
Energy Consumption Measurements as a Basis for
Computational Offloading for Android Smartphones

Quang-Huy Nguyen, Johannes Blobel and Falko Dressler
Dept. of Computer Science and Heinz Nixdorf Institute, Paderborn University, Germany

{nguyen,blobel,dressler}@ccs-labs.org

Abstract—Computational offloading has been shown being a
promising approach to prolong the battery life of smartphones.
To come up with energy-efficient offloading strategies, it is crucial
to understand how much energy is used not only for local
computation but also for network communication. Therefore,
reliable methods to measure the energy consumption of the
phones are needed as a fundamental basis. In this paper, we
evaluate the accuracy of the Android smart battery interface.
As a second contribution, we also designed a new, portable
and cheap microcontroller-based power monitoring device. We
conduct energy measurement experiments for a set of typical
applications including local computations as well as WiFi and
3G operations. Our results show that both our device and smart
battery interface can be used to estimate the energy consumed
by the applications running on the phone. The smart battery
interface, however, clearly underestimates in idle status. We see
our measurements as an important step towards the development
of more accurate offloading strategies for smartphones.

I. INTRODUCTION

In the last decade, we have seen an explosion in the
development of smartphones and their applications. Today,
modern smartphones are equipped with high-performance
processors, large memory, high-resolution displays, and a
multitude of sensors and network interfaces. All these ca-
pabilities enable smartphones to execute complex tasks like
video playback, games playing, image processing, and Internet
services. However, one problem remains: the batteries of
smartphones have not evolved as fast as their capabilities. This
is mainly due to the constraints on size and weight of mobile
devices. Therefore, most smartphones cannot operate for a long
time and users normally have to charge their phones everyday.
And also because of short battery life, the computational
capacity, and memory of smartphones are still limited [1].

The development of cloud computing in computational power
and storage makes smartphones more scalable [2]. It reduces
the hardware limitations and the burden on battery capability of
smartphones. Along with a more powerful server, a program for
power consumption management on smartphones is necessary.
Offloading intensive tasks to the cloud is a straightforward
solution to save energy on smartphones and to make use
of the capabilities of cloud computing [3], [4]. Even though
computational offloading provides high potentials for energy-
efficient mobile systems, the feasibility and benefits of this
technique depend on each application and network parameters.
In general, the problem of offloading tasks involves two
questions that need to be answered: (1) can the system benefit

from offloading local computations to a more resourceful server,
and (2) which tasks or computations should be migrated.

The offloading decisions are usually made by estimating
the energy consumed by local part and communication part
of the target application. The goal of saving energy only
holds if the energy used to send the processing data to the
cloud and download the results is less than the energy for
local execution. Hence, it is obvious that good understanding
of energy consumption on smartphones plays a vital role
in computational offloading. In our previous work [5], we
presented an overview of a new smart battery interface of
Android smartphones for the energy measurements. In this
paper, we further investigate its capability with various load
characteristics and whether it can be used for accurate decision
making. We also developed a portable Microcontroller Unit
(MCU)-based measurement device that provides the same
accuracy as a fully featured oscilloscope.

Our main contributions can be summarized as follows:
• We investigate the use of Android smart battery interface

for energy consumption monitoring;
• we design a new MCU-based power monitoring device,

which is flexible, portable, and inexpensive;
• we experimentally examine the accuracy of the smart

battery interface and our new device by comparing the
results with the measurement data from an oscilloscope.

II. RELATED WORK

A. Computational Offloading

Many researches have been investigating different aspects
of computational offloading. One of the first frameworks for
offloading was presented in [6]. In the paper, the authors
focused on the effects of the Round Trip Time (RTT) in WiFi
and 3G networks. Offloading decisions are made based on the
profiling of the device, application program and network.

In [7], the authors came up with a toolkit called SmartDiet,
which analyzes the application code at the method level.
The statistic results help determining which methods have
possibilities to offload to the cloud for saving energy. Moreover,
the results also provide good information for developers to
improve their applications in terms of energy-efficiency.

Energy consumption of each network interface is an essential
factor in order to make offloading decision. In [8], the authors
experimentally investigated the power consumption of three
common network connections on smartphones, namely 2G,



3G, and WiFi. With the same idea, the energy consumption
of these network interfaces have been further analyzed in [9].
In these two papers, the authors only relied on some network
parameters, such as the transfer size, the packet size and the
transmission intervals, to measure the energy consumed by
each of interface. In [10], the authors concentrated only on
the power consumption of an IEEE 802.11g WLAN, the most
popular network interface of smartphones at that time.

