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Abstract—Nanoscale devices featuring Terahertz (THz)-based
wireless communication capabilities are envisioned to be deployed
within human bloodstreams. Such devices are envisaged to enable
fine-grained sensing-based applications for detecting events (i.e.,
biomarkers) for early indications of various health conditions, as
well as actuation-based ones such as the targeted drug delivery.
Intuitively, associating the locations of such events with the events
themselves would provide an additional utility for precision
diagnostics and treatment. This vision recently yielded a new
class of in-body localization coined under the term “flow-guided
nanoscale localization”. Such localization can be piggybacked on
THz-based communication for detecting body regions in which
events were observed based on the duration of one circulation of
a nanodevice in the bloodstream. From a decades-long research
on objective benchmarking of “traditional” indoor localization,
as well as its eventual standardization (e.g., ISO/IEC 18305:2016),
we know that in early stages the reported performance results
were often incomplete (e.g., targeting a subset of relevant per-
formance metrics), carrying out benchmarking experiments in
different evaluation environments and scenarios, and utilizing
inconsistent performance indicators. To avoid such a “lock-in”
in flow-guided nanoscale localization, in this paper we discuss
a workflow for standardized performance evaluation of such
localization. The workflow is implemented in the form of an
open-source framework that is able to jointly account for the
mobility of the nanodevices in the bloodstream, in-body THz
communication between the nanodevices and on-body anchors,
and energy-related and other technological constraints (e.g.,
pulse-based modulation) at the nanodevice level. Accounting for
these constraints, the framework is able to generate the raw data
that can be streamlined into different flow-guided localization
solutions for generating standardized performance benchmarks.

Index Terms—Flow-guided nanoscale localization, Terahertz,
performance evaluation methodology, precision medicine;

I. INTRODUCTION

Recent advances in nanotechnology are paving the way
toward nanoscale devices with integrated sensing, computing,
and data and energy storage capabilities [1]. Among others,
such devices will find applications in precision medicine [2],
[3]. A subset of such applications envision the nanodevices
being deployed in the patients’ bloodstreams. As such, these
nanodevices will have to abide to the environmental constraints
limiting their physical size to the one of the red blood cells
(i.e., smaller than 5 microns). Due to such constrained sizes,
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their sole powering option will be to scavenge environmental
energy (e.g., from heartbeats or through ultrasound-based
power transfer) utilizing nanoscale energy-harvesting entities
such as Zinc-Oxide (ZnO) nanowires [1]. Due to constrained
powering, such devices are expected to be passively flowing
within the patients’ bloodstreams.

Recent advances in the development of novel materials, pri-
marily graphene and its derivatives [4], herald nanoscale wire-
less communications in the THz region (i.e., 0.1-10 THz) [3].
In the context of the above-discussed nanodevices, wireless
communication capabilities will enable two-way communica-
tions between them and the outside world [5]. Fully integrated
nanodevices with communication capabilities are paving the
way toward sensing-based applications such as oxygen sensing
within the bloodstream for detecting hypoxia (i.e., a biomarker
for cancer diagnosis), as well as actuation-based ones such as
non-invasive targeted drug delivery for cancer treatment.

As recognized in recent literature, nanodevices with com-
munication capabilities will also provide a primer for flow-
guided localization in the bloodstream [3], [6]. Intuitively,
such localization would enable associating the location of the
nanodevice with a detected event (e.g., hypoxia, target for drug
targeted delivery), providing medical benefits along the lines
of non-invasiveness, early and precise diagnostics, and reduced
costs [6]–[8].

Flow-guided localization is in an early research phase, with
only a few works targeting the problem [6]–[8]. The main
challenges include i) a centimeter-level range of THz-based
in-body wireless communication at nanoscale, ii) energy-
related constraints stemming from energy-harvesting as the
sole powering option of the nanodevices, iii) high mobility
of the nanodevices within the bloodstream, with their speeds
reaching 20 cm/sec. Flow-guided localization proposals have
made an encouraging progress in addressing the above chal-
lenges, yet we argue that the research and further advances on
such localization are needed and still to flourish.

