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Abstract—We study the use of Erasure Codes (ECs) for
transmitting information from mobile sensor nodes to stationary
base stations. In particular, we are interested in improving the
overall communication reliability of the wireless communication.
Our scenario is wildlife monitoring in which bats are equipped
with tiny sensor nodes, just being capable to store a few kB of
data and to exchange information over a wireless communication
link. This link is used, on the one hand, for determining contact
times between individuals. On the other hand, these contacts are
communicated in aggregated form to stationary base stations.
Since the channel quality may vary quickly due to the continuous
movements of bats and the heterogeneous environment, the
communication is in general assumed to be highly unreliable.
Conventional reliability improving approaches such as full data
replication or on-demand retransmission are too expensive or
even not possible due to very strict energy constraints and
asymmetric channels. ECs allow to enhance the reliability of
data transmissions by transmitting redundant data. In this work,
we investigate the trade-off between reliability achieved and
the cost in form of additional transmissions, i.e., the additional
energy costs. Our results clearly show that ECs improve the
communication reliability considerably with almost no impact
on the resulting delay.

I. INTRODUCTION

The use of sensor networking technology for wildlife
monitoring already has quite some tradition. This application
provides more sophisticated methods for biologists to study
of a specific species, in terms of gathering a huge amount of
data by long-term observations. The first projects relied on
typical sensor platform as used on labs, e.g., the Great Duck
Island project [1], or on special hardware that is even robust
enough to be carried by larger animals, e.g., the ZebraNet
project [2]. Besides the manpower and other resources saved
by employing sensor nodes instead of human beings, they
succeeded in maintaining a reliable system with a very high
data collection rate.

In more recent activities, heterogeneous sensor nodes have
been used for tracking generic animals and endangered species
such as Iberian lynx in the surrounding area of wildlife passages,
which was built to establish safe ways for animals to cross
transportation infrastructures [3]. This system allows target
identification through the use of video sensors connected to
strategically deployed nodes.

From these successful approaches to wildlife monitoring
using sensor network, we learned about hardware design issues,
network management, and data collection techniques. In the
new BATS project1 on monitoring the group dynamics of bats
in their natural habitat, we go one step further and investigate
potentials of ultra-low power sensor systems carried by the
bats to monitor contacts between individuals and to track their
routes. The aim of the project is to support biologists with their
study on bats, one of the most protected species in European
Union, to track their living habitats and social behaviors. Mouse-
eared bats (Myotis myotis) are the main study target [4], [5].
The key challenge is that the animals weighing about 20 g can
carry sensors of at most 2 g, which strongly limits the available
energy budget as well as the computational power and storage
capabilities.

The scenario employs mobile nodes which are situated on
bats and base nodes on the ground, as shown in Figure 1.
All bats continuously exchange contact information but only
appear in the communication range of a base station on a
irregular basis. If in communication range, they are supposed
to upload all contacts. Unfortunately, the channel quality may
vary quickly due to the continuous movements of bats and
the heterogeneous environment, thus, the communication is
in general assumed to be highly unreliable. Conventional
reliability improving approaches such as full data replication
or on-demand retransmission are too expensive or even not
possible due to very strict energy constraints and asymmetric
channels. This is of course in conflict with the objective to
improve the overall sensor network lifetime [6].

In this paper, we investigate the use of Erasure Codes (ECs)
to improve the communication reliability between the mobile
nodes and the ground network. Compared to the simplistic
approach to sends packet replica together with the original
packet, ECs offer a better performance with reduced costs. We
carefully investigate the performance of three types of ECs
in terms of reliability improvement via simulations, since the
target hardware is still under development at this moment. One
of the most critical characteristics of the used simulation model
is the mobility pattern of the bats. We based this model on
empirical data provided by biologists.

1Dynamically adaptive applications for bat localization using embedded
communicating sensor systems, http://www.for-bats.org/978-1-4799-4937-3/14/$31.00 ©2014 IEEE
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Figure 1: The BATS deployment scenario.

