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Abstract

Computation offloading has emerged as one of the promising approaches to address the issues of restricted resources,
leading to poor user experiences on smartphones in terms of battery life and performance when executing CPU intensive
tasks. Meanwhile, an entire research domain has been initiated around this topic and several concepts have been studied
touching both the smartphone and the cloud side. In this paper, we develop a categorization of fundamental aspects
regarding computation offloading in heterogeneous cloud computing from the perspective of smartphone applications. We
refer to heterogeneity in terms of the multitude of smartphone applications, the various uplink channels, and the variety
of cloud solutions. We also survey state-of-the-art solutions for the identified categories. Finally, we conclude with a
summary of the most important research challenges in making computation offloading reality.
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1. Introduction

Smartphones are still considered to be resource-bounded
mobile computing devices despite a number of new de-
velopments and the evolution of their hardware. At the
same time, user demands keep increasing rapidly with a
lot of resource-intensive and power-hungry applications.
Thus, prolonging the battery life of smartphones and im-
proving the application performance faces many difficul-
ties. Along with efforts in extending hardware resources
of smartphones, several approaches on mobile applications
deployment and execution have been proposed to solve
above problems. Among these mechanisms is computation
offloading, which outsources intensive parts of applications
running on smartphones to the cloud for remote execution
in order to save time and energy [1, 2, 3].

Different frameworks have been developed in order to
demonstrate the feasibility of computation offloading [4,
5,6, 7,8,9, 10]. In this context, many positive results in
terms of energy saving and performance improvement have
been shown for many common applications through exper-
iments. However, the benefits of offloading tasks to remote
servers are still unclear in some realistic scenarios [11, 12].
This is due to the complex parameterization of offloading
solutions regarding mobile applications, network conditions,
execution platform, and cloud management [13].

There have been a number of surveys on the various
issues of computation offloading in mobile cloud computing
so far (cf. Table 1). In many early works [32, 14, 33],
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the authors present brief overviews of the concept and
summarize basic techniques, issues, and solutions regarding
to computation offloading. Besides, several studies have
been published, which only focused on single aspect of
computation offloading problem.

For example, Hoque et al. [34] provide a taxonomy of
energy consumption profilers and models for mobile devices.
A number of common algorithms for application partition-
ing are presented in [18]. Khan et al. [35] summarize many
proposed strategies in task offloading for improving ap-
plication performance. The adaption characteristic and
various techniques to make the offloading system adapt
to the changing of environment parameters are discussed
in [13]. In [19, 21], the authors survey different challenges
and solutions to many problems of computation offloading
in cloud computing in terms of security and authentication.
Sanaei et al. [15] discuss heterogeneity in mobile cloud
computing, in which a taxonomy of heterogeneity roots as
hardware, platform, feature, API, and network is described.
In the last few years, with the idea to bring computation
resources closer to mobile users, the offloading problem
has been actively considering in the context of edge com-
puting [30], or more specifically MEC [23, 28], instead of
mobile cloud computing.

In addition, some surveys have been conducted for other
similar remote infrastructures, such as fog computing [24]
and D2D [25]. Just recently, there have been some stud-
ies focusing on the decision-making problem [29] and the
intelligent approaches of task offloading [31]. In contrast
to aforementioned surveys, we aim to provide a compre-
hensive guide on computation offloading for smartphones.
Golkarifard et al. [22] presented a work closely related to
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Work

Topic

Kumar et al. [14]
(2013)

Sanaei et al. [15]
(2014)

Shiraz et al. [16]
(2015)

Khan et al. [17]
(2015)

Liu et al. [18] (2015)

Ali et al. [19] (2015)

Ahmed et al. [20]
(2015)

Alizadeh [21] (2016)

Bhattacharya and
De [13] (2017)

Golkarifard et
al. [22] (2017)

Mach and
Becvar [23] (2017)

Hu et al. [24] (2017)

Jameel et al. [25]
(2018)

Mahmud et al. [26]
(2018)
Xu et al. [27] (2018)

Peng et al. [28]
(2018)

Wau [29] (2018)

Jiang et al. [30]
(2019)

Cao et al. [31]
(2019)

Survey of computation
offloading for mobile devices

Taxonomy and challenges in
Heterogeneity cloud computing

Analysis on computation
offloading techniques

Context-aware in mobile cloud
computing

Application partitioning
algorithm in cloud computing
Security in cloud computing

Seamless application execution
in mobile cloud computing

Authentication in cloud
computing

Survey of adaptation techniques
used by offloading systems

Guide on Computation
offloading

Survey existing concepts and
user-oriented use cases in
Multi-access Edge
Computing (MEC)

Survey of fog computing and
open issues

Review proposed solutions and
open issues in
Device-to-Device (D2D)
Analysis, taxonomy, and
directions of fog computing

Literature of opportunistic
offloading

Survey of the MEC from the
perspective of service adoption
and provision

Explore methods of
multi-objective decision making
for task offloading

Literature review on
computation offloading in the
edge computing

Review of approaches for
intelligent offloading in MEC

Our survey

Guideline on computation
offloading in heterogeneous
cloud computing

Table 1: A summary of related works

ours; however, given the magazine style of this paper, the
authors were not able to go as broad and deep.

Moreover, most existing works only focused on singular
aspects of computation offloading problem, whereas the
efficiency of the whole system is influenced by the combined
effect of multiple parameters. Early works summarizing
the issues and solutions to the offloading problem focused
particularly on migrating intensive computation to the
cloud has just been proposed to solve the resource shortage
of mobile devices [32, 14, 33].

Thus, we found that it is necessary to provide a compre-
hensive survey on computation offloading for smartphones,
which studies not only current challenges from different
viewpoints but also their relationship. We systematically
assess fundamental issues regarding computation offloading
and survey the state-of-the-art solutions to different chal-
lenges in making this approach practical. Besides, while
most of the previous survey papers put much effort on
studying various issues of cloud computing in order to
support computation offloading, we mostly focus on the
problems existing on the smartphone side in the context of
heterogeneous cloud computing.

Our main contributions can be summarized as follows:

o We show and categorize the “big picture” of compu-
tation offloading concepts and systems;

e we describe the most important components of an
offloading system and highlight the open research
issues to be coped with in task offloading; and

o we discuss several up-to-date techniques and algo-
rithms applied to offloading systems in details.

The rest of this paper is organized as follows. Section 2
presents an overview of computation offloading and its
main problems. Sections 3 and 4 discuss two of the most
indispensable components in an offloading system, namely
energy models and profilers, which support collecting op-
erating data and assessing the efficiency of the system in
terms of energy usage. We also provide a literature review
on power/energy models for different hardware components
on smartphones. An overview of some potential remote
infrastructures for offloading tasks and their characteristics
are described in Section 5. Section 6 explains the working
principles of an offloading system and Section 7 discusses
relevant frameworks, which facilitate the process of com-
putation offloading. Section 8 highlights selected research
challenges in implementing and deploying offloading sys-
tems and outlines some future directions for improving the
efficiency and maximizing the benefits of offloading systems.
Section 9 concludes this paper.

2. Computation Offloading Concepts

We first briefly outline the concept of computation
offloading and present some main issues need to be solved
to make it practical. Computation offloading is the process
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Figure 1: Architectural overview of computation offloading concepts.

of migrating intensive computation to remote servers in
order to alleviate the resource limitations on local devices.
Such systems, therefore, need certain setups in both local
side and server side. Figure 1 depicts a general architecture
for computation offloading. The computation offloading
process covers the following main problems:

e what to offload: determine which methods, classes,
threads, or applications to be offloaded;

e where to offload: select the infrastructures for offload-
ing (e.g., to an Internet cloud, edge computing, a
mobile ad hoc network, or cloudlets);

e how to offload: solve the problems related to offload-
ing implementation and deployment; and

e when to offload: decide the suitable time for mi-
grating intensive computation from smartphones to
selected remote servers in order to maximize the of-
floading benefits.

