous traffic and report anomalies to the host
selection module in order to immediately select affected hosts
for monitoring.

The host selection module works interval-based. After each
interval (also called a round), a set of hosts in the local
network is assigned to each IDS instance and the configuration
is transferred to the packet selection module. In addition,
statistics, such as the number of forwarded packets or packets
dropped due to overload, are reported. The host selection
module performs local calculations based on these statistics
and the received flow data. Logging functionality is integrated
to collect information about forwarded and dropped packets
for later forensic analysis, providing exact statistics about the
packets that were analyzed by the IDS instances. All modules
except the IDS instances have been implemented in a prototype
using the monitoring framework Vermont [29].4

C. Selection process

The presented selection process is separated into two parts:
A lightweight packet selection module that decides for each
incoming packet, whether it should be dropped or forwarded to
one of the IDS instances; and an interval-based host selection

4Vermont has been released under the GPLv2, http://vermont.berlios.de

module that prepares selection criteria using a computationally
more expensive algorithm.

High-performance selection processes for network packets
are usually based on simple table lookups using key elements
at fixed positions in observed packets (in most cases from the
header). Examples include IP addresses, ports, protocols, or
other transport layer-specific fields. Only IP address fields are
used for the per-packet selection process. If either the source or
destination IP address is in a predefined list of addresses, the
packet will be forwarded to the corresponding IDS instance. If
this instance is not able to process the forwarded traffic, hosts
may be dropped from this list. Recent off-the-shelf network
interfaces provide programmable hardware-based filtering and
load balancing techniques [6] that may be used to implement
this simple selection algorithm.

In a configurable interval t, the configuration needed for
the per-packet decision is built. Essentially, a set of hosts is
prepared for each analyzer instance defining the packets to be
forwarded to this IDS. This set of hosts is determined by a
priority model that assigns a priority to each host. Each interval,
the priorities are adjusted according to whether hosts were
selected for analysis in the previous interval. Hosts with the
highest priorities are chosen to be processed by the analyzers.
The number of hosts is determined by predicting the data rates
transferred and received by the hosts and comparing these rates
to the maximum possible data rate that the analyzer instances
are able to process. The administrator is able to adjust these
priorities.

D. Data forwarding to IDS instances

Efficient data transfer to the asynchronously executed IDS
instances is a challenging issue at the envisioned data rates. In
UNIX operating systems, commonly POSIX pipes are used for
unidirectional data transfer between processes. In these pipes,
data is copied between user and kernel-space. The overhead of
those copy operations is avoied by implementing a lock-free
ring buffer [30] of size n in shared memory. As the forwarded
traffic is highly dynamic, the IDS instance is not always able
to process the incoming packets in time and the connecting
ring buffer will fill up and lead to random, uncontrolled packet
dropping. The system’s implementation alleviates this problem
and introduces controlled packet dropping. This method works
by continuously monitoring the fill level of the buffer. If it
exceeds a threshold, packets will be dropped in a controlled
way.

E. Performance of the load-balancing system

To compare the load balanced parallel IDS with a normal IDS
in conditions with packet-loss, an experiment was conducted
using a 4100s network packet trace from a University’s
network with an average data rate of 430Mbit/s. The packet
trace was prepared by randomly dropping packets at a rate
p ∈ {0.0, . . .0.9}, then all reported events were recorded.
In Figure 3, the number of TCP and UDP related events
reported by Snort are shown for processing the trace with
different packet drop ratios, where duplicate events for the
same connection were omitted. Additionally, multiple runs were



6

0.0 0.2 0.4 0.6 0.8

0
5
0
0
0

1
0
0
0
0

1
5
0
0
0

2
0
0
0
0

dropped packets / total packets

T
P

 e
v
e
n
ts

l
l

l

l

l

l

l

l

l

l

l

l random pkt. loss

load balancer

0.0 0.2 0.4 0.6 0.8

0
2
0
0
0
0

4
0
0
0
0

6
0
0
0
0

8
0
0
0
0

dropped packets / total packets

T
P

 e
v
e
n
ts

ll

l

l

l

l

l

l

l

l

l

l random pkt. loss

load balancer

Fig. 3: Number of detected events with random packet
losses compared to the load balancing system. Left/right
graph: TCP/UDP-related events

performed with a selection interval of 10s. To obtain realistic
results, the packet trace was processed in real-time and limited
the processing rate of each Snort instance to get comparable
drop ratios. A lower packet loss rate than 40% was not possible,
as the three IDS instances were at maximum load and could
not process the needed data rates. As reported in [3], the load
balanced IDSs run detected 44% more events compared to the
IDS run with random packet drops at a packet loss rate of
85%. This is due to the host-based selection process adhering
to a minimal monitoring interval that forwards semantically
interdependent packets to the same analyzers. Similarly, rules
matching UDP content were more often reported by the load
balancing system. This is due to a high number of events
matching DNS queries. The involved DNS servers did not
produce much traffic at the Internet uplink, so the load balancer
often temporarily assigned the servers to an IDS which led to
a higher amount of reported UDP events.