According to our findings, we can report several advantages
of using ECs, which have not yet been considered in other
sensor data upload applications. It is clear that the redundancy
introduced by using ECs or data replication will increase energy
consumption with the number of additional packets. Simulation
results show that with the same or even less overhead compared
to classical data replication, ECs can provide a higher degree
of reliability in our specific application scenario.

The rest of this paper is organized as follows. Section II
outlines related work. An introduction to ECs is given in Sec-
tion III as well as details about the selected ECs. The simulation
is discussed in Section IV, whereas Section V introduces the
mobility and contact pattern, which was specifically created
for the simulation scenario. Simulation results are shown and
analyzed in Section VI. Finally, Section VII concludes this
paper and presents future work.

II. RELATED WORK

Erasure Codes are widely employed to improve the reliability
in wireless transmissions. The usage of EC techniques for
wireless transmissions without a feedback channel has been
investigated in [7]. Here, the optimal trade-off between error-
correction coding within packets and erasure-correction coding
across packets has been determined. The authors show that the
trade-off depends on both the fading statistics and the average
Signal to Noise Ratio (SNR) of the wireless channel, where
for severe fading channels the trade-off leans towards more
redundancy across packets and less redundancy within each
packet. Hence, since we are facing a highly unreliable channel,
the application of EC adding redundancy across packets is
appropriate.

In [8], Random Linear Network Coding (RLNC) has been
proposed as a packet-level EC in combination with intra-packet
error-correction at the physical layer for low data rate indoor
Wireless Sensor Networks (WSNs). The results indicate that
RLNC at a code rate of r = 4

8 provides an SNR improvement
of 3.4 dB and a gain of 5.6 dB when combined with intra-packet
error-correction.

Also several studies to compare ECs with traditional re-
liability enhancing approaches such as data replication and
Automatic Repeat Request (ARQ) have been conducted. A

cross-layer methodology for analyzing error control schemes
in WSNs has been proposed in [9]. The analysis includes
a comprehensive comparison of ARQ and several Forward
Error Correction (FEC) codes. The results presented outline
that FECs codes are well suited as reliability improvement
technique in delay sensitive WSNs since energy consumption
and the end-to-end latency is reduced. Furthermore, it has been
shown that this improvement can be exploited by employing
transmit power control and hop length extension.

However, to the best of our knowledge, there exists no
study on the feasibility of ECs for scenarios with spontaneous
connectivity such as the scenario we are investigating with its
specific channel properties.

III. ERASURE CODES

An Erasure Code (EC) is a FEC code for the erasure channel
that enhances data transmission reliability by introducing
redundancy, however, without the overhead of strict replication.
In the presented usage scenario, erasures take place on a per-
packet basis, hence, ECs are used to introduce inter-packet
redundancy.

ECs consist of an encoding and a decoding algorithm. The
former one extends a group of k packets to n packets by
generating m = n − k redundant packets, where k < n.
Each subset of the n packets containing at least k′ packets
is sufficient to successfully decode the original data, where
k ≤ k′. The code rate r = k

n describes the overhead in terms
of redundant packets.

There exist various kinds of ECs. To identify the most
suitable EC, we accomplished a study to determine feasible
candidates. We then evaluated the most promising ECs with
the help of simulations.

A. EC Selection

In general, ECs can be divided into optimal and nearly-
optimal EC. Optimal ECs, such as Reed-Solomon (RS)
codes [10], have the property that any k out of n packets
are sufficient to successfully decode the original data, i.e.,
k′ = k. Nearly-optimal ECs, for example Tornado codes [11],
introduce a slight overhead such that k′ = (1+ε)∗k packets are
required to decode the data successfully, where ε > 0, hence,
k′ > k. However, the encoding and decoding algorithms are
less expensive. They have a linear complexity with respect
to n, whereas optimal ECs can have up to quadratic coding
complexity for large n.

