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Abstract—Every year, approximately 350 000 vulnerable road
users (VRUs) still lose their lives in road traffic accidents world-
wide. To reduce this number, cooperative VRU collision avoidance
systems aim at complementing current vehicle or infrastructure-
based systems for VRU protection. The cooperative approach
assumes user equipment (UE) like a smartphone or a smartwatch
on the VRU side, which allows to obtain and exchange movement
and contextual information with other road users for determining
the current risk level for a collision. In recent publications,
the usage of additional contextual information, such as the
pedestrian’s current activity (e.g., standing, walking or crossing a
curb), has been shown to improve the collision detection accuracy.
However, those approaches focused on the detection accuracy,
but did not investigate how time delays for both detection and
communication of VRU contexts affect the ability to detect
collisions. We fill this gap by investigating the influence of both
activity recognition and communication delays on the collision
detection performance. As a baseline, we use the standardized
Euro NCAP test protocol. For the evaluation, we exemplarily
consider the usage of a curb detection module for position
correction, which improves the collision detection accuracy at
the moment the pedestrian crosses the curb.

I. INTRODUCTION

Every year, about 350 000 VRUs, mostly pedestrians and
cyclists, lose their lives in road traffic accidents [1]. Several
approaches aim to reduce the number of these accidents by
VRU detection and collision avoidance systems, e.g., using
cameras, radar, or LIDAR mounted on vehicles or the road
infrastructure. However, those approaches usually depend on a
direct line-of-sight (LOS) to the VRU and may struggle in non-
line-of-sight (NLOS) scenarios to detect VRUs in a reliable
and timely manner. In recent years, cooperative VRU collision
avoidance has emerged as a complementary approach for
vehicle and infrastructure-based detection systems to mitigate
those limitations [2], [3]. The cooperative approach assumes
UEs, like smartphones or smartwatches, on the VRU side.
Those devices are equipped with Global Navigation Satellite
System (GNSS) and Inertial Measurement Unit (IMU) sensors
and allow tracking and exchange of movement information
with nearby vehicles or the infrastructure [2] (see Fig. 1).

However, there are still a lot of challenges to be addressed
when integrating UEs into cooperative collision avoidance
systems. Most notably, the low accuracy of current smartphone
GNSS makes it difficult to accurately track VRU movements.

Warning Pedestrian!

CAR!

1

1

2

2 Cellular mobile radio

MEC server

1

Fig. 1. Overview over our proposed system architecture.

As shown in [4], [5], a position accuracy of at least 0.5 m is
required for reliable collision avoidance, which is not achieved
by current smartphones.

In order to address these challenges, more recent publica-
tions [6]–[10] proposed the usage of VRU-specific contextual
information, which have been shown to be beneficial for
improving the performance of cooperative collision avoidance
systems. For example, the detection that a pedestrian has
crossed a curb [11] represents a valuable input for a cooper-
ative system, which can be used to increase both the position
accuracy and the collision detection probability [6].

However, the existing approaches which use VRU context to
improve VRU safety only focus on detection accuracy, without
considering the detection time needed and how it affects the
performance of detecting an impending collision, especially
in time-critical scenarios. In this paper, we close this gap and
investigate how delays for both detection and communication
influence the ability to detect impending collisions between
VRUs and vehicles. This investigation is conducted for a
collision scenario that is representative for 80 % of all traffic
accidents involving pedestrians.

Our contributions can be summarized as follows:

• We analyze the delays for different stages of the Activity
Recognition Chain for the detection of crossing a curb;



• we use the Veins LTE simulator to estimate the commu-
nication delay for the collision context derived from a
standardized European New Car Assessment Programme
(Euro NCAP) scenario; and

• we investigate the collision detection accuracy using a
curb detection module for position correction. We partic-
ularly consider the influence of delays for both detection
and communication on the collision detection probability.