Based on the above argument and the knowledge generated
through decades of research on “traditional” indoor localiza-
tion, we posit that, at this early stage, there is a need for
a framework for objective performance evaluation of flow-
guided THz-based nanoscale localization. Specifically, the
research on indoor localization in early stages was suffering
from the inability of comparing the performance of different
approaches in an objective way. In other words, the reported
performance results were often incomplete (e.g., targeting a
single metric such as localization accuracy and ignoring the
other important ones such as the latency in reporting location
estimates), utilizing different performance indicators (e.g.,
mean vs. median accuracy), and utilizing different evaluation
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Figure 1. Nanodevice mobility in the BloodVoyagerS [13]

environments and scenarios. These issues were eventually
recognized in the community and addressed through projects
such as the EU Evaluation of RF-based Indoor Localization
Solutions for the Future Internet (EVARILOS) [9] and NIST
Performance Evaluation of Smartphone Indoor Localization
Apps (PerfLoc) [10], as well as with indoor localization
competitions such as the one from Microsoft at the ACM/IEEE
IPSN conference [11], eventually resulting in the development
of an ISO/IEC standard for objective benchmarking of indoor
localization approaches [12].

With this article, we aim at avoiding the initial “lock-in”
in the comparability of flow-guided localization by proposing
a framework for standardized performance evaluation of such
localization approaches. Specifically, we discuss the funda-
mentals of flow-guided nanoscale localization, provide the cat-
egorization of existing approaches, and discuss the limitations
of their current performance assessments. This is followed by
proposing a workflow for standardized and objective perfor-
mance assessment of flow-guided localization. In addition, an
open-source network simulator is provided that implements
the discussed workflow and provides the community with the
first tool for realistic and objective assessment of flow-guided
localization. Finally, we demonstrate the performance of the
simulator by evaluating the performance of the current state-
of-the-art flow-guided localization solution.

II. RELATED WORKS

A. Performance Evaluation of THz Nanoscale Systems

As argued in [13], simulating the performance of a given
system allows for completely controllable experimental condi-
tions and environments. In combination with repeatability and

cost-efficiency, these advantages make simulations a valuable
tool to evaluate new algorithms, especially at early research
stages. Given that the research on flow-guided localization
is still in a preliminary stage, simulating the operation of
such systems can be considered as a natural first step in the
assessment of their performance.

This was only meagerly recognized in the scientific commu-
nity, with BloodVoyagerS [13] being the first tool that provides
a simplified bloodstream model for simulating the mobility of
the nanodevices within it. The simulator covers 94 vessels and
organs, with the origins of the coordinate system placed in the
center of the heart. The spatial depth of all organs is equated,
with the reference thickness of 4 cm mimicking the depth of a
kidney, resulting in the z–coordinates of the nanodevices being
in the range between 2 and -2 cm (cf., Figure 1).

The simulator further assumes that the arteries and veins
are set anterior and posterior, respectively. Transitions from
the arteries to veins happen in the organs, limbs, and head.
In the heart, the blood transitions from the veins to arteries,
i.e., the blood model transitions from posterior to anterior. The
flow rate is modeled through the relationship between pressure
difference and flow resistance. This results in the average
blood speeds of 20, 10, and 2–4 cm/sec in aorta, arteries, and
veins, respectively. Transitions between the arteries and veins
are simplified by utilizing the constant velocity of 1 cm/sec.

TeraSim [14] is the first simulation platform for modeling
THz communication networks which captures the capabilities
of nanodevices and peculiarities of THz propagation. TeraSim
is built as a module for ns-3 (i.e., a discrete-event network
simulator), implementing physical and link layer solutions
tailored to nanoscale THz communications. Specifically, at the
physical layer the simulator features pulse-based communica-
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tions with an omnidirectional antenna over distances shorter
than 1 m, assuming a single, almost 10 THz wide transmission
window. At the link layer, TeraSim implements two well-
known protocols, i.e., ALOHA and CSMA, while a common
THz channel module implements a frequency selective chan-
nel model, assuming in-air wireless communication. We will
utilize BloodVoyagerS and TeraSim as the starting point in the
development of the envisioned simulator.