To answer the what question, a software component
called application partitioning is used to divide applica-
tions into offloadable and non-offloadable parts. The non-
offloadable modules are then executed locally on the smart-
phone, while the offloadable ones represent candidates for
the offloading process. The where question is related to
Mobile Cloud Computing (MCC) and its services. Con-
cerning the how question, developers need to solve many
technical problems on how to install the software on remote
infrastructures and how to migrate offloadable parts to the
cloud for execution, e.g. which communication technologies
are used or how to store/send the data and results before
and after offloading. The when question is handled by the
decision engine, which performs a certain logic (linear pro-
gramming, Markov models, fuzzy logic, etc.) on profiling
data received from the profilers to determine whether or
not to offload candidates to the remote cloud. We discuss in
details each component of a computation offloading system
in the following.

3. Power/Energy Models

Power /energy models play an essential role in offloading
systems, which are used to estimate the energy consump-
tion of the end system. And further, they are also used to
assess the energy efficiency of applications/offloading pro-
grams. A number of recent works developed power/energy
models for different components on smartphones includ-
ing the Central Processing Unit (CPU) as well as cellular
and WiFi communication [36, 37, 38, 39, 40, 41]. Power
models can be used by developers for better understanding
and evaluating their applications in terms of energy effi-
ciency [42, 43]. Despite the differences in power model con-
struction, these works share the same underlying method
for power/energy measurements. In the following, we first
describe the methodology and various possible ways to mea-
sure the overall power consumption of a smartphone. We
then present selected state-of-the-art approaches to model
energy consumption of a smartphone and its components.
Finally, we discuss some issues in building power/energy
models of smartphones.

3.1. Power/Energy Measurement

In practice, the energy consumption of a smartphone
over a given period of time is calculated by doing the
numerical integration of traced power during this interval.
The power trace values are obtained through sampling
voltage and current using specific hardware, which can
be either external devices or self-equipped components on
smartphones.

8.1.1. External devices

Several commercial and custom-made instruments are
suggested to use as external devices to measure smartphone
power consumption; we list selected examples in Table 2.
Most of them have the capability of directly reporting both
voltage and current drawn by the smartphone, which can
be straightforwardly used to obtain the power consumption.
For devices which only can measure voltage, the current
value is computed through the voltage dropped over a



Devices Type Features
Monsoon Power Monitor! Commercial Current
[44, 4, 45] and voltage
National Instruments Commercial Voltage

[46, 47]

Voltech PM1000+ [48] Commercial  Voltage
Tektronix TDS1012B [49] Commercial Voltage
Battor [50] Custom Voltage
Arduino Duemilanove Custom Voltage

51)

Table 2: External devices for energy measurement

sensing resistor connected in series with the power supply
of the smartphone.

Commercial instruments are able to provide power data
with high accuracy and precision but normally expensive,
especially in such case that multiple ones are needed for si-
multaneous measurements. Moreover, they are also rather
big and require a mains power supply. This makes them
unsuitable for mobile measurements. Other self-designed
devices have been proposed in order to surpass these draw-
backs. They have a number of advantages: low cost and
simple design so it can be rebuilt by everyone interested;
flexibility to support a wide range of energy measurements;
portability and mobility. However, external instruments,
whether commercial or custom-made ones, are not feasible
for large-scale deployment due to their inflexibility in mea-
surement setup. They are usually configured with some
specific settings for each operating mode and, therefore,
are limited to laboratory usage.

3.1.2. Self-Measurement

Many modern smartphones have the capability to self-
report their own battery status without the support of
external devices [52, 41, 49]. This feature is supported
by a self-equipped hardware component on smartphones,
called the battery fuel gauge. The fuel gauge IC is asso-
ciated with the smart battery interface of the Operating
System (OS), such as the Android BatteryManager, which
provides the battery information to applications running on
smartphones. The updating rate of the battery status and
available information depend on the fuel gauge type and
the phone model (cf. Table 3). Some fuel gauges integrate
a Coulomb counter, which enables the battery Application
Program Interface (API) to estimate the current drawn
by the smartphone, while the others only support voltage
and battery State Of Charge (SOC) reporting. Besides, a
number of battery-related properties could be also provided
by the smart interface, such as the status, capacity, and
temperature. Generally, the intervals for updating power
data of smart battery interface are rather coarse, from
hundreds of milliseconds to few seconds or even longer [49].
Therefore, the accuracy of the power estimation by means
of self-metering is not as high as using external devices.

Device Fuel Gauge Measure Update Rate
Galaxy W MAX17043 SOC -
Galaxy S3 MAX17047 Current 175.8 ms
LG G3, G4 MAX17048 SOC -

Nexus 6 MAX17050 Current 175.8 ms

Nexus 10 DS2784 Current 3.58

Table 3: Fuel gauge chips of Android devices

However, using battery interface offers better flexibility
and potential in performing the power consumption mea-
surement for smartphones, especially for models with non-
removable battery, where it is non-trivial to connect to
external instruments. This approach is often proposed as
the solution for online monitoring the battery usage for
mobile systems.

All the measurement methods mentioned above only
result in the total energy consumption of the whole smart-
phone, but lack of information about how much energy
each hardware components of the device contributes to the
overall value. Moreover, it is non-trivial to attach external
devices to smartphones for energy measurements. This nor-
mally can only be done in laboratory environment [50, 48].
These limitations bring challenges to the analysis of mobile
device operations from the perspective of energy efficiency.
One of the most typical approaches to overcome these diffi-
culties is to use a power model, which represents the power
dissipation of a smartphone under a function of different
subcomponent variables [38]. Each selected variable re-
flects the impact of a particular hardware component on
the power consumption. A power model should cover most
of the subcomponents on smartphones that are commonly
used in different mobile applications, such as CPU, memory,
Global Positioning System (GPS), Graphical Processing
Unit (GPU), and network interfaces. Each component has
its own power consumption characteristic, which varies ac-
cording to the changes of relevant parameters. For example,
while the CPU power consumption depends on the compu-
tation load and the clock frequency, the power consumption
of network interfaces is affected by the many factors like
protocols, traffic load, or the amount of data transfer. The
developed power model can then be used in power estima-
tion process to predict the power/energy consumption of
the whole smartphone or a particular application running
on it, without the support of power measurement.

There are several ways to characterize power and/or
energy consumption of a component and there are also
various strategies to construct the power model. We now
describe the characteristics of some most important hard-
ware components and examine related energy models.

3.2. CPU

CPU is one of the most power-hungry components in
a smartphone [36, 47, 53]. As almost every operation on
the phone is carried out under the control of the CPU, it



is vitally important to examine and understand its power
consumption. Most of the recent power models for the
CPU are utilization-based approaches, which correlate the
power draw of the CPU with measured resource usage.

In [54], the authors proposed a performance-counter-
based power model for CPUs. The hardware performance
counters are coordinated with real-time total power mea-
surements from the external multimeter to provide per-
subcomponent power estimation of the CPU. These coun-
ters are accessed using Linux Loadable Kernel Modules
(LKM) and their values imply the number of CPU events
triggered during the execution. The operation of a subcom-
ponent can be associated with one or more different events,
in order words, one or more performance counters. The
higher the values of one component’s counters, the more
accesses to that component have been made, and the more
power has been consumed as well. Generally, the power
model for a single component is represented as

Pc, =AccessRate(C;) %
ArchitecturalScaling(C;) x
MaxPower(C;)+
NonGatedClockPower(C;)

(1)

where C; means the i*" component; the access rate is used
as a weighting factor, which is obtained either directly
by a performance counter or indirectly by a combination
of performance counters; the maximum power and clock
power values are estimated empirically during the imple-
mentation; and the architectural scaling is depending on
the micro-architecture of the CPU. This model can be
applied to 22 different subunits of the Intel Pentium 4
processor, such as L1 and L2 caches, .1 and L2 branch
prediction units, integer and floating point executions, and
bus control. The total power consumption is the sum of all
sub-component powers, along with a fixed power baseline
when the processor is in the idle state.