IV. CONCLUSION

In conclusion, monitoring for network-based intrusion detec-
tion is still a challenging task, especially in high-speed networks
transmitting data at multiple gigabit per second. There are,
however, several techniques available to speed-up this process.
Besides filtering techniques, reducing the number of bytes to be
analyzed and optimizations in signature detection, substantial
improvements can be achieved by exploiting parallelization
on multi-core CPUs. In form of a case study, we presented a
load balancing system specialized for parallel payload-based
IDSs on multi-core systems using prioritized flows. Using a
prototype, we experimentally evaluated the performance of the
system both in quality and quantity. The system is able to cope
with highly fluctuating data rates, which is a common property
of todays Internet network traffic. A key feature is the minimal
monitoring interval ensuring that consecutive packets needed
for pattern matches will be forwarded to the IDS with a high
probability.

REFERENCES

[1] C. V. Zhou, C. Leckie, and S. Karunasekera, “A Survey of Coordinated
Attacks and Collaborative Intrusion Detection,” Computers & Security,
vol. 29, no. 1, pp. 124–140, 2010.

[2] H. Dreger, A. Feldmann, V. Paxson, and R. Sommer, “Predicting the
resource consumption of network intrusion detection systems,” ACM
SIGMETRICS Performance Evaluation Review, vol. 36, no. 1, pp. 437–
438, 2008.

[3] T. Limmer and F. Dressler, “Adaptive Load Balancing for Parallel IDS
on Multi-Core Systems using Prioritized Flows,” in 20th International
Conference on Computer Communication Networks (ICCCN 2011).
Maui, HI: IEEE, July/August 2011, pp. 1–8.

[4] ——, “Improving the Performance of Intrusion Detection using Dialog-
based Payload Aggregation,” in 30th IEEE Conference on Computer
Communications (INFOCOM 2011), 14th IEEE Global Internet Sympo-
sium (GI 2011). Shanghai, China: IEEE, April 2011, pp. 833–838.

[5] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P. Markatos, and
S. Ioannidis, “Gnort: High Performance Network Intrusion Detection
Using Graphics Processors,” in 11th International Symposium on
Recent Advances in Intrusion Detection (RAID 2008), vol. LNCS 5230.
Cambridge, MA: Springer, September 2008, pp. 116–134.

[6] L. Deri, J. Gasparakis, P. J. Waskiewicz, and F. Fusco, “Wire-Speed
Hardware-Assisted Traffic Filtering with Mainstream Network Adapters,”
in 1st International Workshop on Network Embedded Management and
Applications (NEMA 2010). Niagara Falls, Canada: Springer, October
2010.

[7] B. Claise, “Specification of the IP Flow Information Export (IPFIX)
Protocol for the Exchange of IP Traffic Flow Information,” IETF, RFC
5101, January 2008.

[8] J. Quittek, S. Bryant, B. Claise, P. Aitken, and J. Meyer, “Information
Model for IP Flow Information Export,” IETF, RFC 5102, January 2008.

[9] B. Schneier, “The story behind the stuxnet virus,”
2010. [Online]. Available: {http://www.forbes.com/2010/10/06/
iran-nuclear-computer-technology-security-stuxnet-worm.html}

[10] M. A. Rajab, F. Monrose, and A. Terzis, “On the Effectiveness of
Distributed Worm Monitoring,” in 14th USENIX Security Symposium,
Baltimore, MD, July 2005.

[11] S. L. Pfleeger and S. J. Stolfo, “Addressing the Insider Threat,” IEEE
Security and Privacy, vol. 7, no. 6, pp. 10–13, 2009.

[12] L. Deri, “Improving Passive Packet Capture: Beyond Device Polling,”
in 4th International System Administration and Network Engineering
Conference (SANE 2004), Amsterdam, The Netherlands, September 2004.

[13] ——, “Introducing PF-RING DNA (Direct NIC Access),” 2010. [Online].
Available: {http://www.ntop.org/blog/?p=50}

[14] I. Sourdis, V. Dimopoulos, D. N. Pnevmatikatos, and S. Vassiliadis,
“Packet Pre-filtering for Network Intrusion Detection,” in ACM/IEEE
Symposium on Architecture for Networking and Communications Systems
(ANCS 2006). San Jose, CA: ACM, December 2006, pp. 183–192.

