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Abstract

Car-to-Pedestrian (Car2P) communication has a huge potential for preventing potential accidents between pedestrians
and vehicles by exchanging context information. Similar communication principles have been explored for Car-to-Car
(C2C) communication since quite a while and are now being deployed as an additional safety mechanism. Unfortunately,
Vulnerable Road Users (VRUs) such as pedestrians and bicyclists are not yet covered by these systems. Looking at
pedestrians, we explore possibilities for the exchange of relevant safety mechanisms between pedestrians and cars making
use of readily available communication capabilities of current LTE networks. Necessary activity and collision detection
algorithms have to be run on the users’ smartphones in order to determine the criticality of the situation. In order to
improve both the overall system latency and the energy efficiency of the smartphone applications, we suggest the use of
Multi-access Edge Computing (MEC). We implemented the system to perform measurements on the smartphone side as
well as extensive simulations on the networking side. Our results clearly show the advantages of our concept and the
integrated MEC approach.
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1. Introduction

In recent years, cooperative collision detection has
emerged as a complementary approach to traditional safety
solutions using vehicle sensors like cameras, laser scanner,
and RADAR to detect nearby objects. Different from the
sensor-based approach, which requires a direct Line-Of-
Sight (LOS) between vehicles and detected objects, cooper-
ative collision detection can even operate in Non-Line-Of-
Sight (NLOS) scenarios by exchanging movement informa-
tion between entities via wireless communication. In the
context of safety systems for Vulnerable Road Users (VRUs)
like pedestrians and bicyclists, vehicles exchange informa-
tion with VRUs’ mobile smart devices, e.g., smartphones,
tablets, or wearable devices [1, 2, 3, 4].

The general concept of a VRU safety system is shown
in Figure 1 (extending our earlier work in [5]), in which
vehicles and VRUs have two possible options for data
transmission, namely direct Device-to-Device (D2D) com-
munication and an infrastructure-based approach. As an
initial idea, D2D technologies, such as Wi-Fi Peer-to-Peer
(P2P) or Dedicated Short Range Communication (DSRC),
are designed to serve the need of cooperative safety sys-
tems, which allows messages to be directly transferred
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from sender to receiver. In particular, DSRC has been
assumed for Car-to-Car (C2C)/Vehicle-to-Vehicle (V2V)
and Car-to-Everything (C2X)/Vehicle-to-Everything (V2X)
communication and is likely to be available for smartphones
in the next few years [6, 7]. However, these D2D technolo-
gies do not offer good coverage and range, i.e., less than
200m for Wi-Fi Direct and less than 1000m for DSRC,
especially around intersections in urban areas [8, 9]. To
overcome these limitations, cellular technology is proposed
as an alternative.

Cellular V2X (C-V2X), or more specific LTE-V2X, in-
cludes two interfaces: the LTE interface (named Uu), that
supports the communication between vehicles/end-devices
and mobile base stations and the newer D2D interface
(named PC5), that enables V2V communications based
on direct LTE sidelink [10, 11]. C-V2X is indicated to
have many advantages in different aspects, such as com-
munication range, performance, and reliability, especially
with the current evolution from LTE to 5G [12]. PC5,
like DSRC, has been studied by several existing works and
is deployed mainly for vehicles [13, 10, 11]. This direct
V2X communication can significantly reduce the latency
and is expected to become superior to DSRC [12]. Mean-
while, the Uu radio interface, which is already available
for smartphones, still remains an important part of the
next generation wireless V2X system with the ability to
support long-range communication. However, the feasibil-
ity of applying this interface and network infrastructure to
provide an additional approach for different V2X use cases
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Figure 1: General concept of a VRU safety system.

is still unclear. Recognizing this gap along with the desire
to leverage existing networks for V2X communications, we
focus on studying the performance of cellular-based sys-
tems over the Uu interface and exploiting this approach
for VRU safety applications/services. To be more specific,
Car-to-Pedestrian (Car2P), a typical case of VRU systems,
in which the safety for pedestrians is the main objective of
our investigation in this paper.

In order to enable collision detection, pedestrians’ smart-
phones and vehicles need to send beacon messages peri-
odically to each other and after obtaining the beacons, a
Collision Detection Algorithm (CDA) is executed. While
these tasks are not a big deal for vehicles, they could be
a significant obstacle when running on smartphones with
limited resources. Especially, it would be a heavy burden
on smartphones in terms of energy consumption and exe-
cuting time when more information from other vehicles is
needed and a more complex CDA is used. In this paper,
we concentrate on addressing this bottleneck by consider-
ing the use of computation offloading using Multi-access
Edge Computing (MEC). Applying this mechanism for
smartphone applications, such as gaming, image/video pro-
cessing, object/face recognition, or accelerated web browser
has been shown to have a noticeable improvement in energy
efficiency [14]; however, its applicability in the context of
Car2P safety systems is still unclear.

The original idea of our approach was presented in our
recent work [15], in which we proposed a dynamic selec-
tion of execution location (local or remote) for calculating
pedestrian context information. Conceptually, the beacons
transmitted between objects comprise some fundamental
information like current position, heading direction, and
speed [16, 17, 18, 19]. Some recent works [20, 3] suggested
using additional context information to improve the accu-
racy of prediction results. Looking in more details, we can
see that it is quite simple to calculate some information
like position or direction directly from smartphone sensor
data [21, 6]. But for others, e.g., motion states or activity,
more extensive data handling like pre-processing, extrac-

tion of features, and training machine learning models are
needed [22, 23, 20]. Depending on the amount of raw sen-
sor data collected, an appropriate computational scheme is
selected to save energy on smartphones.