Another very common utilization-based approach to
model the power consumption of a CPU is to represent the
dependence of its power on workloads or CPU usage. In
this kind of model, developers normally assume a linear re-
lationship between the power consumption and CPU loads;
thus, a linear regression power model is constructed [40].
Generally, the power function for a single-core CPU can
be given as

Pcpy =ax Ucpy +b, (2)

where a and b are the model parameters and Ucpy is
the CPU utilization. The development of the power model
comprises the following steps: (1) a training program is used
to generate different CPU loads for the smartphone; (2) the
total power consumption of the smartphone is measured
using one of the methods mentioned in Section 3.1; (3)
a power model for the CPU is created using the linear
regression. In order to improve the accuracy of the model,
the CPU workloads should imitate real-life scenarios and
all irrelevant components like display, network interfaces,

and GPS, should be turned off during the training phase
to avoid polluting the measured total power consumption.

However, this power model does not take into account
the CPU frequency, which is also a very important factor
that highly influences the CPU power. In [47], it was shown
that a CPU operating at different frequencies has different
power distributions. The power model can, therefore, be
further improved by constructing a linear model for each
available operating frequency [38, 55, 45, 41]. Another
approach to reflect the impact of CPU frequency on power
consumption is to consider this parameter as an additional
predictor besides the workloads [56]. This method is par-
ticularly efficient for CPUs that have multiple cores and
support a high number of operating frequencies, where it is
too expensive to create a power model as in Equation (2)
for each CPU core and frequency. The general power model
can be represented as

PCPU:ZCiniXUi , (3)

?

where ¢;, f;, and u; are the coefficient, frequency value,
and CPU utilization of the i*" core, respectively.

In [47], based on the experimental results related to
the CPU measured power consumption, the authors ana-
lyzed the effect of Dynamic Voltage and Frequency Scal-
ing (DVFS) on the overall energy after the execution.
DVES is a technique that allows a CPU to automatically
adjust its frequency on-the-fly depending on the compu-
tational demands. Even though it was shown that DVFS
helps to significantly improve the power efficiency of the
CPU, its actual benefits to the total energy are still debated.
This is because there is a trade-off between operating fre-
quency and the execution time. Lower CPU speed also
means higher running time of the task and more time spent
in the idle state. Thus, the final energy consumed by a
CPU heavily depends on its idle power and the workload.
This relationship has been introduced as

E:PXt+Pid1eX(tmax_t>7 (4)

where F is the overall energy, P is the average power over
the run-time of the workload, ¢ is the run-time, P.q) is the
CPU idle power, and tyax is the maximum run-time of the
workload over all frequencies.

The work presented in [57] went further on CPU power
modeling. It was argued that existing models have several
limitations in estimating the power consumption of multi-
core CPUs. These models only consider the effects of
frequency and utilization of the CPU, which were shown
to be inappropriate and give high estimation errors for
multi-core smartphones. The experimental results expose
a high variation in power consumed by a CPU for different
workload patterns even under the same frequency and
utilization. Therefore, the authors proposed a new power
model for multi-core CPUs with better estimation accuracy,
which takes idle power states into account. A CPU may
have many idle power states, which draw different power



consumptions. The developed power model takes the time
spent in each idle state as a new predictor besides the
utilization. The details of the power function for a single-
core CPU working at frequency f is represented as

Pcorc:ZﬂCiXWEDCi+ﬂUXU+C7 (5)

where WE D¢, is weighted average entry duration of idle
state C;, B¢, and By are the coeflicients of WE D¢, and
the utilization U, and c is a constant. Then, the power
function for a multi-core CPU is given as

Nc
Pcpu = Ppron, + Z Pa core,s, f: (6)
%

where N, is the number of cores enabled, Ppy, v, is the base-
line CPU power with N, enabled cores, and Pa core,u,, s, iS
power increment of core-i when it is working at frequency f;
with utilization U;. For each frequency f;, Pa core,u;,f, €O
be predicted using the single-core power model as in Equa-
tion (5), while Pgy n, is a constant value that can be
measured beforehand. Pa core,u;,f, are modeled separately
for the cases when only one and multiple cores are online
because of their different sets of CPU idle states.

There were still some other works that also studied
other power or energy consumption aspects of multi-core
smartphones [58, 59]. In [60], by analyzing the behavior of
a broad range of applications and measuring the Thread
Level Parallelism (TLP), the authors examined the poten-
tial of smartphones applications in exploiting parallelism
and their energy efficiency in multi-core architecture. It
was shown that the increment in CPU cores is not propor-
tional to the gain in power consumption of applications.
Similarly, the disproportionate energy consumption by dif-
ferent numbers of active CPU cores was also exhibited
in [61]. The paper agreed with the statement that multi-
core CPU architecture can achieve high energy efficiency
when dealing with high level of parallelism; however, most
of the smartphone applications fail to take full advantage
of all available CPU cores because of the lack of paral-
lelism support in their implementation [62, 60]. Another
interesting observation is that the energy consumption for
activating the first core of a processor is typically more
than double the energy for activating each additional core
of that processor. This is due to the hardware sharing
between cores of the processor, which was also exposed to
have great influence on the idle states of CPU.

3.3. Network Interfaces

In order to perform computation offloading, network
communication is a mandatory part; its energy consump-
tion plays one of the key roles in making offloading deci-
sions. WiFi and Cellular (3G and 4G) are currently the
most dominant types considered in computation offloading.
Understanding the power behavior and characterizing the
power /energy consumptions while performing network op-
erations have attracted much attention of many early works:

WiFi [63], cellular [64, 65], or both of network technolo-
gies [66, 44, 67, 68]. In these papers, based on the power
trace collected during data transmissions, the influences
of different parameters on network communication have
been examined. However, similar to other components,
directly measuring the power/energy consumed by network
interfaces is normally infeasible. Models for estimating
their power/energy consumption, therefore, are needed.

8.3.1. General Models

There are several approaches that can be applied to
both WiFi and cellular networks. The work presented
in [44] suggested modeling the energy consumption of a
network interface as a simple linear function of the data
transfer size. Similarly, the model presented in [48] is a
simple linear function with transfer size as a predictor and
a coefficient obtained by using both linear and quantile
regression. In [69], the authors carried out a study on
the impact of wireless signal strength on battery drain.
The experimental results reveal that smartphones consume
much extra energy consumption for data transferring in
the poor wireless network conditions. New power models
for WiFi and 3G have been developed taking the wireless
signal strength into consideration.

The above-mentioned modeling methods can be referred
to as statistical approaches, in which the power consump-
tion is estimated based on its relationship with one or more
network variables. Another very common approach for
modeling the power/energy of a network interface is based
on its power Finite State Machine (FSM) [39, 70, 65, 71].
This approach assumes that each power state has a con-
stant power drain. The total energy consumption E; of a
network interface over time ¢ is the sum of the energy costs
that it spends in each power state and the overheads spent
on switching between the states [53]. It can be calculated

E(t) =Y Eij(t;))+Y_ Y EjxxCixt), (7
J Jj k

where t; is the duration spent in power state j and t =
Zj tj, E;(t;) is the energy spent during t;, E; is the
overhead caused by the transition from power state j to
k, and C; ,(t) is the number of times this transition has
occurred during t. None of these models, however, takes
network operation or changing topologies into account.