II. RELATED WORK

In recent years, the integration of contextual or VRU-
dependent information into cooperative VRU collision avoid-
ance system has drawn considerable attention among several
research groups. In [8], the authors used smartphone sensors
to detect the VRU’s current activity, i.e., stop, walk, run, or
bike, which is used to choose the appropriate process model of
a Pedestrian Dead Reckoning algorithm. The authors showed
that their approach was able to provide a higher sampling rate
and a higher position accuracy than only using smartphone
GNSS. A similar approach was pursued in [7], which first
detects the current movement activity of a cyclist, i.e., waiting
or starting, and then chooses an appropriate model based on
the detected activity to forecast the cyclist’s future trajectory.
For the detection of cyclist movements, the authors used a
cooperative approach based on sensor data from the cyclist
smartphone and a wide angle stereo camera. In conclusion,
no accident scenario was considered so far, so the influence
of detection and communication delay of VRU context on the
collision detection performance remains unclear.

Besides approaches that capture VRU motion sequences, the
non-periodic activity crossing a curb and stepping onto the
road represents a valuable input for a cooperative system as
well. It can be detected via dedicated, shoe-mounted inertial
sensors [12] or smartphones [11] and is particularly useful
for assessing the current degree of collision risk if the exact
position of a pedestrian is not known, for example due to a
high GNSS inaccuracy of the pedestrian’s smartphone. In [6],
it has been shown that the usage of a curb detection module
for position correction increased the probability of detecting
an impending collision from 29.4% to a probability of 75.9%,
for an assumed position inaccuracy of 4 m.

However, the delay for both detecting VRU context as well
as communication in time-critical scenarios and their influence
on the collision detection accuracy has not been investigated
so far. In this paper, we extend our prior work [6] and analyze
the influence of both detection delay of crossing a curb as well
as the communication delays on the probability of detecting
an impending collision.

III. DELAY ANALYSIS OF CONTEXT DETECTION IN
COOPERATIVE VRU COLLISION AVOIDANCE SYSTEMS

For our system architecture, we assume a Multi-access
Edge Computing (MEC) server, which receives Cooperative
Awareness Messages (CAMs) via cellular connections (e.g.,
Long-Term Evolution (LTE)) (see Fig. 1). CAMs sent by
UEs of pedestrians contain their current position, direction,

and speed as well as the currently detected pedestrian context,
i.e., walking, running, or crossing a curb. The collision risk
estimation between all vehicles and VRUs is continuously
calculated on the server side. In case an impending collision
between two road users is detected, the MEC server sends a
Decentralized Environmental Notification Message (DENM),
to initiate collision avoidance measures. The server is assumed
to have unlimited computing resources so that the remote
execution time can be neglected. In case a crossing a curb
event is detected, the longitudinal position accuracy for colli-
sion detection is corrected. The exact position of the curb is
assumed to be known.

The detection of a pedestrian’s current activity usually com-
prises different stages within the Activity Recognition Chain
for (1) data acquisition (2) preprocessing and segmentation,
(3) feature extraction, and (4) classification [13]. Each stage
takes a certain amount of time, which contributes to the overall
detection delay. The first stage collects and stores sensor data
(e.g., acceleration) at a given sampling rate, but introduces a
small, possibly negligible delay. The next stage, preprocessing
and segmentation, usually involves cleaning up the data (e.g.,
removing outliers) or applying filters and then segmenting
the data. Commonly, data is segmented by applying a slid-
ing window approach with fixed-length window sizes, while
some approaches allow consecutive windows to overlap. The
window size impacts the detection delay of an activity directly.
It determines the time, all subsequent stages have to wait until
they can continue processing the data. In time critical scenarios
like VRU safety, it is mandatory to find the best possible trade-
off between window size (i.e., delay) and accuracy to ensure
both a timely and robust detection. However, while some
activities (like standing or sitting) can still be detected reliably
when reducing the windows size significantly (e.g., to less than
100 ms), some other activities may require larger window sizes
to capture temporal connections in sensor data. Subsequently,
the third stage extracts representative features (e.g., mean or
variance) from preprocessed data based on segments, and feeds
those features into a pre-trained machine learning model for
classification (e.g., decision tree). Both steps are computed
locally on the smartphone and the time needed depends on
the available hardware resources, e.g., available processor and
storage speed.