In this paper, we extend and improve our proposed
approach in [15], to support not only context information
calculation but also the CDA. Generally, in cellular-based
safety systems, context information computation and colli-
sion detection could be done either on a pedestrian smart-
phone itself or on a remote server. Deciding the strategy to
not only prolong the battery life of the smartphone but also
to meet the timing constraints in a Car2P safety system is
a challenging task. It requires to take into consideration
different parameters, such as energy consumption and pro-
cessing time of local computation, network communication
overhead, as well as real-time requirements of the system.

To provide insights on this adaptive approach, we carry
out experimental and simulation studies on the perfor-
mance of a Car2P system when applying both Local and
Offload computational schemes on smartphones. In ad-
dition, energy consumption and latency of each scheme are
investigated in the relationships with different parameters,
such as the machine learning algorithm, the sensor sam-
pling rate, the window size, and the sending interval of
messages on the smartphone. We see the results of this
paper as an important step towards energy-efficient VRU
safety systems.

Our main contributions can be summarized as follows:

• We propose an adaptive computational approach for
smartphones, which considers the possibility of of-
floading tasks in both data and service levels of Car2P
safe applications.

• We measure and analyze the energy consumption
and processing time of a lightweight machine learning
application for determining pedestrian activities as
well as a CDA for detecting potential collisions.

• We simulate a scenario of a Car2P system using the
simulation framework Veins LTE to evaluate the end-
to-end performance and scalability of our adaptive
approach.

2. Related Work

The concept of a cooperative Car2P safety system has
been described in many previous works [24, 5, 25, 1]. In
particular, cellular-based safety systems have received much
attention over the last years [5, 8, 18, 26]. Additionally,
the communication performance of cellular in vehicular
networks has been studied and compared to other wireless
technologies, such as IEEE 802.11p-based DSRC [27, 9],
which demonstrates the great potential of this technology
in safety applications.

In general, information about the position, direction,
and speed is used to predict potential collision between
vehicles and pedestrians. However, in [21, 6, 28, 3] the
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limitations of this information for collision detection have
been pointed out. False detections are mainly due to
the inaccuracy of position information and the frequent
change of walking peoples’ trajectories. Therefore, addi-
tional information like distraction level [6] (e.g., texting,
watching a video or talking on the phone), VRU move-
ments/activities [20, 3, 29] (e.g., stopping, walking, wait-
ing, running, or crossing a curb), surrounding environ-
ment [16, 17] (e.g., indoor, outdoor, or in-vehicle), degree
of risk [30] (e.g., approaching road, crossing road, or near
vehicles), or weather condition, time of day, and age [31]
have been suggested to be used as complementary knowl-
edge, which helps to improve the accuracy of the detection
or the efficiency of network communication. More specifi-
cally, the authors in [3] proposed an approach to use the
pedestrian context crossing a curb and stepping onto a road
to improve both the positioning accuracy and the collision
detection probability. Moreover, in [29], the detection of
cyclist movements, i.e., waiting or standing, are utilized to
reduce the trajectory forecast error by selecting an appro-
priate forecasting model based on the detected movement.
For the collision detection algorithm, many solutions have
been introduced based on the context information exchang-
ing between vehicles and pedestrians [32, 33, 3, 26]. It is
noticeable that most of the research concentrated on the
conceptual/architectural level without caring about the
costs of calculating context information and running detec-
tion algorithms. The timing costs, as well as the influence
of these calculations on the phone battery life, especially
with higher complexity of the computation, are still unclear.
Therefore, the feasibility of these algorithms is still an open
question.

Realizing the restrictions of smartphones in terms of
battery life and computation resources, several studies have
focused on improving the energy efficiency of these devices
when they are used in Car2P safety systems. One of the ob-
vious ways to save energy on a smartphone is to reduce the
amount of network traffic [18]. Depending on the risk level
of pedestrians, an appropriate beaconing scheme for smart-
phones could be applied. In risk-free or low-risk situations,
the smartphone can minimize data communication and
vice versa in high-risk scenarios, a higher beacon frequency
could be used. From the architectural perspective, it could
be an option to save energy on a smartphone when local
calculations are migrated to a remote server [18, 26]. The
main challenge of this approach is to decide when to per-
form offloading in order to maximize the energy efficiency
of the smartphone. The answer to this question depends on
the actual conditions of the systems, networks, as well as
the context at runtime. There have been many studies to
solve the similar problem in other areas [14, 34]; however,
to the best of our knowledge, there is currently no research
on the performance of this strategy in the context of Car2P
safety systems. Some existing studies [6, 16, 30] only con-
sider the use cases in which the calculation is performed
locally either on smartphones or vehicles, while some oth-
ers [18, 26] suggested completely moving the execution of

CDA to a central server.
To fill this gap, a study on a heterogeneous strategy is

needed since only offloading or local computation is not
always beneficial. In our recent work [15], we took the
first step in solving this issue by examining the perfor-
mance of the Offload scheme versus the Local scheme
for safety context information calculation. In this paper,
we further investigate the possibility of offloading com-
putation in the service level, i.e., the CDA. The basis
for such concepts is accurate measurement and estima-
tion of energy consumption profiles for computation and
communication tasks [35, 36]. Besides, in our system, we
adopt MEC as a back-end server, like in [26], support for-
warding Cooperative Awareness Messages (CAMs) to all
concerned vehicles/pedestrians and offering context infor-
mation calculation and collision detection services. This
could later be extended to central-cloud [18] or micro-cloud
solutions [37, 38].