The combination of these two above approaches has also
been used in many works [38, 68]. This hybrid technique
uses a linear power function for each state in the power
FSM. Although using similar approaches, the power model
for each network interface has its own characteristics due
to the differences in architecture and operation. We discuss
in details power models for each network interface in the
following.

3.3.2. WiFi

First, several works have studied the relationship be-
tween the power consumption of WiFi interface and differ-
ent network variables using statistical methods. It has been



shown that the network contention existing in multiple Ac-
cess Points (APs) context has a high impact on the power
drawn by the WiFi interface [72]: The higher density of
APs, the longer client devices have to wait for their desired
AP to send packets and, therefore, the more energy they
consume. Experimental results presented in [73] generally
reveal a linearity between the throughput and power con-
sumption of the WiFi interface on smartphones. Similarly,
Sun et al. [74] studied the properties of WiFi based on
parameters that are readily available to smartphone appli-
cations, such as packet loss rate, signal strength, transfer
size, and throughput. Based on these insights, many au-
thors use linear regression approach for modeling the WiFi
energy. The models estimate the power consumption based
on different network variables like transfer size [44], data
rate [38], signal strength [69], throughput [41, 74], trans-
mission time [75].

Second, a lot of recent works suggest modeling power/
energy consumption of WiFi interface based on its power
state machine during data transmissions [38, 39, 40]. These
models can offer satisfactory accuracy for the WiFi com-
munication in a stable condition, in which most of the
parameters are not highly varying. However, this is also
a major drawback for modeling the WiFi power/energy
consumption in real scenarios, where different factors such
as fading, interference, collisions, can affect the character-
istics of the dynamic wireless channel. Depending on the
division of power states, the WiFi power model may have
different complexity.

According to PowerTutor [38], the power consumed by
WiFi interface could also be modeled to simply be either
in high or low level. The power consumption of low power
state only depends on the baseline power corresponding
to the low power state of the WiFi interface, and the
one of high power state is calculated based on the high
state baseline power, the uplink channel rate (ranging from
1Mbit/s to 72Mbit/s), and the packet rate. While the
baseline powers are constant and hardware-specific, the
uplink channel rate and the packet rate are collected and
calculated using the logging information from the phones
during runtime.

Li et al. [76] proposed another WiFi power model, which
considers the WiFi hardware operation patterns in details
to improve the accuracy of the developing model. Gen-
erally, most of the works only determine two main WiFi
power states, namely Continuously Active Mode (CAM)
and Power Saving Mode (PSM). The authors, however,
suggest a more fine-grained power state division including
the following states: IDLE, Deep Sleep (DS), Packet Recep-
tion (PR), Packet Transmission (PT), and Light Sleep (LS),
which is due to the asymmetry between the uplink and
downlink operation. A transition between two states is
triggered by both the packet rate and the packet inter-
arrival time. A similar idea is presented in [70], however,
mainly focusing on the PSM of an IEEE 802.11g WLAN.
The transmission process in this mode can be divided into
four states: IDLE, SLEEP, TRANSMIT, and RECEIVE.

The model takes different parameters into account that
determine the Internet traffic, including burstiness, size,
duration, and average data rate.

Finally, many WiFi power models have been devel-
oped based on MAC and PHY layer features [77, 78, 79,
80, 81, 82]. The accuracy of such approaches is rather
high; however, the lack of support for these features at
driver/firmware level of smartphones limits the ability to
construct the WiFi power models using this approach [83,
73].

3.8.3. Cellular 3G

Like WiFi, the power/energy consumption of 3G inter-
face can also be modeled using statistical methods such
as linear regression on different network variables [44, 48].
However, it is more popular to rely on the power FSM
to construct the energy model. The state machine for
3G transmission is defined by the Radio Resource Con-
troller (RRC) protocol, which controls the operation of the
3G network [84]. Each state has a particular specification
of radio resources associated with it and consumes a cer-
tain amount of energy. The RRC state machine consists
of four states: CELL_DCH, CELL_FACH, CELL_PCH,
and IDLE. In CELL_ DCH state, the 3G interface uses
a Dedicated Channel (DCH), which offers the best net-
work throughput, to transfer data in high traffic conditions.
Switching the state to CELL_FACH and to CELL_PCH
are performed when data traffic is low, and when there
is no active data transmission, respectively. And if no
connection exists, the RRC switches the state to IDLE for
energy saving. In terms of power consumption, CELL_ -
DCH obviously draws the highest power, CELL_FACH
is roughly 50 % of that in CELL_DCH, and CELL_PCH
and IDLE use almost the same amount of energy, which is
about 1-2 % of the power consumed in CELL_DCH [49].
All state transitions from a high-power to a low-power state
are controlled by their own inactivity timer.

In [38, 68, 56], a power model for a 3G network interface
was presented that is based on the transmission power FSM.
Generally, 3G power is estimated as

Psg = Bixpi, (8)

where [3; and p; are the coefficient and parameter of the
it power state. The power parameters are derived by
using the linear regression on the data collecting from the
transmission of packets with different sizes and intervals
between a smartphone and servers via the 3G interface.

Besides that, some additional aspects of 3G communica-
tion have been studied. In [85], it has been shown that the
energy consumption of cellular network is highly affected
by the data traffic. Balasubramanian et al. [44] focus on
the impact of tail energy on the overall energy consumption
of smartphones when performing network operation. All
of these parameters should be also taken into account in
the constructed model.



3.8.4. Cellular 4G

Currently, 4G networks are considered state of the art
with broad coverage. Even though there is a significant
improvement in transmission speed and bandwidth of 4G
technologies, its potential for being used in computation
offloading is still a challenging question. Most previous
works have been done in order to investigate the features
of a Long-Term Evolution (LTE) network as well as the
parameters that influence its performance and power or
energy consumption [86, 87, 71]. Similar to 3G networks,
the operation of 4G LTE is controlled by an RRC, however,
there are only two RRC states: RRC_CONNTECTED
and RRC_IDLE [88].

In [71], the authors studied the energy usage of a com-
mercial LTE network and developed a high accuracy model
(6 % error rate) for estimating its power consumption. The
3G and WiFi power data collected from real users was
embedded into LTE model simulation framework for com-
parison. The experimental results showed that the LTE
network has higher power efficiency compared to 3G, how-
ever, it still lacks behind WiFi for bulk data transfers. In
case of small data, LTE has been shown to consume more
power than 3G and WiFi. Other parameters that influence
the LTE energy consumption have been examined: the tail
time or the power of the tail state is considered the key
factor that determines the energy usage and performance
of LTE.

The power consumption for data transfer via LTE can
be estimated using a linear model [71, 89] as

Pire = oty +agta + 5, 9)

where t, and t; are uplink and downlink throughputs,
which are calculated within a time window W seconds; ay,,
ag, and B are coefficients of the power model.

Besides, in [90], the output power levels of 4G User
Equipment (UE) are estimated for different environments
including rural, suburban, urban, and indoor. The results
show that the output power values are significantly be-
low the maximum possible power of the UE, i.e., 23dBm
(200 mW), with the time-averaged values being less than
2.2 % of the maximum for rural environments and less than
1% of the maximum for other areas.

Approaching from service-based perspective, an inves-
tigation on energy consumption characteristics of LTE
communication is presented in [91]. The authors measured
the average 4G energy consumption for different services
on smartphones, such as web browsing, video play, cloud
upload/download, or Virtual Reality (VR) video, which
confirms LTE communication is the main consumer for
heavy data application over the network. The results also
show a potential reduction of over 80 % in energy consump-
tion when performing offloading to edge computing.