B. Evaluation Methodologies for Flow-guided Localization

As argued, research lessons on the performance evaluation
of indoor localization systems can to an extent be applied for
objective and standardized assessment of flow-guided localiza-
tion. The EU EVARILOS project was among the early efforts
aiming at such performance assessment for RF-based indoor
localization [9]. Within the project, a performance assessment
methodology was developed, which included a number of
evaluation scenarios, envisioned capturing the performance
of evaluated solutions along a heterogeneous set of metrics
including localization accuracy, latency, and energy consump-
tion, and assessing and mitigating the negative effects of RF
interference on the performance of the evaluated solutions.
The project also yielded a web platform populated with raw
data that can be inputted in an indoor localization solution
for its streamlined performance assessment along a number
of standardized scenarios. A similar approach was followed
in the NIST PerfLoc project, however with a set of possi-
ble solutions to be evaluated extending beyond only Radio
Frequency (RF) to Inertial Measurement Unit (IMU)-based,
Global Positioning System (GPS)-supported, and other hybrid
approaches. Finally, the IPSN/Microsoft Indoor Localization
Competition [11] was among the first efforts to support back-
to-back evaluation of different indoor localization approaches
along the same set of conditions.

The above-discussed and consequent efforts yielded the fol-
lowing lessons: i) performance comparison of different indoor
localization approaches can be carried out in an objective way
by following the same evaluation methodology, i.e., utilizing
the same environments, scenarios, and evaluation metrics, ii)
such evaluation can be streamlined by providing a set of raw
data captured along a standardized evaluation methodology,
which is envisioned to be used as an input to an indoor
localization solution, and iii) the performance of RF-based
indoor localization can be degraded by both self-interference
and interference from neighboring RF-based systems operating
in the same frequency band.

In the current outlook on the performance assessment of
existing flow-guided localization, the approaches from [7]
and [8] are evaluated in a rather simplified way accounting
solely for the mobility of the nanodevices as modeled by
BloodVoyagerS. As such, their performance assessments ig-
nore many potential effects of wireless communication (e.g.,
RF interference), as well as energy-related constraints stem-
ming from energy-harvesting and, consequently, the intermit-
tent operation of a nanodevice [1]. It is also worth mentioning
that [6] carried out a limited performance evaluation assessing
the number of nanodevices needed for localizing a nanodevice

Figure 2. Categorization of RF-based in-body localization approaches, corre-
sponding applications, their requirements, and relevant performance metrics

at any location in the body in a multi-hop fashion. The derived
assessments can, therefore, at this point only serve as a rough
indication due to their low levels of realism and subjective
evaluation methodologies. In this work, we enhance the real-
ism of such assessments by jointly accounting for the mobility
of the nanodevices, in-body nanoscale THz communication
between the nanodevices and the outside world, and energy-
related and other technological constraints (e.g., pulse-based
modulation) of the nanodevices.

III. FLOW-GUIDED LOCALIZATION FUNDAMENTALS

RF-based in-body localization approaches can be catego-
rized based on the type of applications they support, as
depicted in Figures 2 and 3. Intuitively, there is a need
for localization of in-body devices that are either mobile or
nomadic within the body, otherwise their locations could be
derived during deployment. The nomadic or mobile devices
in the body are envisioned to support three main types of
applications [15]. The first is the localization of macroscale
devices within the body, specifically for localizing gastric
capsules (nb., as there is a clear diagnostic benefit of assigning
the measurements of the gastrointestinal system with the
locations at which they were taken) and implants (nb., for
detecting their movements away from the intended deployment
locations). Such devices are not envisaged to feature nanoscale
dimensions and their expected levels of mobility are either low
(i.e., several cm/hour in the gastrointestinal system) or there is
potentially no mobility in case of the implants. This reduces
the localization requirements compared to the other two cate-
gories in Figure 2, primarily due to the fact that localization
can be performed using RF signals in sub-6GHz frequency
bands. Thus, there are no stringent requirements in terms of the
devices’ physical sizes, hence they can feature batteries and
do not experience intermittent behavior. A representative of
this approach is [15], in which out-of-band aliasing of signals
transmitted by an out-of-body anchor at the central frequency
of 1 GHz is utilized for localizing a static backscattering diode
in the body, reporting cm-level accuracy of the procedure.