Another approach for estimating the energy consumption
of GSM, 3G, and WiFi was presented in [11]. According to
the paper, the power consumption of 3G and GSM can be
characterized by three power states: high power, intermediate
power, and idle state. The phone remains in the high power and
intermediate power states not only during the data transfer but
also as long as the connection is maintained. It only switches to
idle after releasing the connection. This helped explaining the
high energy consumption of cellular network. The authors also
discussed three power states of the WiFi interface including
idle, Power Saving Mode (PSM), and active state.

Current works mainly address offloading as a distributed
scheduling problem [12]. The fundamental basis, however,
remains accurate energy measurements and predictions.

B. Energy Measurement
In general, the power traces can be classified into two groups:

hardware-based and software-based. The hardware-based meth-
ods utilize external devices connected to smartphones to
measure the power consumption. Several existing devices are
suggested to measure the voltage across the phone battery.
Monsoon’s PowerMonitor1 is a popular power monitoring
device used in many works [6], [11], [13]. In [14], [15], the
National Instruments sampling boards are used to measure the
voltages. In [9], the authors use the Voltech PM1000+ with
the sampling frequencies up to 1 Hz. In this paper, we use a
Tektronix TDS1012B oscilloscope for sampling the voltage.

Besides the commercial devices, custom-made measurement
boards are also suggested. In [16], Battor, a portable power
monitor, is presented. In [17], the authors use an Arduino
Duemilanove board to sample the voltage. These two ap-
proaches utilize the built-in Analog-to-Digital Converter (ADC)
in the microcontroller, normally 10 bit, which only provides
coarse-grained values of voltage signal. In this paper, we also
present our own MCU-based power monitoring device, which
supports an external ADC with higher-precision.

The software-based methods use energy-profiling to read the
battery statistics. Additionally, some other battery information,
such as the remaining battery capacity and the temperature are
also logged through the Application Program Interfaces (APIs)
provided by the operating system. In [1], the Nokia Energy
Profiler is used to trace the power, current, temperature, signal
strength, and CPU usage of Nokia smartphone. In [13], the
authors develop a power modeling tool called DevScope that
is based on the Battery Monitoring Unit (BMU). Similarly,
in this paper, we investigate the accuracy and capabilities of
Android smart battery interface in energy measurement.

1https://www.msoon.com/LabEquipment/PowerMonitor/

III. MEASUREMENT SETUP

A. Methodology

In theory, the energy consumption E over time T is
calculated based on the following equation:

E =

∫ T

0

P (t) dt =

∫ T

0

U(t)I(t) dt,

where P (t), U(t), and I(t) represent instant power, voltage,
and current at time t, respectively. In practice, we have to
sample voltage and current and numerically integrate their
product to achieve the accumulated energy consumption.

B. Android Smart Battery Interface

Most modern Android smartphones support the smart battery
interface, which facilitates the measurement of power consump-
tion. This interface can provide a number of power-related
properties in /sys/class/power_supply/battery/ on the Android
file system, such as status, capacity, voltage_now, current_now,
current_average, energy_counter, charge_counter. The actually
available properties, however, are platform-specific.

Normally, the biggest difference between battery interfaces
lies in the capability of current measurement. This functionality
of the battery interface is closely related to a special fuel gauge
IC integrated in the hardware of the smartphone. Some fuel
gauges only support the battery State Of Charge (SOC) while
the others can offer a coulomb counter, which enables to
estimate the current. The updating rate of the battery status
also varies from different fuel gauges. Table I lists some of
common chips that are used in Android devices.

Generally, the intervals for updating power properties are
quite coarse, from hundreds of milliseconds to few seconds or
even longer. Therefore, the accuracy of the power estimation
of this approach is not as high as hardware-based approaches.
However, the smart battery interface is still a useful method
to measure the energy consumption of smartphones due
to its simplicity and availability in most modern Android
smartphones. This approach is often the only solution for
smartphones with non-removable battery, where it is non-trivial
to attach external devices for energy measurements.

C. Oscilloscope

We use a Tektronix TDS1012B oscilloscope for observing
the changes of voltage signal of the phone battery over time.
This device has three main different operation modes: auto,
trigger, and scan mode. For energy measurement, we need to
continuously sample the voltage signal in a long period of time.