In our previous work [14], we already investigated local
computation times for feature extraction and classification
using different machine learning algorithms with varying
window lengths and sampling frequencies of sensor data.
The results show that the average local computation time
does not exceed 17 ms for all cases. The experiments were
performed on a Nexus 6 smartphone, which was released in
2014. Current smartphones provide a much faster computation
time. Therefore, we neglect these delays here.

In case of the activity crossing a curb, Jahn et al. [11]
obtained an overall recall of 86 % and a precision of 90.6 %,
with a window size of 250 ms with an overlap of 0.8, using
accelerometer data at 32Hz. The mean duration of a curb step
was found to be 1 s. This configuration performs classification



every 50 ms, resulting in 20 instances on average per crossing
a curb activity. When segmenting the training data, all seg-
ments are labeled by means of a majority vote, i.e., a segment
is labeled as crossing a curb if the number raw data, labeled
as crossing a curb, exceeds 50 % (i.e., 125 ms or 5 values) of
the window. Considering a sampling rate of 32Hz, a segment
with 250 ms is labelled as crossing a curb if the number of
values is at least 5, which results in a minimum detection
time of ∆tcurb,min = 156.25 ms. Given a mean duration of a
curb step of 1 s, and a recall of 86 % for crossing a curb,
on average, 3 of 20 instances are not recognized correctly.
In the worst case, these erroneously detected instances occur
directly at the beginning of crossing a curb, which results in a
maximum expected detection time of ∆tcurb,exp = 306.25 ms.
Nevertheless, it should be noted that this estimation is based
on averages, so there might be cases in which crossing a curb
is detected later than 306.25 ms or not detected at all.

IV. EVALUATION SETUP

In this section, we describe our assumptions and config-
urations for both the Veins LTE simulation as well as the
simulator used to calculate the collision detection probability.
We also introduce the models used to specify the pedestrian
mobility and the collision detection.

A. Scenario

For our simulation, we chose the CPNC-50 (Car-
To-Pedestrian Nearside Child 50 %) scenario from the
Euro NCAP test protocol for VRU safety systems [15]. In
this scenario, a pedestrian crosses the street while a car
approaches from his left-hand side, while the line of sight is
visually obstructed by parked cars (see Fig. 2). This scenario
covers about 80 % of all road traffic accidents involving
pedestrians [5]. In comparison to CPNC-50, we virtually added
a curb in our simulation, which is reached by the pedestrian
after 1.8 m. The remaining parameters are kept identically and
are shown in Fig. 2. We model the scenario in a 2-dimensional
Cartesian coordinate system in which the geometry of the car
(c) is represented as a rectangle with a length of Lc = 4 m
and a width of Wc = 2 m. The geometric center of the car’s
rectangle represents its current position, while the pedestrian
(p) is represented as a point.

B. Movement Modeling and Collision Detection

We assume a linear movement for the car and the pedestrian.
Thus, the position of the car and the pedestrian depending
on the time t is given by the linear movement equation for
i ∈ {p, c} as

ri(t) =

(
xi
yi

)
(t) = vi · t ·

(
sin(φi)
cos(φi)

)
+ ri, (1)

where ri is the current position, vi is the speed, and φi is
the direction. ri(t) represents the geometric center of the road
user’s geometry at time t. We call mi = ((xi, yi)

T , vi, φi), i.e.
the parameters of (1), the movement vector of road user i. An
impending collision is detected based on linear extrapolation
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Fig. 2. Scenario with curb (derived from Euro NCAP).

of (1). The function f(mp,mc) evaluates if the geometries of
two road users intersect at some t, the time to collision (TTC).

C. Modeling Sensor Accuracies

The ability to detect an impending collision is measured by
the “probability of collision detection” PC. This metric was
introduced in [5] and evaluates the probability of detecting an
impending collision depending on the movement recognition
accuracy of a VRU. The calculation of PC is based on
evaluating f(mp,mc) for all possible VRU movement vectors
in a set Mp. The set Mp is composed by adding all values
within the coverage interval ±3 · σ of the error models to the
ground truth (gt) movement vector mp,gt = (rp,gt, φp,gt, vp,gt).
We use the error models given in Table I.