[15] W. Drewry and T. Ormandy, “Insecure Context Switching: Inoculating
Regular Expressions for Survivability,” in 2nd USENIX Workshop on
Offensive Technologies (WOOT 2008). San Jose, CA: USENIX, July
2008.

[16] K. Ellul, B. Krawetz, J. Shallit, and M.-w. Wang, “Regular Expressions:
New Results and Open Problems,” Journal of Automata, Languages and
Combinatorics, vol. 10, no. 4, pp. 407–437, 2005.

[17] K. Namjoshi and G. Narlikar, “Robust and Fast Pattern Matching for
Intrusion Detection,” in 29th IEEE Conference on Computer Communi-
cations (INFOCOM 2010). San Diego, CA: IEEE, March 2010.

[18] R. Smith, C. Estan, S. Jha, and S. Kong, “Deflating the Big Bang: Fast
and Scalable Deep Packet Inspection with Extended Finite Automata,”
in ACM SIGCOMM 2008, Seattle, WA, August 2008, pp. 207–218.

[19] D. Ficara, S. Giordano, G. Procissi, F. Vitucci, G. Antichi, and A. D.
Pietro, “An improved DFA for Fast Regular Expression Matching,”
Computer Communication Review, vol. 38, no. 5, pp. 29–40, 2008.

[20] M. Becchi, C. Wiseman, and P. Crowley, “Evaluating Regular Expression
Matching Engines on Network and General Purpose Processors,” in
ACM/IEEE Symposium on Architecture for Networking and Communica-
tions Systems (ANCS 2009), Princeton, NJ, October 2009, pp. 30–39.

[21] G. Vasiliadis, M. Polychronakis, S. Antonatos, E. P. Markatos, and
S. Ioannidis, “Regular Expression Matching on Graphics Hardware
for Intrusion Detection,” in 12th International Symposium on Recent
Advances in Intrusion Detection (RAID 2009), vol. LNCS 5758. Saint-
Malo, France: Springer, September 2009, pp. 265–283.

[22] S. Yusuf and W. Luk, “Bitwise Optimised CAM for Network Intrusion
Detection Systems,” in 15th IEEE International Conference on Field
Programmable Logic and Applications (FPL 2005), Tampere, Finnland,
August 2005, pp. 444–449.

[23] K. Xinidis, I. Charitakis, S. Antonatos, K. G. Anagnostakis, and E. P.
Markatos, “An Active Splitter Architecture for Intrusion Detection and
Prevention,” IEEE Transactions on Dependable and Secure Computing,
vol. 3, no. 1, pp. 31–44, 2006.



7

[24] F. Fusco and L. Deri, “High Speed Network Traffic Analysis with
Commodity Multi-core Systems,” in 10th ACM Internet Measurement
Conference (IMC 2010). Melbourne, Australia: ACM, November 2010,
pp. 218–224.

[25] M. Vallentin, R. Sommer, J. Lee, C. L. V. Paxson, and B. Tierney,
“The NIDS Cluster: Scalable, Stateful Network Intrusion Detectionon
Commodity Hardware,” in 10th International Symposium on Recent
Advances in Intrusion Detection (RAID 2007), 2007, pp. 107–126.

[26] R. Sommer, V. Paxson, and N. Weaver, “An architecture for Exploiting
Multi-core Processors to Parallelize Network Intrusion Prevention,”
Concurrency and Computation: Practice and Experience, vol. 21, no. 10,
pp. 1255–1279, 2009.

[27] M. Andreolini, S. Casolari, and M. Colajanni, “Models and Framework
for Supporting Runtime Decisions in Web-based Systems,” ACM
Transactions on the Web, vol. 2, no. 3, July 2008.

[28] G. Gu, R. Perdisci, J. Zhang, and W. Lee, “BotMiner: Clustering
Analysis of Network Traffic for Protocol- and Structure-Independent
Botnet Detection,” in 17th USENIX Security Symposium, ser. USENIX
Security Symposium. San Jose, CA: USENIX, July 2008, pp. 139–154.

[29] R. T. Lampert, C. Sommer, G. Münz, and F. Dressler, “Vermont -
A Versatile Monitoring Toolkit for IPFIX and PSAMP,” in IEEE/IST
Workshop on Monitoring, Attack Detection and Mitigation (MonAM
2006). Tübingen, Germany: IEEE, September 2006, pp. 62–65.

[30] P. P. C. Lee, T. Bu, and G. P. Chandranmenon, “A Lock-free, Cache-
efficient Multi-core Synchronization Mechanism for Line-rate Network
Traffic Monitoring,” in IEEE International Symposium on Parallel and
Distributed Processing (IPDPS 2010), Atlanta, GA, April 2010, pp. 1–12.