Table I
FUEL GAUGE CHIPS OF ANDROID DEVICES

Device Fuel Gauge Measurements Current Updating Rate

Galaxy W MAX17043 SOC -
Galaxy S3 MAX17047 Current 175.8 ms
LG G3, G4 MAX17048 SOC -

Nexus 6 MAX17050 Current 175.8 ms
Nexus 10 DS2784 Current 3.5 s



R sensing
0.05

2

1

Oscilloscope

1
2

Battery

Phone R

C

Figure 1. Schematic of the oscilloscope measurement setup.

Therefore, only the scan mode is suitable for our experiments.
In this mode, the oscilloscope supports a sampling frequency
up to 2.5 kHz. Additionally, the TDS1012B can work with
the minimum vertical sensitivity of 2 mV, which enables to
distinguish a very small difference in voltage signal level. This
allows the oscilloscope to sample the data without the use of
additional amplifiers.

In order to measure the current, we insert a high-precision
sensing resistor of 0.05 Ω between the terminals of the battery
and the smartphone. The current is then calculated by the
Ohm’s Law according to the voltage drop across the sensing
resistor. We intercept the connection between the phone and
the battery by two cooper tapes. We utilize both channels of
the oscilloscope: One channel is used to acquire the voltage
of the battery and the other one is used to sample the voltage
drop across the sensing resistor. Figure 1 depicts the schematic
of our circuit for current measurement using the oscilloscope.

Typically, there are always short-term fluctuations in voltage
signal. With the limitation of the sampling frequency, these
quick high spikes could be lost during the acquisition process.
Hence, there is a risk of measurement errors on the average
values of voltage and current. One possible solution to this
problem is to use a RC low pass filter to remove the
instantaneously changes in voltage and provide a smoother
form of the signal. The cutoff frequency of the RC low pass
filter is selected based on the sampling frequency in order to
minimize the aliasing effect while not smoothing the voltage
signal too much. The relationship between the resistor R,
capacitor C, and the cutoff frequency fc relies on the equation:

fc =
1

2πRC
.

The TDS1012B is connected to a PC to record the sampling
data. We automate the measurement process by developing
a python program that interfaces with the USBTMC driver
on the PC. Our program first sends a series of commands to
configure the operation modes for the oscilloscope. Then it
periodically sends queries to collect the measurement data.

D. Microcontroller-based Measurement Device

While the measurements with the oscilloscope give precise
results, this technique has some drawbacks. First of all, a
good oscilloscope is rather expensive. If simultaneous measure-
ments across multiple devices should be conducted, multiple
oscilloscopes would have to be available. It is also rather big
and requires a mains power supply which makes it unsuitable
for mobile measurements. But especially in mobile scenarios
like smartphones or sensor networks, energy consumption and
therefore energy measurements are of great importance. Finally,

Shunt Resistor ADC ConverterAmplifier

+

-

1

0.5

0.05

5.49k

499

49.9

22

LM4132

AD8221 ADC121C021

VREF

JM
P

1 I2
C

Microcontroller

Filter

Figure 2. Architecture of the MCU-based measurement board.

it is also necessary to have an oscilloscope with a PC interface
in order to record the measured data over a longer period.

Since energy measurements for mobile devices are a re-
curring technique in many scientific researches, we created
a versatile and inexpensive platform to perform current mea-
surements. It’s main design goals are: low cost and simple
design so it can be rebuild by everyone interested; flexibility
to support a wide range of energy measurements; portability
and mobility.

Figure 2 shows the architecture of our board. It has a separate
power source so the phone battery is not affected. The process
of measuring current can be divided into four stages:

1) convert current to voltage using a shunt resistor;
2) amplify the voltage signal;
3) filter the signal (optional);
4) sample the signal.

To make our platform versatile we made each step configurable
so that the board can be used for a wide range of measurements.
In the following we explain the four stages in more detail.

1) Shunt Resistor: As explained before, we measure current
indirectly by measuring the voltage drop across a shunt resistor.
The resistance used depends on the current that should be
measured and also has an influence on the circuit under test. It
should be chosen rather small, so that the additional resistance
does not affect the behavior of the analyzed circuit. But
especially for very small currents, the shunt resistor must
be large enough, so that a measurable voltage falls off. To
allow a wide range of measurements, we placed multiple shunt
resistors on our board, which can be chosen via a switch. If
need arises for a different resistor, the board also has two
female pin headers, where a custom resistor can be placed.