In recent years rateless ECs, such as Luby Transfom (LT)
codes [12] and Rapid Tornado (RAPTOR) codes [13], evolved.
These are a special kind of nearly-optimal ECs where the
encoding algorithm generates a potentially infinite amount of
redundant data without having a fixed code rate. The main
advantage emerges in a scenario with multiple receivers, where
a feedback channel is present. The encoding entity generates
and transmits redundant data up until obtaining a notification
about the successful decoding from all receivers. If a receiver
holds an insufficient amount of packets, i.e., the amount of
received packet is smaller than k′, it must obtain not yet
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received packets in order to be able to decode successfully.
Since these might be distinct packets for each receiver, the
encoding entity might have to retransmit multiple packets
individually for each receiver when using fixed-rate ECs. The
encoding algorithm of rateless ECs, however, produces an
infinite amount of redundant data, hence, transmitting a newly
generated redundant packets is suitable for each receiver. Thus,
the amount of transmissions is reduced.

According to our study, which has been confirmed also in
[8], optimal ECs are most suitable for the presented scenario. In
order to use rateless nearly-optimal ECs effectively, a feedback
channel is needed. This, however, is not given in our scenario
due to the high mobility of the nodes (cf. Section V-A).
Moreover, the encoding entity is highly energy-constrained,
hence sending an unlimited amount of redundant data is clearly
not feasible. Therefore, rateless ECs have been excluded from
the simulation.

Regarding nearly-optimal codes in general, the overhead
introduced by ε is a major drawback in our scenario. The
necessary value for ε increases as the amount of original data
k decreases. Hence, the amount of data required for decoding
k′ is growing if k decreases. To obtain a low overhead, k is
supposed to have a large value, however, this is not achievable
by the highly energy-constrained mobile nodes responsible for
the encoding. Our mobile nodes have a restricted amount of
storage (a few 100 kB) due to the highly limited node weight
and size. Furthermore, mobile nodes may have only infrequent
contact to the base network, hence, waiting up until enough
data is gathered to get a large value for k might result in forfeit
the rare communication possibilities.

In contrast, we have the drawback of optimal ECs exhibiting
a higher coding complexity for large n. However, since the
amount of original and redundant data is supposed to be very
small this is negligibly low for our scenario. Therefore, we
mainly focus on optimal ECs, using a selected nearly-optimal
EC for comparison purposes. In particular, we rely on the
following existing open source implementations:

• Cauchy: a RS code based on a Cauchy matrix, developed
by Michael Luby [14]

• Vandermonde: a RS code based on a Vandermonde matrix,
developed by Luigi Rizzo [15]

• Tornado: a nearly-optimal EC, developed by Michael
Noisternig [16]

Each one of the three implementations has been evaluated
with four different code rates: r = { 45 ,

4
6 ,

4
7 ,

4
8}. As a baseline

experiment, we simulated the scenario with no reliability
improvement, i.e., data is sent without encoding, as well as the
full replication idea, i.e., data is sent together with an exact
replica to increase reliability.

B. Coding Algorithms

The significant difference between the various ECs is
the mathematical background of the encoding and decoding
algorithms. The two RS codes Cauchy and Vandermonde share
the same algorithms, however, they work on different kinds of

Figure 2: Encoding process of Tornado.

matrices, whereas Tornado varies significantly in the algorithm
itself.

RS codes are cyclic block codes that split the original data
x into k equally sized blocks x1 . . . xk. These blocks are
considered as the coefficients of a polynomial over a finite
field F :

Px(c) =

k∑
i=1

xic
i−1 (1)

The encoding algorithm extrapolates it at n distinct sam-
pling points Px(c1) . . . Px(cn), where the first k points
Px(c1) . . . Px(ck) correspond to the original blocks (thus,
successfully receiving the first k blocks corresponds to an error
free transmission of the original messages). This encoding
function is a linear mapping and can be realized as x→ x×A,
where A is a k × n generator matrix with elements from
F . Therein lies the difference between the two chosen RS
codes since they use a Cauchy and a Vandermonde matrix,
respectively. The decoding algorithm inverts the encoding by
interpolating over some of the values of Px(c1) . . . Px(cn),
where at least k out of the n sampled points are needed
to recover the original blocks. The encoding and decoding
algorithms have a complexity of O(n · log n) and O(n2),
respectively, where the computational effort of the decoding
algorithm is not crucial since only the encoding is performed
by the energy-constrained nodes.