3. System Architecture

Basically, our proposed Car2P safety system relies on
the (centralized) architecture depicted in Figure 1. All
communication within the system is established via LTE.
Direct Car2P communication is beyond the scope of this
paper. In the following, we explain our system architecture
in which part of the information is processed locally and
other parts are offloaded to the cloud supported by MEC.

(a) Baseline approach

(b) Adaptive approach in the data level

(c) Adaptive approach in the service level

Figure 2: MEC-based Collision Detection.
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3.1. Baseline Approach
Figure 2a shows the baseline approach for a cellular-

based Car2P safety system. As aforementioned, cellular
communication is used as an alternative to D2D technolo-
gies, thus, all CAMs exchanged between vehicles and pedes-
trians are transmitted via an eNodeB (and the LTE core
network). In general, the collision detection service works
as follows: while a User Equipment (UE) (a vehicle or a
pedestrian carrying his/her smartphone) is moving on the
road, it frequently reports its existence to other UEs by
sending CAMs, which contain its context information (Ctx-
Info), to a base station (eNodeB) using the LTE interface.
These CAMs will then be forwarded to other UEs in the
same context. After receiving CAMs, UEs perform the
CDA locally to predict the likelihood of crashes with other
UEs and trigger collision detection actions if needed.

Taking a closer look at the smartphone side, it is ob-
vious that local CDA is the most expensive computation
task, especially when a high number of CAMs are received
and the running period of the algorithm is small, i.e., the
CDA is invoked more often. Besides, we can see that this
approach requires context information to be calculated lo-
cally beforehand. Similar to the CDA, the smartphone also
needs to run the calculation locally by itself. As discussed
previously, it is not a problem for some basic information
like position, speed, or direction, which just requires a few
simple calculations. However, when more sophisticated and
computationally intensive algorithms are needed to calcu-
late context information like current activity or distraction
level, this could consume a significant amount of energy
of the battery and should be also taken into account in
the optimization problem of energy consumption for the
smartphone.

3.2. Adaptive MEC-based Collision Detection
Considering the limitations of the baseline approach, we

propose an improvement to the architecture of the Car2P
safety system, in which smartphones consider the possibility
of computation offloading with the support of a MEC server.
We suggest taking into consideration the applicability of
this mechanism in both data level and service level.

3.2.1. Data Level
In the data level, smartphones decide whether or not

to migrate context information calculation to the remote
server. An overview of the data processing and communica-
tion flows of our adaptive approach in the data level is given
in Figure 2b. In more detail, smartphones periodically col-
lect raw data from different sensors. This data is then fed
into a decision engine, which takes various parameters like
current network condition and historical data as inputs and
applies a certain logic to decide whether the computation
for current context information should be offloaded to the
MEC server or not. If the local computation is selected, the
smartphone performs the calculation itself. The results are
then used as inputs for the local CDA and along with other

context information (e.g., positions) be encapsulated in a
CAM to be sent to MEC for centralized processing. In the
case of remote execution, the smartphone transmits raw
sensor data to the MEC server, where context information
is computed before being sent back to the smartphone and
used as the inputs for the remote CDA.

In order to assess the performance of these two strate-
gies, different parameters in terms of timing and energy
consumption need to be taken into account. Let ElocalCtx

and TlocalCtx be the energy and time consumed by cal-
culating context information on the smartphone; Edata

and Tdata be the energy and time for transferring raw sen-
sor data to the server; TremoteCtx be the time needed to
calculate the context information on the server side; and
EresultCtx and TresultCtx be the energy and time for re-
ceiving the calculated result from the server. The total
delay time ToffloadCtx since raw sensor data is ready until
the calculated context information reaches the smartphone
from the server can be given as

ToffloadCtx = Tdata + TremoteCtx + TresultCtx . (1)

In terms of time, the delay of the selected computation
scheme, i.e., TlocalCtx for Local and ToffloadCtx for Of-
fload, must not exceed a threshold TCtx (where TCtx is
the maximum allowed delay for context information calcu-
lation). The offloading scheme is preferable, i.e., a better
option to save energy, when

Edata + EresultCtx < Elocal . (2)

Getting into more details, ElocalCtx and TlocalCtx are
highly algorithm-dependent; Edata and Tdata are closely re-
lated to the amount of raw sensor data collected; EresultCtx,
TresultCtx, Edata, and Tdata are influenced by the network
status at the sending/receiving time; and TremoteCtx is
determined by the computation power of the server.

3.2.2. Service Level
In the service level, smartphones consider the possibility

of offloading the CDA. In Figure 2c, we show the processing
flow of our adaptive approach in the service level. Similar
to the data level, a smartphone also has two options: (1)
taking the current context information and the CAMs re-
ceived from other vehicles as inputs and perform the CDA
locally; and (2) sending context information (encapsulated
in a CAM) to a MEC server for processing and then waiting
for a Decentralized Environmental Notification Message
(DENM) in case potential collisions are detected. At the
MEC server, all the data from different UEs is processed to
predict the likelihood of crashes between UEs. If risky situ-
ations are detected, DENMs are then sent to all concerned
UEs to trigger collision detection actions.