2) Amplifier: For small currents the voltage across the shunt
resistor can be very small, but the resistance can not be made
arbitrarily high, since this can negatively affect the working of
the circuit under test. Therefore, we added a high-precision,
low power instrumentation amplifier (AD8221) with variable
gain to our board, to amplify the voltage to a more useful
value. To ensure a high flexibility of our board, the gain can
also be selected with a switch. Apart from fixed resistors that
determine the gain of the amplifier, the user can also add a
custom gain resistor, to select an appropriate gain.

3) Filter: The integration of the amplified signal with an
RC filter can be used to filter out short spikes in the signal. But



not in all scenarios this filtering is desired: our board has an
inbuilt RC filter that can be enabled with a jumper if desired.

4) ADC Converter: The last step in current measurements
is the sampling of the (amplified) voltage with an ADC.
While microcontrollers typically come with built in ADCs,
the resolution and precision is not sufficient for our needs.
Therefore, we added a 12 bit ADC (ADC121C021) to our
board and a high precision voltage reference (LM4132) to get
accurate readings.

The intermediate signals can be accessed via pin headers
if needed. The board can then also be used just to amplify a
given signal and sample it with an oscilloscope or to read in
a given signal without amplifying it. To make the board easy
to build we used only relatively large SMD components and
made the PCB one-sided. This makes it possible to etch and
solder the PCB by hand. Overall, the board was designed in
a way that allows the user to use it in a very flexible way,
therefore making it a good tool for many application scenarios.

5) Calibration: The ADC outputs raw values xraw ∈
[0, 4095]. This can be transformed to a voltage Uadc by

Uadc =
xraw
4095

× Uref , (1)

where Uref = 2.5 V is the reference voltage from the LM4132.
Since this is the amplified voltage, we have to calculate the
original voltage Ushunt dropped at the shunt resistor.

Ushunt =
Uadc

Gamp
− Voffset , (2)

where Voffset is the input offset voltage of the amplifier and
Gamp is the amplification factor. With this value and the resistor
Rshunt we can calculate the current by:

I =
Ushunt

Rshunt
(3)

The main error source is the value of the shunt resistor and the
resistor used to determine the gain and the input offset voltage
of the amplifier. To get precise measurements it is therefore
necessary to calibrate the measurement device before using it.
This has been done prior to the measurements with the help
of the oscilloscope as a baseline.

IV. EXPERIMENT DESCRIPTION

In this section, we present our experiments in order to
evaluate the accuracy of three measurement methods that are
mentioned in Section III. The setup of the experiments is shown
in Figure 3. In this setup, we utilize a PANTECH VEGA S5
smartphone running Android v4.1.2 which supports a smart
battery interface with the capability of current estimation. We
perform our measurements with two groups of applications:
local computation and network communication. In detail, four
different applications are used for the experiments including:

1) compute matrix multiplication locally on the phone,
2) play a video stored on the phone memory,
3) upload data to a server, and
4) download data from a server.

For local computations, first, we developed an application to
perform the multiplication of two matrices with the dimension
500×500 and 500×100 (using a rather naïve implementation).
The matrix input data is read from two text files saved in the
local storage. The result matrix is written again into a text
file and stored in the phone memory. During the execution,
the screen of the smartphone is turned off to avoid side
effects on the power trace. Secondly, we used a local video
application, which plays an MP4 file. The screen is kept on at
50 % brightness during the video playing. We also performed
experiments for video streaming over WiFi and 3G. However,
because the measurement results depend on many factors
including network parameters and caching effect, we do not
further discuss the results in this paper.

For the file transfer, we developed an application for
downloading and uploading a file of 3.5 MB from and to our
server. This file has the same size as the input data file that
we use in the matrix multiplication application. The phone
display is switched off again for this type of applications. We
performed the measurements using both WiFi and 3G – only
one of network interfaces is enabled while the application is
running. To minimize the effect of network parameters to the
energy measurement, we configure the smartphone to connect
to a dedicated WiFi Accsess Point (AP), which guarantees
perfect link quality. We, however, have no control on network
parameters for 3G applications.

For all experiments, we added delays at the beginning and
ending of the applications to track the power consumption
behavior in idle state. We repeated each application 10 times
for improving statistical confidence. All three measurement
methods were used at the same time for each application. For
the software-based approach that employs the battery interface,
we develop an Android service running in the background of
smartphones which reads the current status of the phone battery
from Android file system every 0.5 s. The target application
starts this service at the beginning of the execution and stops
it after finishing the test. The service stores the readings in

Figure 3. Photograph of the used measurement setup.