In contrast, the encoding and decoding algorithms of Tornado
are based on a bipartite irregular graph. The original data is
split again into k equally sized blocks x1 . . . xk, each one
represented by one node in the graph. The algorithm is realized
in multiple levels visualized in Figure 2.

Each level except the last one performs a Low-Density Parity-
Check (LDPC) code by combining multiple nodes of the graph
with an inexpensive XOR operation to generate redundant
data. For each level the nodes itself can be chosen randomly
without repetition, however, the total amount is given by a
specific distribution for each level. This operation is performed
recursively until the final level encodes the nodes with a
RS code. Since each level reduces the number of nodes, the
complex operations during the final level have to be performed
on a much smaller subset.
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Figure 3: A two-dimensional overview of the simulated
scenario.

Decoding reverses the encoding algorithm by executing the
RS decoding algorithm before applying the XOR operations
starting from the second to last level. Both the encoded and
decoded algorithms have a complexity of O(n · ln 1

ε ), where
ε is a positive constant representing the overhead needed for
decoding.

IV. SIMULATION MODEL

All the simulations are based on the OMNeT++ simulation
core [17], a discrete and event-based simulation framework.
For simulating the wireless channel, we used the MiXiM
framework [18], which provides all the means for accurate
wireless simulation and the integration of mobility models.

A. Scenario Setup

The simulation scenario is depicted in Figure 3, which
reflects the envisioned deployment scenario. The scenario
consists of three node types: mobile nodes situated on bats,
base nodes laid out in the habitat form a stationary backbone
network, and a single central station is used as an information
sink. In total 40 mobile nodes and a base network of 25 nodes
are deployed. The base nodes are arranged in form of a grid-
shaped but not fully regular manner in an area of 320m×320m
with a distance of 30 m between each other.

The movements of mobile nodes are based on a predefined
mobility model that resembles the flying behavior of bats,
whereas base nodes are stationary with a fixed position across
all simulations. The mobility model of the mobile nodes is
described and discussed in Section V-A.

B. Communication Protocols

Mobile nodes periodically broadcast beacons of one byte
containing their unique identifiers to inform nearby mobile
nodes about their existence. The interval between two beacons
was set to be 0.5 s. Upon reception of a beacon, the receiving
mobile node stores this information to build up a rendezvous
table. Each row of this table consists of the identifier contained

in the beacon, the time when the first beacon from this node
was received, and the time interval for which beacons were
continuously received. Two beacons are considered to be
received continuously if the difference of their arrival time is
smaller than a pre-defined threshold, which is set to 2 s.

Each row of the rendezvous table is transmitted in an
individual data packet to the base network. The transmission
of data packets has to be reliable, whereas the successful
reception of beacons is not as critical since the quantity of
useful information within a beacon is comparably less than
within a data packet. Therefore, ECs are used only for data
packet transmissions.

When a mobile node is within the transmission range of at
least one base node, it initializes the data transmission. This
simulates the envisioned use of multi-stage wake-up receivers
that power-up the radio of the mobile nodes only if located
within the communication range of a base node where the
wake-up signal can be received.

When a mobile node is in transmission range of a base
node and the number of table entries reaches a pre-defined
threshold the encoding process is triggered. Afterwards, the
encoded data is sent in multiple data packets. This threshold
is set according to the used ECs. A single data packet has a
size of 32 B, where 30 B are reserved for the payload, which
is either one encoded chunk or one entry of the rendezvous
table in plain text without using any EC. The overhead of two
bytes is formed by the mobile node’s identifier of one byte
and the needed metadata of the EC. This metadata consists
of the chunk index (3 bit) and an identifier of which encoding
process this chunk belongs to (5 bit).