The condition for selecting operation schemes to save
energy in the service level can be formulated as follows. Let
ElocalCDA and TlocalCDA be the energy and time consumed
by running the CDA on the smartphone; ECAM and TCAM

be the energy and time for transferring a CAM to the server;
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TremoteCDA be the time needed to execute the CDA on the
server side; EDENM and TDENM be the energy and time
for receiving a DENM from the server; and a threshold
TCDA be the maximum allowed end-to-end delay of the
safety system. Running the CDA locally needs to satisfy
the following timing constraint

TlocalCDA ≤ TCDA . (3)

Let ToffloadCDA be the offloading time for the CDA execu-
tion, then it can be given as

ToffloadCDA = TCAM + TremoteCDA + TDENM . (4)

The offloadCtx scheme offers better energy efficiency when
we have

ECAM + EDENM < Elocal (5)
and ToffloadCDA ≤ TCDA . (6)

For local execution, ElocalCDA and TlocalCDA are re-
lated to the algorithm used and the number of CAMs to
be processed. For offloading, TremoteCDA is dependent
on the server. Other parameters including ECAM , TCAM ,
EDENM , and TDENM are associated with the network
condition at runtime.

Generally, in both data and service levels, the Local
or Offload scheme has its own pros and cons. Deciding
an appropriate operation scheme to improve the energy
efficiency of smartphones while still guaranteeing the time-
liness of messages received by pedestrian smartphones and
vehicles requires a good understanding of the performance
of context information computation and the CDA on both
local and remote side as well as the overhead for data
transfer between smartphones and the server.

3.3. Collision Detection Algorithm
In this section, we present the algorithm used in our

system for detecting collisions between pedestrians and
vehicles. On the smartphone side, the current position
vector #»p0 and velocity vector #»v of the pedestrian are peri-
odically updated. The smartphone also receives a set M
of CAMs from nearby vehicles. Each m ∈M contains the
current position vector #  »

pm
0 and the velocity vector #  »

vm of the
sending vehicle. With the assumption that the direction
and speed of vehicles and pedestrians do not significantly
change, their future positions over time are estimated as

#»p (t)← #»p0 + #»v .t ,
#  »

pm(t)← #  »

pm
0 + #  »

vm.t .
(7)

Basically, our CDA is based on the minimum distance
between two objects [26]. In our context, the distance
between the pedestrian and the vehicle is calculated as

#»

d (t)← #»p (t)− #  »

pm(t)← ( #»p0 −
#  »

pm
0 ) + ( #»v −

#  »

vm)t . (8)

The square of the distance D(t) = | #»d (t)|2 is computed to
simplify the calculation. The derivative is then used to

calculated the time point t∗ at which the distance D(t) is
minimum as

t∗ = t : d

dt
D(t) = 0

t∗ ← −( #»p0 −
#  »
pm

0 ).( #»v − #  »
vm)

| #»v − #  »
vm|2

.
(9)

If t∗ < 0, the pedestrian and the vehicle are getting farther
apart. If t∗ is greater than a threshold T ∗ (where T ∗ is
the time point at which the pedestrian/vehicle starts to
pay attention to potential danger), the two objects are still
in the safe areas to each other and there is no need for
a warning. If 0 < t∗ < T ∗, the minimum distance d∗ =√

D(t∗) is computed. The sending of an alert message to
the corresponding vehicle as well as a warning to pedestrian
will be triggered if d∗ is smaller than a certain threshold
D∗. This process is performed for every CAM received
from the vehicles.

If the collision detection service is carried out on the
server side, current positions and velocities of all pedestri-
ans and vehicles in the context are collected. The CDA
is then applied for each pair of CAMs from vehicles and
pedestrians. DENMs will be sent to the concerned vehi-
cles/pedestrians if potential collisions are detected.

4. Experimental Study

In this section, we report on the experiments performed
to evaluate the performance of our proposed adaptive ap-
proach in both data and service levels. As described in
Section 3.2, energy consumption and processing time are
the two main metrics, which directly affect the selection of
operation schemes. In our experiments, we mainly focus
on estimating the local computation costs as well as the
energy consumed by network operations (transferring data
to/from the server).

4.1. Experiment Setup
In the data level, we measure the energy consumption

and time needed to perform context information calculation
locally on a smartphone. We also compare the accuracy
of different machine learning algorithm used for context
information classification. In the service level, we conduct
similar measurements but now for the CDA. We discuss
our measurement results in relation to the different param-
eters: window length, sampling frequency, classifier, and
the number of CAMs need to be processed. Based on the
measurement results, we evaluate the energy efficiency of
different computational combinations on data and service
levels. All plots presented show average values together
with 95% confidence intervals.

We performed our experiments on a NEXUS 6 smart-
phone running Android V7.1.1. To measure the energy
consumption of the smartphone while running the test-
ing application, we implemented an Android background
service to record the information related to the phone’s
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battery at runtime. Our service makes use of the smart
battery interface of the smartphone, which provides mea-
surement power/energy data with acceptable accuracy [36].
This is thanks to a Maxim MAX17050 battery fuel gauge
equipped on the NEXUS 6 smartphone that offers precision
measurements of current, voltage, and remaining charge.
To measure the execution time, we compute the difference
between the system time values recorded at the beginning
and at the end of the calculation process. All logging data
are stored in the local memory of the smartphone for offline
statistics.

4.2. Context Information Calculation
4.2.1. Pedestrian Activity Recognition

As a prime example for context information calculation,
we study the performance of the machine learning appli-
cation for online determining pedestrian activities. Our
application performs the calculation based on the smart-
phone sensor data from accelerometer and gyroscope, which
detects whether a pedestrian is currently sitting, standing,
walking, or running. Since the pedestrian’s current activity
has to be detected as quickly as possible so that the re-
sulting data can be promptly given to the crash prediction
application in the collision detection system, we imple-
mented a lightweight version for Android smartphones.