Table I
ERROR MODELS FOR THE COOPERATIVE SYSTEM.

Position error longitudinal X ∼ N (0, σX)
Position error lateral Y ∼ N (0, σY )
Direction error Φ ∼ N (0, 15°)
Speed error V ∼ N (0, 0.3m/s)

D. Modeling Delays for Curb Detection

At the time at which the pedestrian crosses the curb, its
longitudinal position accuracy is set to d2 = σY = 0.2 m.
Since we assume that the collision detection is performed on
the server side, the sum of the detection and communication
delay causes an offset between the ground truth position (rp,gt)
of the VRU and the position which is received (rx) by the
server (rp,rx). Since the pedestrian moves along the y-axis, it
allows us to express rp,rx as rp,rx = (0, ygt−∆t ·v)T . Thus, to
consider the delay in the PC calculation, the assumed position
rp,gt is replaced by rp,rx for all mp ∈ Mp. Afterward, PC is
calculated as described in [5]. After the position correction,
the longitudinal position inaccuracy σY increases by 0.042m
per second until the initial value for σY is reached.

E. Simulation Setup of the Veins LTE simulator

We evaluate the timing performance for messages com-
munication between cars and pedestrian’s smartphones in the



Table II
SIMULATION PARAMETERS

Simulation Parameter Value

Simulated Area 1 km × 1 km
Layout Intersection (equivalent to Fig. 2)
Simulation time 30 s
Repetitions 10
LTE scheduler MAXCI
Bandwidth 5 MHz (25 RBs)
UE transmission power 23 dBm
eNodeB transmission power 45 dBm

Number of vehicles 50
Vehicle speed limit 50 km/h
Number of pedestrians 50, 100, 150, and 200
Pedestrian speed limit 5 km/h
Beaconing interval (pedestrian) 100 ms and 500 ms
Number of background UEs 50, 100, 150, and 200
Background traffic 4 kB + uniform(−2 kB, 2 kB)
Background traffic interval 1000 ms + uniform(−500 ms, 500 ms)
CAM length 300 B

scenario presented in Section III by means of network simula-
tions. Given the popularity of LTE-based communication for
safety applications, we focus on LTE-based communication
in this study. We only consider the Uu interface since it
is already available for smartphones. The LTE-V2X (PC5)
interface, which is currently not compatible with LTE smart-
phones, is left for future work. We used the Veins LTE
simulator [16], which supports LTE communication within
a vehicular simulation framework. We evaluate the average
latency of communication from pedestrian’s UEs to cars.

In most Car-to-Pedestrian (Car2P) systems, CAMs are sup-
posed to be transmitted, if channel capacity permits, every
100 ms. However, due to limited resources, pedestrian’s smart-
phones may reduce the frequency of sending messages in
some special circumstances. Therefore, in our simulations,
we configure pedestrian objects to send CAMs to an MEC
server with the period of 100 ms and 500 ms. The server
then forwards the CAM to all vehicles within communication
range. Following modern edge computing concepts, we place
the server at the base station. We also take into account the
influence of traffic load on the communication delay. To do
that, we deployed a number of LTE users at random positions
in the simulated area exchanging data with the eNodeB.
The most relevant simulation parameters are summarized in
Table II.

V. RESULTS AND DISCUSSION

We first determine the delays for communication in our
considered scenario. Based on these delays, we simulate and
evaluate the influence of the activity detection delay on PC.

Fig. 3 shows the average communication delay from pedes-
trians to vehicles. Generally, Pedestrian-to-Car (P2Car) delay
is less than 500 ms in most cases. Besides, it is obvious that
in scenarios where the density of pedestrians and LTE users
is low, smaller latencies can be achieved. In our simulation,
the average latency for cases where the density is less than 50
people is less than 100 ms. Similarly, the delay increases when
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Fig. 3. Average P2Car delay.

the sending frequency of CAMs is higher. These observations
can be explained by the limitation of radio resources that
makes a timely schedule of the transmission not guaranteed
as the load increases.