3.8.5. Cellular 5G

Despite the evolution of 4G LTE systems, which pro-
vide a higher capacity compared to 3G networks, next-
generation 5G networks are already at the horizon [92].

With several advantages such as higher capacity, lower
latency, and lower power consumption when compared to
4G, 5G systems are expected to offer more benefits and
take full potential of computation offloading. In the early
stages, the research was mainly focused on understanding
the energy efficiency of 5G networks [93, 94]. The applica-
tion and energy modeling for computation offloading have
been actively studied in the past few years [95, 96, 97, 98]

Comparing to 4G network, 5G technology also makes
use of the radio spectrum between 30 GHz and 300 GHz
(mm-waves). The energy consumption of 5G mm-wave cel-
lular network has been studied in many previous works [99,
100]. D2D communication, another aspect of 5G systems, is
also an essential part beside Device-to-Infrastructure (D2I).
The power consumption of different application scenarios
for D2D was investigated in [101]. More details, based on
the recent models of 3GPP standardization, the author an-
alyzed the power consumption from both the infrastructure
and user device perspective.

3.4. Discussion

Constructing power/energy models is one of the most
challenging phases in an offloading system. The accuracy
of these models depends on many factors. First, differ-
ent smartphones have different power characteristics, and
therefore different power coefficients. A specific model is
normally used for only one or a few certain smartphones.
Moreover, due to the limitations on system accessibility,
some information only can accessed with root access, which
is normally not available to users. Models developed based
on such information can only be used by developers and
are not applicable in practice.

Second, the values and scopes of training data also
determine the accuracy of power/energy models. Generally,
the training data set is constructed to be as close to reality
as possible. This task, however, is non-trivial and labor
intensive to cover a sufficient range of operating conditions.
As a result, many power/energy models suffer from errors
in assessment values.

4. Profilers

Offloading tasks to the cloud may improve performance
and save energy on the smartphones. However, the ac-
tual benefits of an offloading process depend on many
parameters, which involve smartphone hardware, running
applications, network conditions, and cloud infrastructures.
In order to make accurate offloading decisions, it is essential
to collect all necessary information for offloading process in
advance and at runtime as well. There are three main types
of profilers, including device profiler, program profiler, and
network profiler. These software programs do not only
monitor the parameters of the operating environment (the
surrogate and the network) but also the available resources
of the mobile device. Besides the accuracy of the profiling
data, the profilers need to be lightweight to minimize the
overhead incurred.



Data source Information

/proc/meminfo Allocation of main
memory
/proc/stat CPU usage

Frequency and statistics
for CPU cores

/sys/devices/system/cpu

/sys/class/net/ Wireless interface use
/sys/class/leds/lcd- Backlight status of
backlight /brightness screen
/sys/class/power__ Battery state

supply /battery

Table 4: Android virtual files providing hardware statistics; this is
only a selection and by no means an exhaustive list.

4.1. Device Profiler

The device profiler is used to collect the information
related to smartphone hardware at runtime and feeds them
into the pre-built energy models. Applications running on
the phone may utilize various hardware components and, as
mentioned in Section 3, each of these components may have
its own power /energy model. Depending on the properties
of the model, different parameters can be used for the
energy estimation, such as the brightness of the Liquid
Crystal Display (LCD), the pixel colors of Organic Light-
Emitting Diode (OLED), the frequency and utilization of
the CPU, the power state and signal strength of WiFi or
cellular network interfaces. All necessary state information
of relevant components has to be monitored by the device
profiler.

On Android smartphones, the Linux kernel is normally
orchestrated to make hardware information available via
a virtual file system [38, 7, 102]. In particular, Android
provides information of several hardware components under
/proc and /sys directory. We summarize some of the most
relevant virtual files in Table 4. Other parameters, such
as signal strength of wireless networks and network types,
can be retrieved by using appropriate Android API calls.

Generally, the update intervals of a component’s pa-
rameters have a strong influence on the accuracy of the
profiling data. Therefore, it also affects the accuracy of the
power estimation for that component.

4.2. Program Profiler

The program profiler records information concerning the
execution of software modules. While the device profiler
collects the runtime values of parameters, this type of
profiler, on the other hand, mainly logs the statistical
information after the given methods, threads, or processes
are completed. For example, the logging information can
be the overall execution time, the per-thread CPU time
of a method, the number of instructions executed, the
number of method calls, or the size of allocated memory [7].
Some information, such as duration and CPU cycles, is
used for estimating the energy consumption of the running

method [4, 10]. These calculated values combined with
other profiling data that related to the performance of
the running application will be used as part of the input
data set to improve application partitioning and offloading
decision for future invocations.

In general, instrumental data of each method, thread,
or process may highly vary among different execution times,
which is due to the non-deterministic behavior of applica-
tions on smartphones. For example, different execution
paths of program code and the changing context at runtime
can lead to high variation in profiling information. For
instance, the execution time duration can differ from ones
of the previous invocations.

4.8. Network Profiler

The network profiler is responsible for characterizing
the network conditions during the operation of the system.
A number of parameters have to be monitored such as avail-
able network interfaces, network Round Trip Time (RTT),
amount of data sent/received in a period of time, received
signal strength [69], and uplink channel rate and uplink
data rate [38]. These information reflect the current net-
work performance. Already very simple techniques help
improving the estimation of the network capabilities. In [4],
the authors propose a method to estimate the average
throughput of a wireless link by sending 10kB of data
over TCP to the server and measuring the transfer dura-
tion. This helps to take into account both the latency and
bandwidth characteristics.

4.4. Discussion

Profiling builds directly on top of power/energy mod-
els. As mentioned above, the application behavior is non-
deterministic at runtime. This brings difficulties to esti-
mate the execution data of offloading candidates, such as
running time, available memory, and communication cost.
Furthermore, profiling is typically not non-invasive. The
more accurate the profiler gets, the more sophisticated its
program is and the more computation and energy costs are
spent on collecting profiling data. Therefore, it is essen-
tial to take into account the accuracy-cost trade-off when
building the profilers.

5. Remote Infrastructure

Cloud computing, with high computation power and
storage capacity, has been used as a centralized processing
infrastructure for computation offloading [103, 7]. However,
there is a bottleneck of cloud computing that hinders the
application of computation offloading, which is the network
bandwidth. This is especially critical issues in many ap-
plications require real-time response and mobility support.
Different cloud architectures, namely cloudlet [104, 105,
106], MEC [107, 108], ad-hoc clouds [109, 110], and fog-
computing [111, 112], have been proposed as complements
to the cloud computing for computation offloading. The



main objectives of these architectures are: (1) to reduce the
amount of data sent to the cloud computing; (2) to decrease
network latency; and (3) to improve system response time
in real-time applications. We discuss each architecture in
the following.

5.1. Multi-access Edge Computing

One of the early approaches to bring computation re-
sources closer to the end-user devices is to use Multi-access
Edge Computing (MEC) [113, 108]. MEC provides cloud
computing capabilities within the radio access network that
enables mobile devices to ofload their heavy tasks directly
to the servers on the edge of the mobile network rather
than in the core network that are far from the mobile de-
vices. The introduction of this concept has great potential
to liberate the mobile devices from intensive workloads
and cope with the delay problem, thus enabling to run
applications that require a huge amount of resources but
still ensure time constraints at UEs.