A configuration for our algorithm is characterized by
three parameters: window length, sensor sampling fre-
quency, and classifier. We selected window length values
of 0.1, 0.2, 0.5, 1.0, 1.5 and 2.0 s. For sampling sensor
data, we chose frequencies of 10, 16, 32, 50 and 100Hz. As
shown in [39], a sampling frequency of 32Hz is sufficient
for tracking simple body movements based on the Shannon
theorem. However, we deliberately chose higher frequen-
cies as well in order to obtain enough data points when
using smaller window sizes and to be able to detect faster
or more complex activities, which may require a higher
sampling rate. As part of our preprocessing, we extracted
time domain features including mean, variance, minimum,
and maximum. These features are sufficient for detecting
simple movement activities and can be calculated with low
computational effort [22, 40].

For our machine learning application, we used five dif-
ferent classifiers, which are frequently used for online ac-
tivity recognition [22, 40, 41]: C4.5, Naive Bayes (NB),
Random Forest (RF), JRip, and Support Vector Machine
(SVM). In order to obtain reproducible results, we used the
implementation from the Waikato Environment for Knowl-
edge Analysis (WEKA) toolkit.1 Each classifier model was
trained for each pair of a certain sensor sampling frequency
and window length beforehand and then selected according
to the chosen configuration.

In order to investigate the energy and time efficiency of
our machine learning algorithms and the offloading scheme

1https://www.cs.waikato.ac.nz/ml/weka/

for calculating pedestrian context information, we imple-
mented three operation modes for our application on smart-
phones: (1) local pedestrian activity determination without
updating the server (localCtx); (2) local pedestrian activ-
ity determination and then upload the result to the server
(localCtx++); and (3) offloading pedestrian activity calcula-
tion to the server and receiving back the result (offloadCtx).

For the localCtx++ and offloadCtx modes, we set up a
simple server for handling packets sent from the smartphone.
Data transmission between the smartphone and the server
is performed using the UDP over an LTE connection. We
put our smartphone at a fixed location with excellent LTE
signal quality to minimize its effect on energy consumption
of the smartphone during network communication. In order
to improve the accuracy of the measurements, we disabled
all unnecessary background services and the Wi-Fi interface
on the smartphone during the experiments. We also kept
the screen brightness of the phone at a fixed level. Finally,
we repeated the experiment for each configuration 10 times
to improve statistical confidence.

4.2.2. Classification Accuracy
To estimate the accuracy of our trained models for the

four chosen activities, we evaluated the performance of
the five classification algorithms using the 10-fold cross-
validation method. For all evaluations, we used a prere-
corded dataset, which contains smartphone sensor data
(accelerometer and gyroscope) captured while a participant
performed four different activities, i.e., walking, running,
standing, and sitting. This dataset was preprocessed for
the respective configurations represented by a pair of se-
lected frequency and window length. The obtained results
are summarized in Table 1. The overall classification ac-
curacies are greater than 90% for all considered window
lengths, frequencies, and classifiers, except the SVM classi-
fier. The reason for these high accuracies is that only four
continuous and simple activities have been considered for
our investigation. In most cases, the RF classifier is found
to produce the highest classification accuracies, while SVM
shows the lowest accuracies, especially when using window
lengths of 0.1 s.

However, since these results were obtained offline based
on prerecorded sensor data, it should be noted that the
classification results may differ when performing online
classification in real time. It is due to unforeseen move-
ments or changes in user behavior. Possible improvements
towards classification accuracy, e.g., extracting additional
features or changing parameters of the classification algo-
rithms are left for future work. For the purpose of studying
system performance, the current results are sufficient for
our investigation.

4.2.3. Local Processing Time
Figure 3a shows our measurement results for the local

processing time needed to perform classification using all
considered machine learning algorithms for varying win-
dow lengths and sampling frequencies. The nearly linear
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Figure 3: Experimental results.

increase in processing time for higher frequencies and win-
dow lengths can be explained due to a higher amount of
collected raw data, which increases the time needed to
extract features.

Most notably, JRip, C4.5, and SVM exhibit lower
processing times compared to NB and RF due to their
lower computational complexity for classifying. In detail,
C4.5 [42] trains a decision tree, in which classification is only
performed on input features with the highest information
entropy. JRip or RIPPERk [43], represents a propositional
rule-based classification algorithm, which shows equal or
lower processing times than C4.5, due to more aggressive
repeated pruning that results in fewer rules to compare
and thus, lower computation times in some cases. Finally,
the SVM classifier [44] calculates the dot product between
the input vector and the determined support vectors for
all classes. The local processing time of this computation
is comparable to JRip and C4.5 since our configuration of
SVM only uses a linear kernel.

The NB classifier [45] on the other hand, assumes that
all input values (features) are normally distributed and
conditionally independent from each other. For every clas-
sification, the algorithm considers all input values and,
therefore, shows an almost constant, linear increase in pro-
cessing time. However, the average local time is higher
compared to the other algorithms which only consider the
most meaningful inputs. Throughout our investigations,
the RF classifier showed similar or higher local processing
times when compared to NB. This algorithm constructs
random forests consisting of multiple random trees [46]. For
classification of a given input vector, the result of the RF

classifier is based on the output from all individual random
trees. While the RF classifier shows slightly higher classifi-
cation accuracies than the other algorithms (cf. Table 1),
it also increases the local processing time.