0 2 4 6 8 10 12
0

1

2

3

4

Time (in seconds)

P
o
w

er
 (

in
 W

at
ts

)
Screen off

10% brightness

50% brightness

Full brightness

Figure 4. Power trace of smartphones in idle state.

the local memory of the smartphones as log files. The logging
data includes the following parameters: time points of data
reading, voltage_now, and current_now.

For the hardware-based methods, we use both the oscillo-
scope and our own measurement hardware to sample the voltage
signal of the phone battery and the voltage drop across the
sensing resistor. Since the input impedances of the amplifier and
the oscilloscope are very large, there is no problem when we
use both the oscilloscope and our own hardware to measure the
same voltage signal. The sampling frequency of the oscilloscope
and our board is 1 kHz and 0.25 kHz, respectively. Both of these
hardware-based techniques are started at the same time using
a script running on the PC. We also perform the calibration
for our power monitoring device using the oscilloscope before
running experiments.

Obviously, Android is a highly complex system with a lot of
activities and background services. In order to improve the ac-
curacy of our measurement, we disable the power management
and all unnecessary programs, services and unused network
interfaces on the smartphone during the execution of the main
task. For the same reason, we also deactivated the network
connections while performing local computations. In certain
conditions, the smartphone could switch to standby mode or
sleep mode, which leads to the instability of measurement
results – we applied a wake lock mechanism to keep the CPU
of smartphone staying ON during the operation. And, most
importantly, we automated the measurement process so that
no interaction with the smartphone is needed.

V. RESULTS AND DISCUSSION

We investigated the accuracy of three measurement methods
based on their experimental results. The results from the
oscilloscope are used to provide the ground trough baseline
for the other two methods due to its higher sampling rate and
lower error of sampled data values.

A. Power Trace

To assess the similarity among these power traces, we apply
the Simple Moving Average (SMA) to the raw data from
oscilloscope. The SMA creates a series of average voltage
values from the sampling data, which can more easily be
compared to the power traces provided by the battery interface
and our new platform. For the majority of the applications,
most of energy is consumed by the phone screen. Figure 4

0 5 10 15 20

0

1

2

3

4

Time (in seconds)

P
o
w

er
 (

in
 W

at
ts

)

Oscilloscope

SMA−Oscilloscope

Battery Interface

MCU−based

(a) Matrix multiplication

0 50 100 150

0

1

2

3

4

Time (in seconds)

P
o
w

er
 (

in
 W

at
ts

)

Oscilloscope

SMA−Oscilloscope

Battery Interface

MCU−based

(b) Local video

Figure 5. Power trace for local computations.

gives the overview of power consumption when the phone is in
idle state. It is shown that switching the display of the device
from off to full brightness increases the power consumption
of the phone by nearly 1.5 W.

Figure 5 shows the power traces for local computations on the
smartphone. The result for matrix multiplication application is
shown in Figure 5a. The average executing time for computing
matrix multiplication is approximate 14.7 s. The observation of
power consumption for video playing application is depicted
in Figure 5b. As can be seen, the screen is the main source of
power drain and the playback algorithm does not add much to
the energy consumption.

In Figure 6, we show the power consumed for downloading
and uploading file from and to a server over WiFi, respectively.
Even though there is a slight difference in download and
upload speed, the overall execution time is nearly the same.
The reason is that the size of transfer files is quite small, which
only requires a little time for sending and receiving data. Most
of the time is spent on the connection setup for communication.
The average time for file transfer using WiFi in our applications
is approximate 1.3 s.

Finally, Figure 7 shows the power consumption behavior
of 3G communication. We notice that the phone only spends
approximate 5 s to download a file of 3.5 MB from server
over 3G (cf. Figure 7a), while it requires more than 20 s for
uploading the same file to server (cf. Figure 7b). This is due to
the difference in download and upload speed of 3G connections.
Besides that, we also can see that the phone does not switch
directly to idle state after finishing the operation, but remains in
an intermediate power state in a specified period of time. This
is handled by Radio Resource Controller (RRC) in cellular
network [18]. In the 3G communication, the RRC idle mode
has the lowest power consumption. The RRC connected mode



0 5 10 15 20

0

1

2

3

4

Time (in seconds)

P
o
w

er
 (

in
 W

at
ts

)
Oscilloscope

SMA−Oscilloscope

Battery Interface

MCU−based

(a) Download

0 5 10 15 20

0

1

2

3

4

Time (in seconds)

P
o
w

er
 (

in
 W

at
ts

)

Oscilloscope

SMA−Oscilloscope

Battery Interface

MCU−based

(b) Upload

Figure 6. Power trace for file transfer over WiFi.