Due to the mobile node’s high speed and the rapidly changing
environment the contact times between mobile nodes and base
nodes can be very small as shown in Section V-B. Therefore, no
carrier sensing techniques are performed prior to transmission
since this could prevent the mobile node from sending data
before exiting the transmission range. Moreover, the mobile
nodes are highly constrained in terms of computational power
and energy, hence, very complex protocols are not applicable.
Instead, a wake-up receiver powered-up by a signal from the
base nodes initializes the data transmission.

Upon receiving a data packet from a mobile node, base
nodes store this information for decoding. For each received
data packet, the central station records its reception and, if
the threshold for a successful decoding is reached, it tries to
recover the original data.

The communication channel resulting from this specific
mobility model represents the channel in the real deployment
scenario we are facing. To simulate realistic data transmissions
over the wireless channel we chose a pathloss propagation
model attenuating signals with the distance d: 1

d3 (
c

4πf )
2, where

c denotes the speed of light and f the frequency of the signal.
Moreover, we integrated a log-normal shadowing on top of it to
simulate objects obstructing the signal. This can be motivated
with the fact that we are facing multiple shadowing objects in
the envisioned deployment scenario, i.e. trees. Each such object
contributes a random multiplicative factor to the shadowing,
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which leads to a normal distribution when converted to dB [19].

C. Evaluation

The analysis of the simulation results is twofold. On the
one hand, we analyze the mobility model of mobile nodes and
the thereby resulting contact times in Sections V-A and V-B,
respectively. On the other hand, we investigate the usability of
ECs based on three metrics: reliability, energy consumption
and delay. To evaluate the impact on the reliability we compare
the amount of received data with the amount of recovered data
in Section VI-B. The influence on the energy consumption is
evaluated in Section VI-C by comparing the number of sent
packets with the amount of recovered data. In terms of delay the
question arises as to whether ECs slow down data transmission.
We study these effects in Section VI-D, considering the time
interval from the creation of an entry in the rendezvous table at
the mobile node up until it is recovered by the base network.

A further impact of ECs is the increased memory usage
on the mobile nodes due to the storage of the redundant data
as memory space is highly limited. In case of insufficient
memory we discard redundant packets since the original data
is more crucial. However, during simulations memory was
never exhausted due to the specific selection and configuration
of the ECs explained in Section III-A. Therefore, we do not
investigate this issue in more details.

For each configuration 20 repetitions were performed. Each
repetition of one configuration is initialized with a unique
random seed, however, the nth repetition of each configuration
has the same nth random seed. In the following we are going
to present our evaluation results. The variance of the recorded
metrics was so small that we only plot the average values in
the respective figures.

V. MOBILITY AND CONTACT PATTERN

The mobility model of mobile nodes has a high impact on
the results of the simulation. It influences both the quality
of the communication channel as well as the duration of
the communication between mobile and base nodes. In the
real deployment scenario each mobile node corresponds to a
greater mouse-eared bats (Myotis myotis), and the simulated
area resembles the foraging patch. Therefore, in order to have
realistic results, the mobility model of mobile nodes must
resemble the flying behavior of this species during foraging in
the most realistic way.

A. Mobility Model

Although the specific characteristics of bat movements are
not completely known yet, various figures in terms of flight
speed, flight height and flight routes are known nowadays [4],
[5]. Furthermore, differences to the flying behavior of birds can
be found [20]. To the best of our knowledge there exists no
mobility model for the specific flight of bats during foraging,
however, there are various mobility models suitable as basis.

We decided to adapt an existing mobility model to fit the
special characteristics of bat flights. The Lévi flight model
is well-known for describing the movements of free-living
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Figure 4: Histogram of the contact times.

animals, and it is shown to resemble the flight of birds [21].
It is based on the random waypoint model with a heavy-
tailed probability distribution for the step length. Therefore,
we decided to rely on the random waypoint model, which was
extended by the foraging movement patterns of Mouse-eared
bats (Myotis myotis) described in [4], [5].