4.2.4. Energy Consumption vs. Classifiers
To investigate the energy consumed by each classifier,

we conduct the experiments for our application in the lo-
calCtx mode. We turned off the LTE interface during the
experiments since there is no need for network communica-
tion in this mode. The measurement results are shown in
Figure 3b.

First, it can be seen that the C4.5 classifier consumes the
least energy, while the other algorithms consume slightly
more energy, for all considered windows lengths and fre-
quencies. An interesting observation here is that the energy
consumed by the three algorithms is not directly correlated
to the local processing time. For instance, although C4.5
requires a similar or in some cases higher local process-
ing time than JRip, the energy consumption of C4.5 is
slightly lower than JRip for all frequencies and window
lengths, except for 0.1–0.2 s. The rest of the classification
algorithms provide nearly similar results in terms of energy
consumption.

Second, all classifiers show a decrease in energy con-
sumption for higher window lengths. This is not surprising
because smaller window sizes imply that the classification
algorithm is called more often, and therefore consumes
more energy. Moreover, rising sampling frequencies also
increases the overall energy consumption.
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WL
[s]

Freq.
[Hz]

Classification Accuracy [%]
C4.5 JRip NB RF SVM

0.1

10 93.04 93.23 91.88 95.91 50.97
16 93.97 94.69 93.75 97.20 81.93
32 95.04 96.11 93.55 97.65 83.38
50 95.63 96.64 94.20 97.83 85.27
100 96.46 96.46 94.00 97.89 86.30

0.2

10 94.64 94.72 95.00 97.14 84.17
16 95.50 96.05 94.94 97.65 87.68
32 95.90 96.42 95.42 97.84 90.01
50 96.34 96.42 95.43 97.77 90.30
100 96.74 96.82 96.02 97.97 90.26

0.5

10 94.35 95.44 95.73 97.42 90.87
16 96.33 96.92 96.52 97.52 91.26
32 97.22 96.92 97.22 97.71 91.45
50 96.92 97.32 97.51 98.11 91.45
100 96.42 96.92 97.12 97.51 91.55

1.0

10 95.44 95.63 96.03 98.21 91.67
16 96.02 95.83 96.42 97.42 91.65
32 95.23 95.63 96.42 97.81 91.25
50 96.22 96.02 96.82 98.01 91.65
100 96.02 96.22 97.02 97.81 91.85

1.5

10 93.75 92.56 95.83 96.13 90.48
16 95.82 94.93 96.72 97.31 92.24
32 96.12 95.82 95.82 97.61 91.04
50 95.82 95.82 96.42 97.91 90.75
100 94.33 93.73 95.82 97.31 90.75

2.0

10 96.03 94.05 96.03 96.83 90.08
16 92.43 92.43 94.02 96.41 91.24
32 93.23 96.02 95.22 97.21 91.63
50 93.63 94.02 95.62 97.21 92.43
100 95.22 96.02 95.62 96.81 91.63

Table 1: Classification results of all five algorithms using 10-fold
cross-validation.

4.2.5. Energy Consumption vs. Modes
To evaluate and compare the energy efficiency between

3 operation modes mentioned in Section 4.2.1, we chose
the C4.5 classifier, which yields classification accuracies of
more than 92.43% and the lowest computation time, as a
representative to perform our experiments. In Figure 3c,
we show the distribution of the energy measurements for
this classifier with varying window lengths and sampling
frequencies. Generally, the localCtx mode consumes much
less energy than the others because, in this mode, the
smartphone only performs the classification and no net-
work operations are carried out. This fact proves that our
machine learning algorithm is lightweight enough to be
deployed for smartphones.

For the localCtx++ mode, most of the energy consumed
is due to the local computation of context information and
only a small amount comes from uploading the result. On
the other hand, the energy consumption in the offloadCtx
lies in the transmission of raw sensor data. The amount of
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Figure 4: Local performance of collision detection algorithm.

raw data is calculated as

S = nsensor × f × w×m× stype , (10)

where nsensor is the number of sensors; f is the sensor
sampling frequency; w is the window length; m is the
number of values for each sensor data; and stype is the size
of the data type. For example, in our experiments, we were
sampling data from accelerometer and gyroscope in 3 axes
with 4B each data value, thus, the amount of raw data can
vary from 24–4800B.

Basically, the localCtx++ and offloadCtx modes show
comparable energy consumption for large window lengths
and a bit more with localCtx++ mode for small ones. The
difference in energy consumption between these two modes
can be explained as follows: small window lengths (e.g.,
0.1 s) mean the amount of raw sensor data collected is
also small (e.g., 24B), thus, the energy consumption for
transmitting the raw data to the server in the offloadCtx
mode is rather small compared to the quantity needed
to locally extract the context information from this data
in the localCtx++. For large raw data (e.g., 4800B), the
transmission energy is still only approximate the amount
needed for local computation and result upload.