Similar to the investigation in [6], we performed our
evaluation for the assumed pedestrian position inaccuracies
(σX = σY = σXY ) 0.5 m, 1.0 m, 2.0 m, and 4.0 m. We
also kept a direction error of σφ = 15° and a speed error
of σV = 0.3 m/s. As discussed in Section III, the delay
for crossing a curb varies between ∆tcurb,min = 156.25 ms
and ∆tcurb,exp = 306.25 ms. For the communication via LTE
between pedestrian and car, we assume delays for ∆tLTE of
50 ms, 100 ms, 300 ms, and 500 ms. The results for PC are
shown in Fig. 4. Within every scenario, it is important to
note that PC rises over time, as the pedestrian approaches the
collision point, since more movement trajectories inevitably
lead to a collision. Moreover, PC decreases with rising com-
munication delay (especially for a communication delay of
500 ms), which is caused by the permanent offset of the
pedestrian. This effect is explicitly noticeable for smaller σXY ,
i.e., 0.5 m and 1.0 m and to a lesser degree for larger σXY .
For σXY = 0.5 m, PC improves by ≈0.05 at the moment the
pedestrian crosses the curb when considering no delay at all.
With rising communication delay, improvements of PC first
get smaller and for further increasing delay, i.e. > 300 ms, PC
even deteriorates, which is caused by the position offset due
to delay. For the maximum expected delay for crossing a curb
∆tcurb,exp, tLTE = 50 ms already causes a decrease of PC at the
moment the curb step is detected. Considering ∆tcurb,exp and
∆tLTE = 500 ms, PC is reduced by 0.32.

In case of σXY = 1.0 m, the general communication delay
affects PC to a lesser extent. Improvements through position
correction are still noticeable for delays up to 500 ms for
∆tcurb,min and 300 ms for ∆tcurb,exp. In contrast, if σXY is 2.0 m
and 4.0 m, which represent more realistic position accuracies
for current smartphones, we still notice an increase of PC
due to curb correction, even for the highest combined delay
(806.25 ms). Although having less time available before the
collision (e.g., for braking or evading) after crossing a curb
was detected and sent to the car, the ability to detect an
impending collision is still improved.

In conclusion, when considering the maximum expected
delay for the detection of crossing a curb, the position



0 ms (∆tcurb = ∆tLTE = 0ms)
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Fig. 4. PC over time for different position inaccuracies (σx) and different
delays, starting at -3.2s before the collision.

correction improves PC as long as σXY is higher than 2.0 m,
or the overall delay for σXY = 0.5 m and σXY = 1.0 m
does not exceed 100 ms and 300 ms, respectively. Thus, a
cooperative collision avoidance system must be able to assess
all these parameters (i.e., position inaccuracy, delay for detec-
tion and communication) at any given time to decide whether
to use or discard the received contextual information about
the pedestrian. This step is mandatory in order to avoid a
deterioration of the collision detection performance caused by
delayed information.

VI. CONCLUSION

In this paper, we investigated how different delays for
activity detection and LTE communication impact the ability
to detect impending collisions between vulnerable road users
(VRUs) and vehicles. For the evaluation, we focused on a curb
detection module running on the VRU smartphone. Therefore,
we first estimated the maximum expected delay for crossing
a curb to be 306.25 ms. Based on this assumption, we found
that if the VRU’s position inaccuracy is 0.5 m and 1.0 m, the
overall delay for detection and communication must not ex-
ceed 100 ms and 300 ms, to still improve the collision detection
probability. For higher position inaccuracies over 2 m, the curb
detection module is still able to increase the collision detec-
tion probability, even considering an overall delay of up to
806.25 ms. Our results clearly show that cooperative collision
avoidance systems can substantially benefit from additional
contextual information, like the detection of crossing a curb.
However, delays for both detection and communication have to
be taken into account when integrating contextual information

in order to ensure a significant improvement of the collision
detection accuracy.
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