0 10 20 30 40

0

1

2

3

4

Time (in seconds)

P
o
w

er
 (

in
 W

at
ts

)

DCH FACH

idle

Oscilloscope

SMA−Oscilloscope

Battery Interface

MCU−based

(a) Download

0 10 20 30 40 50 60

0

1

2

3

4

Time (in seconds)

P
o
w

er
 (

in
 W

at
ts

)

DCH FACH

idle

Oscilloscope

SMA−Oscilloscope

Battery Interface

MCU−based

(b) Upload

Figure 7. Power trace for file transfer over 3G.

is divided into two sub-states: the high-power state CELL_DCH
and the intermediate power state CELL_FACH in which data
are carried through a Dedicated Channel (DCH) and a Forward
Access Channel (FACH), respectively. This observation also
gives us more accurate estimation of energy consumption.

Overall, we can see that our MCU-based measurements
are matching the SMA data from the oscilloscope very well.
However, in all the shown power traces, the Android battery
interface seems to underestimate the power consumption of
the phone compared to oscilloscope and our monitoring device.
The measurements on different smartphones need to be done to

Local Applications Network Applications

0.25

0.50

0.75

1.00

phone osc mcu phone osc mcu

P
o
w

er
 C

o
n
su

m
p
ti

o
n
 (

in
 W

at
ts

)

Figure 8. Statistics of power consumption in idle mode.

validate this finding. We will report on the estimation quality
under load later but first examine the idle state more closely.

B. Idle State Power Consumption

As a base line, we determine the substantial power consump-
tion of the phone in idle state by tracking the power during the
delayed period at the beginning of the testing application. We
did so for each experiment individually. When no application
is running, the power consumed by the phone is around 0.3 W
and increases to 0.55 W when the logging service is enabled.

In Figure 8, we can see the difference in power consumed
by the phone in idle mode among various applications. The
first observation is that the MCU-based approach is exactly
matching the results obtained by the oscilloscope.

We further have to distinguish between local computations
and communication experiments. For the local computations,
all of network interfaces are disabled, which clearly impacts
the idle power as shown in Figure 8. The average idle power
is 0.36 W and 0.62 W measured by the battery interface and
the MCU/oscilloscope, respectively. This quantity is estimated
to be approximate 0.6 W by the battery interface and 0.9 W
by the MCU/oscilloscope when the WiFi or 3G network is
activated.

For all further investigations, we simple subtracted the idle
power from the total power consumed by the smartphone
when the applications are running. This mechanism provides
higher accuracy of energy consumption estimation for each
computation and network operation on smartphones.

C. Total Energy Consumption

We now explore the total energy consumption as measured
by all three methods. As a first result, the distribution of the
measurements for local computation is depicted in Figure 9.
Comparing the results in Figures 9a and 9b, it is clear that
the energy consumption of video playing application is higher
than the matrix multiplication due to the use of the phone
screen. The average energy consumed by the phone display
with 50 % brightness in 154 s is 215.6 J, which is nearly 75 %
of overall energy consumption of the video playing application.
The smart battery interface reports less energy being consumed
compared to the MCU and the oscilloscope.

Figure 10 shows the experimental statistics on energy
consumption of our file transfer applications using WiFi and
3G communication. Generally, smartphones use much more



Matrix Multiplication

10

12

14

phone osc mcu

E
n
er

g
y
 C

o
n
su

m
p
ti

o
n
 (

in
 J

o
u
le

s)

(a) Matrix multiplication

Local Video

220

240

260

280

300

phone osc mcu

E
n
er

g
y
 C

o
n
su

m
p
ti

o
n
 (

in
 J

o
u
le

s)

(b) Local video

Figure 9. Statistics of energy consumption for local computations.

energy (at least one order of magnitude) for 3G communication
compared to WiFi. The average energy consumption for sending
and receiving a file of 3.5 MB over WiFi is 2.12 J and 1.62 J,
respectively. These quantities are 43.09 J and 12.13 J for the 3G
connection. Moreover, it can be seen that downloading a file
from a server is less expensive than uploading for both network
interfaces, however, the difference in WiFi communication is
not so significant. In our measurement, the WiFi connection
quality is maintained in very good condition so we do not
see the effect of this parameter on energy consumption of the
smartphone.