The second category targets localizing nanoscale devices
that feature low mobility levels, utilized in applications such
as tracking fiducial markers (nb., devices that provide accurate
target location for tumors or organs which move in respect
to surrounding anatomy) and other types of miniaturized im-
plants. Although a subset of such applications can be enabled
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(a) Gastric capsules and implants (b) Fiducial markers and nano-implants (c) Cardiovascular nanodevices

Figure 3. Schematics of different types of RF-based in-body localization approaches

through devices that do not feature nanoscale dimensions [15],
enabling their full set will require nanoscale entities (e.g., early
targeted treatment of small-scale tumors), hence this type is
categorized separately in Figure 2. Here, a representative is an
early effort in [6], where the authors assume the nanodevices
are densely deployed and passively flowing in the blood-
stream. For such a scenario, the authors propose an iterative
localization concept in which the nanodevices closer to the
body surface are localized first with the support from on-body
anchors, followed by the usage of the localized nanodevices as
both anchors and relays for localizing the nanodevices deeper
in the body (cf., Figure 3.b). The authors assume energy-
harvesting nanodevices operating at THz frequencies due to
size constraints in the bloodstream. Such an approach could
conceptually be applied for localizing nanoscale implants
within the body. However, further research is needed for
addressing the associated challenges (e.g., stringent latency-
related constraints for multi-hop communication).

Both of the above-discussed categories of RF-based in-body
localization target localizing a (nano)device within the body.
This can be viewed as analogous to indoor localization where,
within an indoor environment, the goal is to localize a device
(e.g., smartphone) at an unknown location. Therefore, evalua-
tion methodologies applicable to traditional indoor localization
can also be applied for localization of an in-body (nano)device.
Taking the EVARILOS Benchmarking Methodology [9] as
an example, the metrics of interest are the point accuracy
of localization (i.e., the Euclidean distance between true and
estimated locations), latency and energy consumption required
for localizing the device, and the reliability of such localization
(i.e., probability of reporting a location estimate upon request),
as depicted in Figure 2.

The final category is the flow-guided nanoscale localization
considered in this work. Here, the goal is to use the nanode-
vices to detect and localize a target event, not necessarily to
localize themselves (cf., Figure 3.c). As discussed earlier, the
work in [6] can conceptually support this type of scenarios
and is, therefore, included in this category. Nonetheless, the
representatives of such localization are [7], [8]. In these
approaches, the authors utilize machine learning models for
distinguishing a region through which each nanodevice passed
during one circulation through the bloodstream. The authors

in [8] base this procedure on tracking the distances traversed
by a nanodevice in its circulations through the bloodstream
by utilizing a conceptual nanoscale IMU. However, this posits
challenges in terms of resources available at the nanodevice
level for storing and processing IMU-generated data, and
challenges related to the vortex flow of blood negatively
affecting the accuracy of IMU readings. The authors in [7]
mitigate these issues by tracking the time needed for each
circulation through the bloodstream. The captured distance or
time is then envisioned to be reported to a beaconing anchor
deployed in the proximity of the heart utilizing short range
THz-based backscattering at the nanodevice level.

Given that only a body region through which the nanodevice
traversed is being detected, these localization approaches are
(in contrast to [6]) not designed to provide point localization
of the target. This is despite the fact that point localization of
the target event would be immensely beneficial for the health-
care diagnostics. Moreover, the region detection accuracy and
reliability of localization can intuitively be enhanced with an
increase in the number of circulations the nanodevices make
in the bloodstream. As a trade-off, such an increase would
negatively affect the energy consumption of the localization
procedure. Therefore, in flow-guided localization the relevant
performance metrics such as the point and region accuracies,
reliability, and energy consumption should be considered as a
function of the application-specific delay allowed for localiz-
ing target events (cf., Figure 2).