Each mobile node, i.e., the bat, starts in the foraging state
where it moves according to the random waypoint model with
15 km h−1 to 35 km h−1 at a height of 0.3 m to 0.7 m. A bat
accelerates with 2 m/s2 and decelerates with 4 m/s2 towards a
target speed, which, in our model, is randomly chosen from
the aforementioned range. Within 0.1 s to 100 s, it starts the
capturing phase. First, it moves to a position at the ground
within a radius of 0.5 m to catch the prey. Then, it resembles
the eating behavior by moving in circles with a radius of 2 m
to 4 m at a speed of 15 km on a height of 5 m to 15 m for 10 s
to 20 s. Afterwards, the bat switches back to the foraging state.

In order to obtain reproducible results but still to exploit
all the variations in the distribution of the needed random
variables, we decided to run different mobility pattern using
different seeds for the mobility related random variables.
Therefore, mobile nodes move distinctly in each repetition
of the simulation, whereas their movements are the same for
the nth repetition of a certain configuration.

B. Contact Possibilities

One crucial property for the communication protocol from
an overall perspective are the contact possibilities, i.e., the time
intervals in which communication between mobile nodes and
the base network is possible. We investigated these contact
times before finally assessing the performance of the EC based
communication.

A histogram of the contact times is given in Figure 4.
It summarizes the contact time for all 20 repetitions as
the movement pattern of mobile nodes differ for each. The
minimum possible contact time is 0.1 s, which is a simulation
artifact since the transmission range of a mobile node towards
the base network is checked in discrete time intervals of 0.1 s.

As the figure indicates, the contact time is mainly short-
termed. Most contacts have a duration of less than 3 s. Since
mobile nodes tend to leave the communication range of a base
node quickly after entering, the amount of data that can be
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transmitted is limited.
A second measure of interest is the inter-contact time, i.e.,

the time intervals in which no communication between a
mobile node and the base network has been possible. Figure 5
visualizes a complete histogram of the inter-contact times as
well as a histogram enlarging the distribution for the first 10 s,
again summarizing all 20 repetitions. Most inter-contact time
has a duration of less than 10 s. We already discussed the high
peak at 0.1 s as being a simulation artifact. The distribution is
highly heavy-tailed with measures of up to 200 s.

VI. COMMUNICATION PERFORMANCE

In the following, we investigate the performance of the
communication protocols in more detail. We concentrate on
the reliability vs. overhead issue but also look into energy
consumption and delay questions.

A. Transmitted Data

To investigate the quality of the channel, we consider the
relationship between sent and received packets. All packets
received erroneously or not received at all were considered to
be lost. Figure 6 shows this relationship by visualizing both
the amount of sent packets containing original data as well as
the amount of sent packets containing redundant information.
Furthermore, the amount of received packets of both types
is indicated by shaded areas. All numbers are relative to the
amount of sent data, i.e., 100 % corresponds to the amount of
sent data. The figure summarizes the results of all 20 repetitions,
however, the variance is negligibly low with at most 5.503 %.

Apparently, when using reliability improvement techniques
the amount of sent redundant packets increases according to
the data rate, whereas the amount of sent original packets
stays constant. For both packet types the data reception rate
stays constant at about 57 %, independent of the total amount
of transmitted packets. Therefore, we argue that the number
of packet transmissions does not influence the reception of
packets, i.e., transmissions do not notably interfere with each
other. Hence, we conclude that the channel is hardly saturated,
which is a result of the very limited transmission range of
mobile nodes and their sparse distribution.
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number of transmitted data.
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The high packet loss is mainly caused by the highly
unreliable channel. These characteristics correspond to the
channel we are facing in the real deployment scenario where
the fast moving bats and the very heterogeneous and rapidly
changing environment leads to a highly varying channel quality.