Another interesting observation is that the measurement
results are more stable for short-time running applications
such as the matrix multiplication, WiFi communication, and
3G download. For long-time running applications like video
playing or 3G upload, the energy evaluation suffer higher ratio
of interference from the background services and the impacts
of operating conditions. Therefore, the differing variation in
measurement results of these two classes of application is
straightforward.

Figures 9 and 10 also reveal some noticeable quantitative
aspects. It is obvious that smartphones spend much more time
and energy on local heavy tasks. In the opposite, it only needs
a little time for sending and receiving data to and from the
server over the WiFi, so the energy required for executing
these operations is quite small. This brings the possibility of
saving energy using computational offloading. But there are
still many issues related to the network communication that
need to be considered in detail, especially, the network selection
algorithm.

D. Overall Accuracy Comparison

In order to assess the accuracy of our power monitoring
device and the Android battery interface method, we compute
the errors between the results of these two measurement tech-
niques with the ones from the oscilloscope for each application.
Table II summarizes the average energy measurement errors
of the two methods in all experimental applications.

The results indicate that our MCU-based device provides
very high accuracy in energy consumption estimation. For the
smart battery interface, even though there is a limitation in
updating rate, the measurement results are still acceptable
in most scenarios. The high average error rates in local

WiFi Download WiFi Upload

1

2

3

phone osc mcu phone osc mcu

E
n
er

g
y
 C

o
n
su

m
p
ti

o
n
 (

in
 J

o
u
le

s)

(a) WiFi

3G Download 3G Upload

10

20

30

40

50

60

phone osc mcu phone osc mcu

E
n
er

g
y
 C

o
n
su

m
p
ti

o
n
 (

in
 J

o
u
le

s)

(b) 3G

Figure 10. Statistics of energy consumption for network communication.

Table II
ENERGY MEASUREMENT ACCURACY.

Application Error rate (avg.)
Our device Battery interface

Matrix multiplication 0.80 % 9.43 %
Local video 1.77 % 10.47 %

WiFi download 2.51 % 3.23 %
WiFi upload 1.55 % 2.37 %
3G download 1.33 % 6.25 %

3G upload 2.53 % 8.13 %

computation and 3G communication come from the long-
running time of these applications.

Still, the smart battery interface provides an excellent anchor
for on the fly measurements and decision taking on the
smartphone. More accurate measurements, e.g., using our
portable device, can help calibrating the system for different
hardware architectures.

VI. CONCLUSION AND FUTURE WORK

In this paper, we studied the use of Android smart battery
interface and our own MCU-based power monitoring equipment
for measuring the energy consumption of Android smartphones.
We employed an oscilloscope in parallel with these two ap-
proaches to validate the measurement results. Using the power
traces provided by three methods, we were able to analyze
the power consumption behavior and determine the energy
used by many common applications running on smartphones.
Based on the experimental results, we examined the correlation
between local computation and network communication in
terms of energy dissipation. We also compared the energy
cost for data transfer over two popular wireless technologies,
namely WiFi and 3G, which demonstrates the advantages of
WiFi technology.



We believe that our work forms a fundamental basis for
better understanding of energy consumption of smartphones,
which is essential for developing energy-efficient offloading
algorithms. It is, however, necessary to deal with more general
applications in different operation conditions in order to
enhance the accuracy of our methods. Additionally, one of
the most important aspects in task offloading is the network
communication. The technologies, protocols and conditions
of the network have great impacts on the power dissipation
of smartphones. So, energy consumption models are needed
(particularly for upcoming LTE Advanced and 5G technologies)
to present the relationship between these parameters and the
energy consumption during the offloading process, and to assist
making offloading decision.

REFERENCES

[1] G. P. Perrucci, F. H. P. Fitzek, and J. Widmer, “Survey
on Energy Consumption Entities on the Smartphone Plat-
form,” in 75th IEEE Vehicular Technology Conference
Fall (VTC2011-Spring), Budapest, Hungary: IEEE, May
2011, pp. 1–6.

[2] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud
computing: A survey,” Future Generation Computer
Systems, vol. 29, no. 1, pp. 84 –106, 2013.

[3] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey
of computation offloading for mobile systems,” Mobile
Networks and Applications, vol. 18, no. 1, 129–140,
2013.

[4] X. Ma, Y. Zhao, L. Zhang, H. Wang, and L. Peng,
“When mobile terminals meet the cloud: computation
offloading as the bridge,” IEEE Network, vol. 27, no. 5,
pp. 28–33, Sep. 2013.