4.3. Collision Detection Algorithm
We implemented the CDA as described in Section 3.3 on

the smartphone. Like the context information calculation,
we also supported two operation modes for our applica-
tion: (1) locally execution of the CDA (localCDA) and
(2) offloading the CDA to the server and receiving back
DENMs if potential collisions exist (offloadCDA). We run
our CDA with different number of CAMs, i.e., 10, 50, 100,
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Simulation Parameter Value

Simulated Area 1 km × 1 km
Layout Intersection
Simulation time 30 s
Repetitions 30
LTE scheduler MAXCI
Bandwidth 5MHz (25 RBs)
UE transmission power 23 dBm
eNodeB transmission power 45 dBm

Number of vehicles 50
Beaconing interval (vehicles) 100ms
Vehicle speed limit 50 km/h
Number of pedestrians 10, 50, 100, 150, and 200
Pedestrian speed limit 10 km/h
Window length/Period 0.1, 0.2, 0.5, 1.0, 1.5 and 2.0 s
Sensor sampling frequency 10, 16, 32, 50 and 100Hz
Number of background UEs 10, 50, 100, 150, and 200
Background traffic 4 kB + uniform(−2 kB, 2 kB)
Background traffic interval 1 s + uniform(−0.5 s, 0.5 s)
CAM length 300B
DENM length 500B
resultCtx length 50B

Table 2: Simulation Parameters.

150, and 200. The implement CDA was executed with 1, 2,
and 4 threads and with the periods of 0.1, 0.2, 0.5, 1.0, 1.5
and 2.0 s. The measured local processing time and energy
consumption are shown in Figure 4.

We can see that the overall processing time of our CDA
is rather small (less than 15ms) even with the high number
of CAMs due to the low complexity of the algorithm. The
processing time increases as the number of CAMs to be
processed grows. Considering the performance when using
three different number of running threads, it is shown
that executing our CDA with 2 threads yields the best
performance and with 4 threads produces the worst. In
terms of energy consumption, our CDA consumes more for
smaller periods and higher numbers of CAMs due to more
frequent invocation and calculation.

5. Simulation Study

In this section, we evaluate the performance of our
adaptive approach by means of network simulations. We
conduct our study with the Veins LTE simulator [47], which
is based on the popular Veins vehicular network simula-
tion framework [48] building upon OMNeT++.2 The road
network and the movement patterns of vehicles and pedes-
trians are generated using SUMO.3

5.1. Simulation Scenario and Setup
The simulation scenario represents a simple context at

an intersection between a highway and a road for pedes-
trians without traffic lights. The simulation parameters

2http://www.omnetpp.org
3http://sumo.dlr.de

are listed in Table 2. We run the simulations with 50 ve-
hicles and different numbers of pedestrians to investigate
the behavior of our proposed approach. All vehicle and
pedestrian modules are equipped with an LTE interface.
We varied the speed of the vehicles from 0–50 km/h and
the speed of the pedestrians from 0–10 km/h.

Beside modules generated from SUMO data, we de-
ployed additional LTE UEs with random positions within
the simulated area but do not require the safety service.
These LTE UEs are used to generate background traffic,
which makes the scenario more realistic. In general, back-
ground traffic could come from any common applications
of mobile users like real-time video streaming, online gam-
ing/music playing, or Internet surfing. The packet size
and usage frequency of these applications may vary in an
unpredictable manner. Therefore, in our simulations, we
configured the background UEs to send and receive mes-
sages with random sizes and random intervals to/from the
server. We also varied the number of these UEs as well
while studying the influence of background traffic on system
performance.

For simulating MEC, we installed a remote server, which
is connected to the LTE eNodeB using a dedicated line.
Therefore, the delay between the remote server and the base
station is set to zero in our simulations. In the application
layer, we implemented UDP-based modules for vehicles,
background UEs, pedestrians, and the server. Vehicles send
a CAM every 100ms to the server and receive DENMs sent
by the server. For pedestrians, we simulated two operation
modes: offloading context information calculation (offload-
Ctx) and offloading CDA (offloadCDA). In the offloadCtx
mode, the applications send messages, which contain raw
sampling data from sensors, to the server, where the compu-
tation for pedestrian activities is performed. We varied the
window length from 0.1–2.0 s and the sampling frequency
from 10–100Hz as in the experimental study. In our simula-
tion, we assume that the application only samples the data
from three sensors: accelerometer, gyroscope, and Global
Navigation Satellite System (GNSS). Each data sample
consists of three float values, i.e., (x, y, z) for accelerometer
and gyroscope, (latitude, longitude, elevation) for GNSS.
The size of data messages sent by pedestrian modules is
calculated based on Equation (10). In the offloadCDA
mode, the applications send CAMs with a fixed period to
the server, where the CDA is executed. After sending a
CAM, the application will wait for a DENM sent by the
server. We also varied the period from 0.1–2.0 s.

For the server, we assumed that the server has un-
limited computing resources, so the execution time for
offloaded tasks can be neglected (TremoteCtx ≈ 0). First,
the server responds to requests from background UEs. Sim-
ilar to request messages, a reply also has a random length
and random latency. Second, the server forwards CAMs
from vehicles to pedestrians in the simulated area. And
finally, the server offers the services (context information
calculation and CDA) to pedestrians and vehicles. In the
offloadCtx mode, after receiving a data message from a
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pedestrian module, the server application will send back a
result message of 50B, which assumed to contain current
activity information of the target pedestrian module. In
the offloadCDA mode, after receiving a CAM from a pedes-
trian, the server will broadcast a DENM to all vehicles in
the area as well as the origin pedestrian, which presumed to
contain warnings about potential collisions. All simulations
are repeated 30 times with an independent random seed
for each run.

5.2. Simulation Results
We used two metrics to evaluate the performance of

our proposed adaptive approach:

• End-to-end delay: is defined as the latency from
the time a CAM or a data message containing raw
sensor data is sent by a smartphone to the time the
broadcast message from the server is received by a
car or a pedestrian.