B. Reliability

The improvement of ECs on the transmission reliability is
analyzed based on the ratio of received and recovered data
compared to the amount of sent data. This is visualized in
Figure 7, where all numbers are relative to the amount of sent
data, i.e., 100 % corresponds to the amount of sent data or a
100 % reception rate.

A first observation is the low but stable data reception rate,
which we already discussed before. More importantly, the data
reception rate greatly increases when reliability improvement
techniques are involved.

Apparently, without using ECs or replication techniques we
are not able to recover any data not received by the base
network. Using simple duplicates (full replication approach),
the base network is able to recover 18 % of the data from
the redundant packets, so in total 75 % of the data can
be recovered. However, the drawback is a highly increased
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power consumption since the number of transmitted packets is
increased by 100 % compared to the gain of only 18 %.

When using ECs, we can observe a steadily growing amount
of recovered data with an increasing code rate. Furthermore,
we see a huge difference between the performance of Tornado
and the two RS codes Cauchy and Vandermonde.

Tornado slightly increases the amount of recovered data,
which means redundant data does not noticeably improve
the reliability. Even with a code rate of r = 4

8 , Tornado
performs worse than replicated sending, although the same
amount of packets are transmitted. The poor behavior is due to
the different encoding algorithm of Tornado in contrast to RS
codes. On the one hand, the threshold for successful decoding is
slightly higher for Tornado than it is for RS codes. Furthermore,
Tornado is designed to work on a binary erasure channel, which
means losses are assumed to be equally distributed. However,
the simulations show that base nodes are facing bursty losses.

Cauchy and Vandermonde perform exactly the same re-
garding reliability, which is due to the similar encoding and
decoding algorithms. At a code rate of r = 4

8 both can recover
83 % of the sent data. It increases the data recovery rate by
8 % compared to the replicated sending, although the same
amount of packets is transmitted. Of course, as the data rate
decreases also the amount of recovered data is reduced.

However, even with a code rate of r = 4
7 , Cauchy and

Vandermonde are able to recover 2 % more than the replicated
sending approach, although the overhead in terms of redundant
packets is reduced by approximately 25 %. This shows that
RS codes clearly outperform replicated sending in terms of
reliability.

With an even smaller data rate of r = 4
6 and r = 4

5 the
RS codes are able to recover 68 % and 61 %, respectively.
Compared to replicated sending the impact on reliability is
reduced by 7 % and 14 %, respectively, but at the same time
the overhead of transmitted packets is decreased by 50 % and
75 %, respectively.

C. Energy Efficiency

The usage of ECs and replicated sending inevitably increases
energy consumption. Primarily the sending of redundant packets
drains energy, however, in the former case the execution of the
encoding algorithm has to be taken into consideration as well.
We have already discussed the coding efficiency of different
ECs in Section III.

As the main energy draining task is the sending of redundant
packets, we focus mainly thereon to decide which performance
improvement technique is the most feasible. The trade-off
between the improved reliability and the overhead caused
by redundant packets is outlined in Figure 8. The graph
summarizes the results presented in the previous section and
gives an overview of the suitability of the presented reliability
improvement techniques. As we move from left to right in the
graph, reliability measured against the amount of recovered
data increases, whereas moving from bottom to top the energy
efficiency increases with a decreasing overhead. The theoretical
optimum would be on the top-right corner, meaning that no
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Figure 8: Reliability of the five transmission strategies versus
their energy efficiency in terms of packet transmissions.

energy is spent by means of overhead in the packet transmission
but still all packets can be successfully received.

As was already observed, Tornado as well as replicated
sending perform poorly compared to the two RS codes. The
remaining question as to which data rate for Cauchy and
Vandermonde is most feasible strongly depends on the final
application. If a high level of reliability must be achieved, this
comes to the cost of a reduced network lifetime. Apparently,
absolute values for the energy consumed during sending and
encoding cannot be provided yet since it depends on the
underlying hardware, which is currently under construction.