[5] Q.-H. Nguyen and F. Dressler, “The Accuracy of
Android Energy Measurements for Offloading Computa-
tional Expensive Tasks,” in 17th ACM International Sym-
posium on Mobile Ad Hoc Networking and Computing
(MobiHoc 2016), Poster Session, Paderborn, Germany:
ACM, 2016, pp. 393–394.

[6] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman,
S. Saroiu, R. Chandra, and P. Bahl, “MAUI: Making
Smartphones Last Longer with Code Offload,” in 8th
International Conference on Mobile Systems, Applica-
tions and Services (MobiSys 2010), San Francisco, CA:
ACM, Jun. 2010, pp. 49–62.

[7] A. Saarinen, M. Siekkinen, Y. Xiao, J. K. Nurminen,
M. Kemppainen, and P. Hui, “SmartDiet: offloading
popular apps to save energy,” ACM SIGCOMM Com-
puter Communication Review (CCR), vol. 42, no. 4,
pp. 297–298, Aug. 2012.

[8] L. Wang and J. Manner, “Energy Consumption Analysis
of WLAN, 2G and 3G interfaces,” in IEEE/ACM Int’l
Conference on Green Computing and Communications
& Int’l Conference on Cyber, Physical and Social Com-
puting (GreenCom-CPSCom 2010), Hangzhou, China:
IEEE, Dec. 2010, pp. 300–307.

[9] M. Segata, B. Bloessl, C. Sommer, and F. Dressler,
“Towards Energy Efficient Smart Phone Applications:
Energy Models for Offloading Tasks into the Cloud,” in
IEEE International Conference on Communications (ICC
2014), Sydney, Australia: IEEE, Jun. 2014, pp. 2394–
2399.

[10] Y. Xiao, P. Savolainen, A. Karppanen, M. Siekkinen,
and A. Ylä-Jääski, “Practical Power Modeling of Data
Transmission over 802.11g for Wireless Applications,”
in 1st International Conference on Energy-Efficient
Computing and Networking (e-Energy 2010), Passau,
Germany: ACM, Apr. 2010, pp. 75–84.

[11] N. Balasubramanian, A. Balasubramanian, and A.
Venkataramani, “Energy Consumption in Mobile Phones:
A Measurement Study and Implications for Network
Applications,” in 9th ACM SIGCOMM Conference on
Internet Measurement (IMC 2009), Chicago, IL: ACM,
Nov. 2009, pp. 280–293.

[12] S. Guo, B. Xiao, Y. Yang, and Y. Yang, “Energy-
Efficient Dynamic Offloading and Resource Scheduling
in Mobile Cloud Computing,” in 35th IEEE Conference
on Computer Communications (INFOCOM 2016), San
Francisco, CA: IEEE, Apr. 2016.

[13] W. Jung, C. Kang, C. Yoon, D. Kim, and H. Cha,
“DevScope: A Nonintrusive and Online Power Anal-
ysis Tool for Smartphone Hardware Components,”
in 8th IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis
(CODES+ISSS ’12), Tampere, Finland: ACM, Oct. 2012,
pp. 353–362.

[14] A. Rice and S. Hay, “Decomposing Power Measurements
for Mobile Devices,” in IEEE International Conference
on Pervasive Computing and Communications (PerCom
2010), Mannheim, Germany: IEEE, Apr. 2010, pp. 70–
78.

[15] A. Carroll and G. Heiser, “An Analysis of Power
Consumption in a Smartphone,” in USENIX Annual
Technical Conference 2010 (USENIX ATC 2010), Boston,
MA: USENIX, Jun. 2010, pp. 21–21.

[16] A. Schulman, T. Schmid, P. Dutta, and N. Spring,
“Phone Power Monitoring with BattOr,” in 17th ACM
International Conference on Mobile Computing and
Networking (MobiCom 2011), Demo Session, Las Vegas,
NV: IEEE, Sep. 2011.

[17] R. Trestian, A.-N. Moldovan, O. Ormond, and G.-
M. Muntean, “Energy consumption analysis of video
streaming to Android mobile devices,” in 18th IEEE/IFIP
Network Operations & Management Symposium (NOMS
2012), Maui, HI: IEEE, Apr. 2012, pp. 444–452.

[18] P. H. J. Perälä, A. Barbuzzi, G. Boggia, and K. Pentik-
ousis, “Theory and Practice of RRC State Transitions in
UMTS Networks,” in IEEE Global Telecommunications
Conference (GLOBECOM 2009): 5th IEEE Broadband
Wireless Access Workshop, Honolulu, HI, Nov. 2009.