IV. FRAMEWORK FOR STANDARDIZED PERFORMANCE
EVALUATION OF FLOW-GUIDED LOCALIZATION

A. Evaluation Workflow

As discussed previously, enabling flow-guided localization
of the nanodevices flowing in the bloodstream requires at
least a single anchor mounted on the patient’s body. Flow-
guided localization approaches in [7], [8] can be enabled
with a single anchor strategically positioned in the proximity
of the heart. This is because the heart is the only location
through which each nanodevice is guaranteed to pass in each
circulation through the bloodstream. Additional anchors can
be introduced into the system by specifying their coordinates
in their configuration file of the simulator, as indicated in
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INPUT:
- Configuration of anchors
- Number of nanonodes
- Event sampling frequency
- Simulation duration
- Locations of target events
- Energy consumption 

parameters

RAW DATA
(Scenario 1)

RAW DATA
(Scenario N)…

Flow-guided 
solution 1

Flow-guided 
solution M

…

Streamlined perfomance 
benchmark (Scenario 1, solution M)

Streamlined perfomance 
benchmark (Scenario 1, solution 1)

Reliability vs. delay
Region accuracy vs. delay
Point accuracy vs. delay
Energy consumption vs. delay

Reliability vs. delay
Region accuracy vs. delay
Point accuracy vs. delay
Energy consumption vs. delay

Figure 4. Overview of the framework for standardized performance evaluation of flow-guided localization

Figure 4. The on-body anchors are expected to feature batteries
or similar powering sources, hence they are assumed to be
continuously operational. Their main roles are to transmit
beacon packets and receive the backscattered responses from
the nanodevices.

The nanodevices are assumed to feature capacitors for
energy storage and ZnO nanowires as the energy-harvesting
entities. The capacitor charging is modeled as an exponential
process accounting for the energy-harvesting rate and interval
(e.g., 6 pJ per sec and per 20 ms for harvesting from heartbeats
and ultrasound-based power transfer, respectively) [1]) and
capacitor’s storage capacity. The nanodevices are assumed to
feature intermittent behavior due to harvesting and storage
constraints. This behavior is modeled through the Turn ON
threshold, i.e., if the current energy level of a nanodevice is
above the threshold, the nanodevice is turned on. Once its
energy is fully depleted, the nanodevice turns off, followed
by a turn on when its energy increases above the Turn ON
threshold.

Moreover, if the nanodevices are turned on, they are as-
sumed to periodically carry out a sensing or actuation task
with a given frequency. Each execution of a task is expected to
consume a certain constant amount of energy, hence the more
frequent the task, the more energy will be consumed by each
nanodevice. The location(s) of the event(s) to be detected is
(are) envisioned to be hard-coded by the experimenter, abiding
to the constraints of the scenario. Specifically, this location
has to be in or near the bloodstream in order to eventually
be detected by the nanodevices. The event is assumed to be
detected by a nanodevice if i) the Euclidean distance between
its location and the location of the nanodevice at the time of
the execution of a task is smaller than the predefined threshold
(nb., configured to 1 cm in the reported experiments), and ii)
the nanodevice is turned on.

Communication between an anchor and a nanodevice is
based on passive reception of a beacon, followed by active
(i.e., energy-consuming) transmission of a response packet
from the nanodevice, as assumed in the representative work
from the literature [7]. The anchor is beaconing with the
constant beaconing frequency and transmit power. In each

beacon packet, the anchor advertises its Medium Access
Control (MAC) address. In the backscattered packets, the
nanodevices report their MAC addresses, the time elapsed
since their last passage through the heart, and an event bit.
The time elapsed since the last passage through the heart and
the event bit represent the raw data that can be fed into a
flow-guided localization approach for localizing a target. Each
time a nanodevice passes through the heart the time elapsed
since the last passage is re-initialized to zero in order not to
compound multiple circulations. The event bit is assumed to
be a logical “1” in case of a successful detection of a target
event and “0” otherwise. Similarly, the event bit is reinitialized
to “0” in each passage through the heart.