• Delivery rate: represents the reliability of the system,
which is an essential factor in collision avoidance
service. This metric is defined as the ratio of the total
number of received messages to the total number of
expected recipients.

Figures 5a and 5b show the changing of average end-
to-end delay according to different parameters in both
offloadCtx and offloadCDA modes, respectively. As the
first observation, the average end-to-end delay in both
schemes increases as the sensor sampling frequencies, win-
dow lengths, the density of pedestrians, and background
LTE UEs grow. As for the number of pedestrians and
background UEs, a higher density of these LTE UEs leads
to higher connections to the server and higher network traf-
fic, which can cause overload issues, and therefore increase
packet latency.

In the offloadCtx mode, the size of messages transmitted
by pedestrian modules increases rapidly relative to the
grows of the window length and the sampling frequency,
i.e., up to 7200B for w = 2.0 s and f = 100 Hz. Messages
with larger sizes require more time to send to the server, so
clearly, the latency must be higher. On the contrary, in the
conditions that the pedestrian and background UE densities
are not too high (e.g., less than 150), the offloadCtx mode
offers acceptable end-to-end delay (less than 100ms) for
short window lengths (e.g., less than 0.2 s) or frequency
(e.g., less than 16Hz). Looking at the offloadCDA mode,
the end-to-end delay slightly increases as the period gets
higher in our simulations.

For the delivery rate, we can see in Figures 5c and 5d
that this metric highly depends on the number of pedestri-
ans and background UEs. The delivery rate drops rapidly
when the number of pedestrians and background UEs grows
due to higher traffic and connections to the server. In short,
considering network communication, with centralized archi-
tecture, all CAMs are aggregated to the base station for the

processing. There is a high probability of excessive connec-
tions, e.g., during rush hour with high user density, which
puts a heavy burden on the base station and therefore
could increase packet delay and decrease the delivery rate.
In general, using different types of network connection, i.e.,
lowering traffic load on a single one, is a promising solution.
Based on the actual status of each network connections,
users can select the best option for data or services.

6. Discussion

Based on the experimental and simulation results, we
derived some very interesting insights, which will help to
better optimize the Car2P safety systems in terms of energy
efficiency for pedestrian smartphones and packet latency
as well. As described in Section 3.2, context information
calculation and CDA work together in a safety system for
pedestrians as a two-phase process. The resulting context
information of the first phase in the data level will be the
input for the second phase, CDA, in the service level. First,
it is evident in Figures 3a and 3c that the localCtx mode
is very efficient in both terms of energy consumption and
processing time. This mode is suitable when a pedestrian is
in risk-free situations, where the smartphone only needs to
self-check current context information without connecting
to the server. When a pedestrian is in the circumstance
that requires collision avoidance service, the smartphone
could select one of the following combinations/schemes: (1)
localCtx-localCDA; (2) localCtx-offloadCDA; (3) offloadCtx-
localCDA; and (4) offloadCtx-offloadCDA.

Figure 6 depicts the energy measurements for all these
computational combinations. For the first scheme, localCtx-
localCDA, the smartphone completely performed the whole
process locally, which consumes a significant amount of
energy. On the other hand, the last scheme, offloadCtx-
offloadCDA, decides to completely offload computational
tasks to the server and waits for the results. In this scheme,
the smartphone consumes the least energy comparing to
other schemes since it only needs to send raw sensor data
and positioning, speed, direction information (CAM) to
the server without executing any computation. The hetero-
geneous scheme, localCtx-offloadCDA, has better energy ef-
ficiency than the fully local scheme, offloadCtx-offloadCDA,
as it saves energy for the CDA. The offloadCtx-localCDA
scheme is obviously the least effective in terms of energy
consumption.

Even though the fully offloading scheme, offloadCtx-
offloadCDA, exhibits the best energy efficiency; however, it
is necessary to consider the timing performance as well since
the timeliness of the messages in safety/warning systems
is critical. Overall, the Local scheme offers low end-to-
end delay in most cases, while as shown in Figures 5a
and 5b, both offloadCtx and offloadCDA modes do not
yield good latency performance as the LTE UE density
grows. Therefore, a possible solution for such scenarios is
to apply the Local scheme for the computational tasks.
Since the safety of pedestrians has a higher priority than
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Figure 5: Simulation results.
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Figure 6: Energy consumption vs. operation schemes (f = 50 Hz).

saving energy on the smartphone, even though the Local
scheme is not comparable to the Offload in terms of
energy efficiency, the timeliness of the warning messages
could be guaranteed. Another possible solution is to use
a heterogeneous network, in which the smartphone could
have different options of network interfaces for offloading
tasks to the server.

7. Conclusion

In this paper, we studied options for Car2P communica-
tion with MEC support for improving the safety of VRUs.
Building upon established C2C communication principles,
we extend this concept to also integrate pedestrians into
the system. The challenge here is that all computation and
communication needs to be performed by a smartphone
carried by the user. This poses both energy and latency
issues given that dedicated activity detection algorithms
need to be executed and the results need to be integrated
into adequate CDAs. We proposed an offloading concept
using MEC ideas for overcoming these limitations building
upon a machine learning algorithm for real-time pedestrian
activity recognition. We conducted both an experimen-
tal study of the energy consumption of our algorithms on
smartphones as well as a simulation study of the LTE-based
communication exploiting MEC servers. In conclusion, it
can be said that offloading can substantially improve the
situation and help updating the context information with
reduced energy footprint.
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