Technically, edge computing offers only limited compu-
tational power and storage capability compared to cloud
computing. On the other hand, it can be deployed in
distributed manner, which helps to reduce the load on
a certain centralized server as in the case of cloud com-
puting. One of the notable characteristics of MEC is the
exploitation of Small-Cell Network (SCN) for computa-
tion offloading with the coordination between fonthaul and
backhaul networks [96, 96]. The combination of several
tiers of small base stations like Micro Base Stations (MBSs)
and Femto Relay Base Stations (FRSs) makes MEC a more
flexible infrastructure for offloading, but along with it is
an increase in the complexity of the optimization problem.

Similar to conventional mobile cloud computing, de-
cision on computation offloading from a UE to MEC is
primarily based on two factors: the energy efficiency and
delay constraint. Several existing works have been showed
a significant reduction in latency of MEC-based systems
with respect to cloud computing [114, 115, 116], which
makes MEC more suitable for low-latency applications like
gaming or virtual reality. The energy consumption issue for
MEC has been also studied vigorously [117, 118, 96, 119].
Besides, the allocation of computing resource and mobility
management are also important aspects of MEC [120, 23].

Today, computation offloading has also been studied
for application to Intelligent Tranportation System (ITS)
as well, in which processing on smartphones of Vulner-
able Road Users (VRUs) can be offloaded to the cloud
or MEC [121, 122]. This concept could be extended to
micro-cloud solutions [123, 124].

5.2. Cloudlet

According to the original idea, cloudlet is defined as a
trusted, resource-rich mobile computing, well-connected to
the Internet and can be accessed by nearby mobile devices
via Wireless LAN (WLAN) network [104]. Thus, cloudlet
can offer good local services including data processing and
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storage, and lower the latency by reducing the amount
of network transmission [125]. It was shown in [105] that
cloudlet can be beneficial for many real-time constraint
applications such as augmented reality. However, only
accessing through WiFi makes cloudlets less suitable for
ubiquitous computing and scalable services. An extended
architecture of cloudlets integrated with MEC was proposed
in [126], in which the gap of cloudlet systems can be filled
by the potentiality of MEC that could offer better coverage
area for the mobile users and help to reduce computation
costs in terms of power and delay.

5.8. Mobile Ad-Hoc Clouds

Another approach that has also attracted the attention
of the research community is to offload intensive com-
putation to neighbor devices. A number of mobile end-
user devices could collaborate to form ad-hoc clouds, in
order to perform a substantial amount of computation
tasks [127, 25]. Different wireless technology could be
used for D2D communication, such as Bluetooth, Zighee
or RFID [25], WiFi Direct [128], Near Field Communica-
tion (NFC) [110], or Dedicated Short Range Communica-
tion (DSRC) [129]. D2D in cellular network was introduced
in the fourth generation but the application is still lim-
ited. With the emergence of 5G technology, computation
offloading through D2D communication has become more
realistic due to its ability to support high data rate and
low latency [130]. The idea of combining D2D commu-
nication with MEC is also a promising direction in or-
der to bring more computation capacity to the offloading
system, especially with the support of 5G wireless net-
works [131, 132, 133]. Several existing works have been
focused on different aspects of D2D-MEC-based compu-
tation offloading like the energy efficiency [134, 135] or
security issue [136].

5.4. Fog Computing

Fog computing has also been proposed as a complement
to mobile cloud computing. However, unlike MEC which of-
fers computation and storage in the base stations of cellular
networks, fog computing presents a computing layer, which
is a collection of ubiquitous devices. This paradigm was sup-
posed to enable a processing of the applications on a large
amount of connected devices at the edge of network [137].
Technically, fog computing is based on decentralized model
consisting of Fog Computing Nodes (FCNs), which sup-
port computing and storing data from end devices and
forwarding to the cloud.

One of the distinguishing characteristics of fog comput-
ing when compared to other architectures is that it offers
more flexible choice of devices used as intermediate nodes,
i.e., FCNs, such as routers, switches, access points, Internet
of Things (IoT) gateways as well as set-top boxes [138].
This heterogeneity of FCNs opens up the possibility of sup-
porting devices at different protocol layers as well as non-IP
based access technologies [24]. The connection from UEs
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to FCNs can be established over different mediums like
WiFi, Bluetooth, Zighee, Mobile Radio Networks. Many of
these technologies, e.g., Bluetooth and Zigbee, are energy
and memory efficient communication protocols, which are
suitable for constrained devices with limited battery and
storage capacity to connect and offload their computation.

Regarding use cases, fog computing has been consid-
ered a key infrastructure for IoT and big data applica-
tions [139, 140] as it enables the interconnection and in-
tercommunication of a very large number of nodes. De-
spite lower computing and storage power than that of
MEC, fog computing offers low latency and location aware-
ness due to the widespread distribution of computing de-
vices. Besides, fog computing could be the basics for many
other applications in ITS, smart grids, or Augmented Re-
ality (AR), which require real-time responses along with
context-awareness and mobility [141, 142, 143, 144]

The feasibility of computation offloading scheme based
on fog computing, like the aforementioned infrastructure,
also depends mainly on the energy efficiency [111] and
latency [145, 146]. Typically, these two parameters are
taken into consideration when formulating the optimization
problem for computation offloading decision and resource
allocation [112, 147, 148, 149]

Generally, depending on the types of application, flex-
ibility, computation and storage capabilities needed, an
appropriate infrastructure or a combination of different
architectures could be used for computation offloading.
Comparison on these infrastructures is discussed in more
details in [138, 24].

6. Computation Offloading Methodology

Figure 2 depicts the big picture of the computation
offloading process, which consists of these following main
phases: application partitioning, making offloading deci-
sions, and local/remote execution. In this section, we
discuss each phase in more detail. Besides, we also describe
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the roles of some other software components that are in-
volved in the offloading process, such as program analysis,
network profiling, and online profiling.

6.1. Program Analysis

Program analysis is the initial step in the whole offload-
ing system. This process provides preliminary information
of offloading candidate applications in terms of resource
usage and the relationships between components of the ap-
plications as well. These information could be the amount
of energy consumption, running time, data exchange, mem-
ory cost, code size, etc., that is used as the knowledge
base for the later optimization process (partitioning). Nor-
mally, instrumented applications are executed on one or
multiple platforms and in different operating conditions.
Then, profiling is carried out on every component (mod-
ule/bundle/method/service) composing those applications
to measure necessary data.

One of the most typical methods to analyze and model
an application running on smartphones is to use a call graph,
which is a Directed Acyclic Graph (DAG) that represents
the relationship between the computational components
of that program [150, 151, 152, 153, 154, 155, 156, 157,
158, 159]. Normally, the nodes of the graph represent the
procedures/functions of a program and the edges represent
the communication/invocations between them.

Depending on the characteristics of applications and
offloading objectives, the call graphs may have different
parameters. In [152], the authors present an approach to
solve the optimization problem of energy consumption in
computation offloading using parametric program analysis.
The values of parameters including workload and commu-
nication cost at runtime decide the partitioning decisions.
Task Control Flow Graph (TCFG) is used to represent
the program execution and the issue of finding optimal
partitioning can be reduced to the optimization problem
for this graph.

Giurgiu et al. [153] presented the method of abstract-
ing mobile application behavior as a consumption graph.
Each node of the graph represents a software module of
the given application, which is attached with two param-
eters: consumed memory and code size. Each edge of
the graph represents the control dependencies and data
paths between two modules. The graph is then used as
the input of partitioning process. In [4], the execution
behavior of the program at high level is modeled as an
annotated call graph, which represents the call stack as
the program executes. Each vertex represents a method
in the call stack, and each edge represents an invocation
of a method from another method. In [158], the authors
construct the Weighted Object Relation Graph (WORG)
of the mobile application using both the data from static
analysis and dynamic profiling. Then the partitioning mod-
els that take the bandwidth variation into consideration
are built with the goal of optimizing the execution time
and energy consumption.