B. Framework Design and Implementation

The framework for standardized performance evaluation of
flow-guided localization is depicted in Figure 4. The input to
the framework is a set of parameters defining an evaluation
scenario. The inputs are envisioned to be passed to the ns-
3-based simulator for the generation of raw data to be used
for streamlined evaluation a given flow-guided localization
solution for the assumed scenario, resulting in a performance
benchmark, as indicated in Figure 4. Each streamlined perfor-
mance benchmark consists of a set of relevant performance
metrics, in turn allowing for an objective back-to-back com-
parison of different approaches in a consistent environment
along the same set of scenarios and performance metrics.

The architecture of the simulator follows a well-established
ns-3 layered model, as depicted in Figure 4. The AnchorAp-
plication module implements continuous beaconing with a
predefined period (nb., with 100 ms being a default value).
Each beacon packet is forwarded to the THzNetDevice mod-
ule toward the communication stack implemented within the
TeraSim simulator. The link and physical layers implement the
ALOHA protocol and TS-OOK modulation, respectively.

The THz channel is modeled by calculating the receive
power for each communicating pair of devices and scheduling
the invocation of the ReceivePacket() method accounting for
the corresponding propagation time. The channel model entails
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Figure 5. An example raw data output

in-body path-loss and Doppler terms [8]. The path-loss is
calculated using the attenuation and thickness parameters of
the vessel, tissue, and skin. The Doppler term is accounted
for by evaluating the change in relative positions between
the nanodevices and anchors with time. The ReceivePacket()
method checks for potential collisions by calculating the SINR
and discarding the packet if the SINR is below the predefined
threshold for reception. Alternatively, the packet is passed
through all the way to the application layer of the nanodevice.
At the nanodevice level, the receive power of the beacon is
used for setting up the transmission power of the packet to be
backscattered. This is followed by backscattering the response
packet from the nanodevice toward the anchor by utilizing the
same procedure as for the transmission of the beacon.

The anchors are assumed to be static entities and feature
sufficient energy for continuous operation. The nanodevices
are assumed to be energy-harvesting entities that are mo-
bile within the bloodstream. To model their mobility, we
have integrated BloodVoyagerS in our simulator, as visible
in Figure 4. Invoking a BloodVoyagerS execution results in
generating a Comma Separated Value (CSV) file that specifies
the locations of the nanodevices in the bloodstream within
a simulation time frame, sampled at 1 Hz. Since ns-3 is
an event-driven simulator, at each BloodVoyagerS-originating
location of a nanodevice, the nanodevice is assumed to carry
out a sensing/actuation task. Given that for certain applications
carrying out such tasks could be required more frequently, we
provide an upsampler for BloodVoyagerS-originating locations
sampled at 1 Hz. As the vessels in BloodVoyagerS are mod-
eled using straight lines, the upsampling is based on linear
interpolation with a small random component drawn from a
zero-mean Gaussian distribution, representing vortex flow of
blood and minor changes in the diameters of veins, arteries,
etc. At each new location, the nanodevice is expected to carry
out a task for detecting an event of interest.

C. A Snapshot of Framework-generated Outputs
A snapshot of outputs generated using the framework is

depicted in Figures 5 and 6. In the generation of the outputs,
we have utilized a single anchor positioned in the center of the
heart, 64 nanonodes sampling for target events at 3 samples per
second, ultrasound-based energy-harvesting at the nanonode
level [1], the overall simulation duration of 1000 sec, and the
Euclidean distance for detecting a target event of 1 cm.