D. Communication Delay

The final measure to compare the various performance
improvement techniques is the duration from the creation
of a rendezvous table entry until a base node receives or
recovers the data, i.e., the overall communication delay. Only
the delay of data received by at least one base node is taken
into consideration. We assumed that, given the rather short
contact times and the substantial overhead of ECs for higher
code rates, the resulting delay will clearly increase.

An Empirical Cumulative Density Function (eCDF) of the
distribution of the data delay up to 200 s is visualized in
Figure 9. Furthermore, the figure contains an excerpt of the
cumulative density up to 5 s. The median of the experienced
delay is in the range of 8.18 s to 9.26 s, depending on the used
algorithm. However, the distribution is highly heavy-tailed,
which can be explained by considering the inter-contact time.
Mobile nodes mostly have short inter-contact time, hence, even
if they are not in transmission range of the base network they
reenter after short time periods and are able to transmit data
with small delays. However, the high upwards outliers increase
the data delay by orders of magnitude.

No notable difference between the various transmission
strategies can be seen for higher delays, i.e., the data delay is
almost independent of the reliability improvement technique
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and the data rate. When focusing on smaller delay values, the
values are slightly smaller when no reliability improvement
technique is used, whereas the replicated sending approach
gives the upper bound. The communication delay for all ECs
at the various code rates is within these two bounds. This
marginal increase is acceptable given the improved reliability.

VII. CONCLUSION

In this paper, we studied the usage of Erasure Codes (ECs)
to improve the reliability of the data transmission in a sensor
network scenario featuring high mobility of nodes that are
used to observe the group dynamics of bats in their natural
habits. We developed a novel mobility model for the mobile
nodes, which resembles the flying behavior of the target species,
and analyzed the resulting communication possibilities. This
scenario features rather short contact times between the mobile
nodes and stationary base nodes that are used to upload contact
information a bat collected for further processing. The radio
channel varies quickly due to the speed of the animals. The use
of reliable communication using acknowledgments is therefore
not feasible.

We identified three feasible ECs and studied their perfor-
mance in detail. As a baseline, we simply send the collected
data with no additional reliability improvement techniques in
place as well as full replication, i.e., sending all data items
twice. We showed that the nearly-optimal EC Tornado does
not show a noticeable improvement on the data transmission,
whereas the selected Reed-Solomon (RS) codes Cauchy and
Vandermonde increase the reception rate up to 26 %. Moreover,
according to our results, EC do not have a critical impact on the
overall transmission delay. This improvement comes with the
cost of an overhead due to additional data messages that need to
be send. Yet, the RS-based ECs clearly outperform simple data
replication. In summary, the results show that ECs provide a
significant reliability improvement with an acceptable overhead
for our extremely energy-constrained hardware platform.
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[18] A. Köpke, M. Swigulski, K. Wessel, D. Willkomm, P. T. K. Haneveld,
T. E. V. Parker, O. W. Visser, H. S. Lichte, and S. Valentin, “Simulating
Wireless and Mobile Networks in OMNeT++ – The MiXiM Vision,”
in 1st ACM/ICST International Conference on Simulation Tools and
Techniques for Communications, Networks and Systems (SIMUTools
2008): 1st ACM/ICST International Workshop on OMNeT++ (OMNeT++
2008). Marseille, France: ACM, March 2008.

[19] J. B. Andersen, T. S. Rappaport, and S. Yoshida, “Propagation Mea-
surements and Models for Wireless Communications Channels,” IEEE
Communications Magazine, vol. 33, no. 1, pp. 42–49, January 1995.

[20] A. Hedenström, L. C. Johansson, and G. R. Spedding, “Bird or bat:
comparing airframe design and flight performance,” Bioinspiration &
Biomimetics, vol. 4, no. 1, p. 015001, 2009.

[21] G. M. Viswanathan, V. Afanasyev, S. V. Buldyrev, E. J. Murphy, P. A.
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