6.2. Application Partitioning

In general, it is impossible to offload the entire appli-
cation to the cloud due to the frequent user interaction of
mobile applications, which can only be performed locally at
the smartphone. Additionally, the communication cost for
outsourcing the whole application to servers is significantly
high. Therefore, it is necessary to identify which parts of
program code could be offloaded to the cloud and which
parts can only be locally executed. Depending on the run-
time conditions and offloading goals, offloadable partitions
can be migrated to the clouds for distributed processing or
retained on the local device for execution.

There are several approaches to categorize Applica-
tion Partitioning Algorithms (APAs). Khan et al. [35]
proposed a taxonomy of APAs based on their strategies
to break out application execution components into non-
offloadable and offloadable modules. A partitioning algo-
rithm could be classified into either of two categories: (1)
static [160, 161, 162, 158, 163]: when it is fixed at devel-
opment phase based on the static analyzer and dynamic
profiling; and (2) dynamic [5, 103, 156, 164, 165]: when it
includes runtime information from different profilers, log
files, and the interaction among components of the running
application. While the resulting partitions of static algo-
rithms do not change in all executions, those of dynamic
algorithms could be updated before each execution to adapt
to environmental conditions and optimize offloading objec-
tives. Because of that, dynamic algorithms may have high
overhead during the offloading process. In [35], these two
categorizations are correlated with the goal of performance
enhancement.

A more general study on APAs was provided in [18].
The criteria used for classifying algorithms include parti-
tioning granularity, objectives, model and programming
language support, profiler used, allocation decision, analysis
technique, and annotation. Examples of static APAs that
based on pre-specified annotation were presented in [7, 162].
Developers annotate the candidate methods for offloading
as remoteable and leave the remaining to the framework.
The server-executable versions of methods with annota-
tion are automatically generated during the employment.
From the perspective of partitioning models, there are also
different strategies to address the partitioning problem:
(1) Linear Programming (LP) model [163, 166]; (2) Graph
model [153, 158]; and (3) Hybrid [5, 160, 167, 168, 169].

The LP for application partitioning can be modeled as
follows [4]:

maximize Z I, x Ef) — Z |1, — Ly| X Cyp
veV (u,v)EE
subject to Z((l — L) x TL 4+ (I, x T7))
veV
+ Z (‘Iu - Iv| X Bu,v) < L
(u,v)ER
I, <ry,,YveV.
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e wu,v: methods

e [,,I,: indicator variables, I, = 0 if method v is
executed locally and 1 if remotely

e 71,: parameter that indicates annotation for method
v, 0 if local, 1 if remoteable

e E!: energy to execute method v locally

. T

. time to execute method v locally

o T7: time to execute method v remotely

e B, ,: time to transfer necessary program state (when
u calls v - edge e = (u,v))

e Oy, energy cost for transferring the state when u
calls v

With applications that can be represented as call graphs,
partitioning is to seek for an optimal cut on the graph
built in the analysis phase, which optimizes (maximizes or
minimizes) a given objective function (consumed memory,
latency, and data traffic). Call graphs have, for example,
been used in [153]. The authors developed partitioning
algorithms that work on the consumption graph of the run-
ning applications. Both static and dynamic partitioning
strategies were considered. For the static case, the problem
of identifying the local and offloading modules is solved
in the offline phase. Different parameters like the mobile
platforms and network conditions are taken into account
and the ALL algorithm is proposed to find the optimal solu-
tion. For the dynamic case, the partitioning is performed
on-the-fly and the K-step algorithm is applied. While the
ALL algorithm examines all possible configurations, the K-
step works on a reduced search space, therefore only finds
a local optimum, but offers higher speed.

In the other hand, there are many applications, func-
tions, or methods that are short-lived and not sensitive
to the state of computation. Basically, it is much easier
to parallelize stateless computation since there is no mod-
ification in data structure and data races between parts
running in parallel. Besides, due to short-lived time, state-
less jobs do not require a full life-cycle management and
the persistent allocation of resources. In [170, 171], the au-
thors propose solutions to enable the offloading of stateless
tasks to remote servers. To identify which tasks should be
offloaded to server, a simple stateless programming model
is used [172].

In Table 5, we show a comparison of selected partition-
ing algorithms that fulfill the target of extending the bat-
tery life or increasing the energy efficiency of smartphones.
The attributes to be compared include the under-test ap-
plications, the approaches for modeling and partitioning
applications, and the parameters that are taken into ac-
count when considering the partitioning problems.



Name/ Year Granul. Core Partitioning Parameters Candidate
Author Component Approach Applications
Goraczko 2008 Task DAG Integer LP Execution time for each ~ Real-time

et al. task, relationship applications

[160] between processor power (sound source

modes, dependency localization)
among tasks,
performance constraints
MAUI [4] 2010 Method Application Manual annotation Computational and Face recognition,
call graph and guides for energy costs of methods, video game, chess
determining communication energy game, and
non-offloadable and data size exchange real-time
methods between methods voice-based
language
translator

Zhang et 2010 Weblet Cost model Naive Bayesian CPU load, memory, and  Image processing

al. [161] of learning techniques network conditions application

applications

Giurgiu 2012 Module  Resource Dynamic: finding CPU load, network Indoor

et al. consumption an optimal cut in conditions, and power localization,

[103] graph the graph that profiling text-to-speech
minimizing synthesizer, and
objective function ticket machine
value

Abebe 2012 Class Distributed Multilevel Memory, network, Java based

and Ryan local graph-partitioning  performance, and power  n-body simulator,

[156] application costs hospital system

graph simulator, and the
NASA world wind
demo application

Kovachev 2012 Service/ Modules Integer LP CPU load, available Face detection

and Module  structure memory, code size, and recognition,

Klamma with meta- transfer size, remaining N-queens

[163] information battery, uplink

bandwidth

Niu et al. 2014  Object Weighted Static, Bandwidth, execution A set of Dacapo
[158] Object branch-and-bound, cost, and data transfer benchmarks

Relation min-cut, greedy

Graph
Wu et al. 2016 Task Weighted Min-cost offloading Memory, code size, task Face recognition
[165] consumption  partitioning type (offloadable or

graph (MCOP) algorithm un-offloadable), and task

communication

Table 5: A comparison of partitioning algorithms for energy efficiency improvements.
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6.3. Decision Engine

Generally, partitioning application and making offload-
ing decision are sometimes not so easy to separate. In
many previous papers [160, 153], these two operations
are included in a single process, collectively called parti-
tioning, which identifies the local and remote partitions
of an application. All the relevant parameters including
environmental conditions are taken into account during
this process. The remote partitions are then migrated to
servers for the execution without further examining any
other parameters.

However, making offloading decision can also be consid-
ered as a discrete step in the offloading process, which takes
the output of the partitioning phase as input [4, 7]. That
means that the results of application partitioning are not
the final decisions on execution locations, but only sugges-
tions for which computational components have the possi-
bilities to be offloaded to remote infrastructures. The actual
execution site (local or remote) for offloadable partitions
is then decided (offline or online) based on the execution
conditions. For example, in the CloneCloud framework [5],
during the program analysis phase and offline partitioning,
a database of partitions for different execution conditions
and objective functions is automatically generated. At run-
time, depending on the environmental conditions, decision
engine selects a partition from the database that yields the
most benefits for the system and implements it.

The decision-making algorithms can also be classified
into two groups: (1) static offloading [173, 174, 175], in
which the locations for the execution of applications are
determined before the invocation; and (2) dynamic offload-
ing [176, 177, 178, 179], in which the decision on whether
and what to offload is taken at runtime based on current
conditions. Dynamic offloading is generally more efficient
than static offloading, however, it produces more overhead
on the system relating to latency, profiling, and runtime
decision making.