Figure 5 depicts the raw data generated by an example
nanonode during one simulation runtime. The raw data con-
sists of the circulation time parameter indicating the time

passed since the last reception of a beacon from the anchor and
the event bit suggesting if the target event was detected since
the last beacon reception. The main takeaway from Figure 5
is that, for some raw data instances, the circulation time is
larger than 90 sec, which is the maximum circulation time
that might occur in a single loop trough the bloodstream. This
implies that in some circulations the raw data is not reported
to the anchor and, when the data is eventually reported, it
contains the compound of multiple such circulations. Such
behavior is a result of one of the following: i) intermittent
operation of a nanonode due to energy-harvesting, resulting
in the nanonode sometimes not featuring sufficient energy for
sensing or transmission, and ii) self-interference from the other
nanonodes and anchors, resulting in reception and transmission
errors. In addition, random paths of the nanonodes in the
vicinity of the target event (i.e., in an organ, limb, or head) can
result in the nanonodes missing the event due to its Euclidean
distance from the event never being smaller than the threshold
of 1 cm, despite the fact that they went through the loop that
contained the event. This implies that the event bit parameter
might in some cases be erroneous.

Figure 6 depicts a set of performance metrics generated in a
streamlined fashion using the framework. In the generation of
the results, we have utilized a modified approach from [7] and
20 randomly sampled evaluation points (i.e., target events) in
the bloodstream. The modification in the approach pertains
to random selection of the left or right regions given that
the approach assuming a single anchor is by-design unable
to distinguish between such regions for certain parts of the
body (e.g., limbs). As visible from the figure, the reliability
of localization increases as a function of localization delay. As
an example, the reliability is increased from less than 50% to
more than 90% if the delay is increased from 2 to 15 min. Our
results again reveal that certain assumptions made in earlier
works on flow-guided nanoscale localization ignore several
phenomena that are expected to occur in practice, pertain-
ing to unreliable THz-based communication between in-body
nanonodes and on-body anchors and intermittent operation
of the nanonodes due to energy-harvesting. When these are
accounted for as done when utilizing the proposed framework,
our results further reveal relatively poor performance of the
evaluated flow-guided localization solution in the considered
scenario. Specifically, the region detection accuracy is at most
40% and features only a small increase with the delay.

Given that the approach from [7] cannot report point es-
timates but solely the estimated regions, in the calculation
of the point accuracy we have utilized the centroid of a



IEEE DRAFT 7

Figure 6. An example streamlined performance benchmark

region as its point estimate. This procedure is well-established
in the domain of benchmarking of proximity-based indoor
localization solutions [9]. In Figure 6, the depicted point
accuracy can be considered as irrelevant, given the low region
detection accuracy. In other words, the point accuracy should
be derived only for the correctly detected regions in order
to express the fine-grained ability of localizing target events.
We nonetheless depict the point accuracy even for the case
of incorrectly detected regions to draw readers’ attention to
this issue. The point accuracy is depicted in a regular box-
plot fashion, where each box-plot depicts the distribution of
localization errors for the 20 considered target events and
a given delay. Finally, time-dependent energy level of an
example nanonode depicted in Figure 6 indicates the energy
consumption of different tasks at the nanonode level. Such
indications are necessary for energy-aware optimizations of
the task scheduling to maximize the operational time of the
intermittently-operating nanonodes in a similar way as in [1].

V. CONCLUSION

We argue that there is a need for objective evaluation of the
performance of flow-guided nanoscale localization. We further
argue that such objectiveness can be achieved by utilizing the
same evaluation environment, scenarios, and performance met-
rics. This is achieved by proposing a workflow for performance
assessment of flow-guided localization and its implementation
in the form of a simulator, providing the community with the
first tool for objective evaluation of flow-guided localization.
Our results reveal relatively poor accuracy of the evaluated
solution in the considered scenario. This is due to unreliable
THz communication between in-body nanonodes and on-body
anchors and intermittent operation of the nanonodes due to
energy-harvesting. Accuracy enhancements are envisioned as
a part of our future work along the lines of introducing
additional anchors at strategic locations on the body (e.g.,
writs) and developing a more suitable machine learning model
that accounts for the fact that the raw data might be erroneous
(e.g., compounding circulation times). Regardless of the poor
accuracy, our results indicate that the proposed workflow and
the simulator can be utilized for capturing the performance
of flow-guided localization approaches in a way that allows
objective comparison with other approaches.
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