The decision engine takes the data collected by profilers
as input to a global optimization problem that determines
whether the offloadable candidates should be remotely
executed at the server or not. The goal of decision engine
is to find a program execution strategy that minimizes the
objective function, subject to a set of particular constraints.
Deciding where to execute each method is challenging
because it requires a global view of the program’s behavior.
Then an optimal execution strategy that minimizes the
energy consumption of the smartphone can be found by
solving the optimization problem.

6.4. Online Profiling

Online profiling is performed on both the local and the
server side during the execution of applications by profilers
(cf. Section 4). This process does not only collect the infor-
mation related to the performance and cost of the running
programs, such as execution time, amount of resources
used, communication cost, and energy cost, but also traces
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the environmental conditions at runtime [4, 7, 10]. All
collected information reflects the influence of operating
parameters on the performance and energy consumption of
the smartphone during the offloading execution, or in other
words, the benefits of the offloading process are evaluated.
This information is then utilized to improve the accuracy
and efficiency of the partitioning algorithm as well as the
offloading decision for future invocations.

6.5. Offloading Algorithms

In this section, we review various algorithms used in
computation offloading systems. As described above, one
of the most common approaches to solve the partitioning
problem and making offloading decision is to use LP [160,
4, 5]. Many other strategies are also considered for the
offloading problem. A summary is provided in Table 6.

6.5.1. Fuzzy control

In [176], the authors applied Fuzzy Control model to
the offloading inference engine, which is responsible for
making decisions on whether to trigger offloading. The
offloading decision for the presented system is based on
two parameters: the current available memory and wireless
bandwidth. It was argued in the paper that the solution
to the decision problem using the simple threshold-based
approach has many limitations in terms of adaptability,
reconfigurability, and stability. The Fuzzy Control model,
on the other hand, was proved to be effective for such
system. Following a similar idea, the system presented
in [180] employs fuzzy decision engine for code offloading
that takes into account the variables in both mobile and
cloud side. In addition, a learning approach based on the
code offloading traces with neuronal network algorithm
is also applied to the decision process. By using fuzzy
logic, offloading decisions can get different degrees of truth,
rather than only yes or no answer. As a result, the system
could offer more fine-grained decisions by analyzing the
offloading traces and operating variables.

6.5.2. Bayesian networks

In [181], computation offloading is formulated as a
Bayesian statistical decision problem, in which the band-
width between local and remote server is modeled as a
random variable. This parameter is used to predict the
time costs for remote execution and input/output data
transfer to/from the server. It was shown in the paper that
the Bayes model makes the decision problem more general
and uniform when incorporating new prediction data. With
traditional systems, network predictors are assumed to be
always correct. A Bayesian approach allows to take into
account the belief (the expected risk taken) on network
prediction data. Similarly, Zhang et al. [161] applied Naive
Bayesian Learning techniques to find the optimal execution
locations (local or in the cloud) for weblets given several
parameters including device status (CPU memory and net-
work consumption), user settings on processing speed, and
history data of the application.



6.5.3. Learning agents

More general, in [182], the authors formulated the
decision-making problem for service-oriented recommender
systems using learning agents. Based on a set of context
states (battery state, connection, devices location, cloud
availability, etc.), attributes used to describe percepts, train-
ing data, and learned knowledge, the agent selects the best
location to perform each of service/task in the given set
with the objective of optimizing the running time. The
execution results including the energy cost, time cost, and
user’s satisfaction are then stored in the training data set.
After a certain number of running steps (user-defined), the
learning process is repeated on the updated training data
set to generate new knowledge, which is then utilized for
future invocation. Different learning algorithms, such as
the Naive Bayes and random forest, can be employed for
learning module.

6.5.4. Genetic programming

Another approach that is promising in modeling offload-
ing decision problem is to use Genetic Programming (GP).
In [183], the GP module plays as the core of the offloading
inference part of the proposed framework. This module
is responsible for developing a population of models and
deciding the possible solution to the offloading decision
of a mobile application. Each model in the population
represents a decision tree, which determines a strategy
for the offloading process. The simulator with a fitness
function evaluates all the models generated by the GP
module. Only models that pass a predefined threshold
are kept for the future use. Besides, the paper provides
a taxonomy of the parameters including application data,
user requirement, device status, and network conditions,
which are used by the GP module. Also applying the Ge-
netic Algorithm (GA) for the offloading system, Deng et
al. [184], however, made some appropriate modifications
to the generic GA for better matching the needs of the
decision problem for multiple mobile services in workflows.
The experiments were conducted with different parameters
of the GA, such as population size, number of iteration,
mutation probability, and crossover probability.

6.5.5. Markov models

In [106], the approach using Markov Decision Pro-
cess (MDP) is applied to solve the offloading problem in
cloudlet systems with the existence of intermittent connec-
tion phenomena due to the mobility and cloudlet capacity.
This technique was proved to outperform conventional
baseline schemes with fixed offloading decisions. The in-
termittent connection and admission policies adopted by
cloudlets may be the causes of offloading failures. There-
fore, the authors took into account the random features
of mobility pattern, availability and admission control of
cloudlets, and workload on user devices when construct-
ing MDP model. At each phase of the execution of given
applications, MDP is solved with the current system state
to an obtain optimal offloading policy, which minimizes
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computation and communication cost of user devices. In
the context of real-time systems presented in [185], Markov
chain is used to model the transition of a task sequence
in an offloaded program and optimization problem solving
is to seek for online-fetching policies that minimize the
energy consumption for transferring fetched data to the
server under a deadline constraint.

6.5.6. Game theory

In computation offloading systems, there are many sce-
narios that multiple users need to make offloading decisions
at the same time and the benefit depends on the choices
of the others. For example, in the three-tier architecture
(local, cloudlets, and remote) presented in [186], multiple
mobile devices can selfishly select one of three tiers to of-
fload their computation. Another example was described
in [187], where autonomous devices can decide any of mul-
tiple access points for offloading. Therefore, the authors
in [186, 187] came up with the idea of using game the-
ory, namely the Nash equilibrium, to formulate the stated
problems.

6.5.7. Deep Learning

One of the hottest trends today is to solve the opti-
mization problem using Deep Learning. Not outside this
direction, several studies also investigated the application
of this approach in computation offloading. In [188], the
authors formulate and build a Deep Supervised Learn- ing
model for the offloading decision problem to achieve maxi-
mum benefit on the system cost. The local overhead and
the limitation in network communication and computa-
tion are taken into account in the optimization problem.
Recently, a Deep Reinforncement Learning (DRL)-based
framework [189] has been suggested to deal with highly
complex offloading problems, for which finding solutions
that could fully adapt to the variety of scenarios in MEC
is extremely difficult.



Table 6: A summary of computation offioading algorithms.

Work Algo- Infra- Core idea Parameters Evaluation Applications
rithm structure metrics
(Year)
Gu et al. Fuzzy Cloud Minimize the Available memory,  Offloading delay, Image editor,
[176] (2004) offloading overhead available wireless bandwidth graphical
while relieving the bandwidth requirement, avg. molecular
memory constraint interaction editor, text
on the mobile device stretch editor
Flores and  Fuzzy Cloud More than ’yes’ or Bandwidth, data The Mobile calendar
Srirama (2013) 'no” answer but assign transferred, CPU responsiveness of prediction,
[180] a degree of truth to instance, video the cloud social group
an offloading decision execution (latency) formation
Wolski et Bayes Simu- Predict remote cost bandwidth between Offloading Simulation task
al. [181] (2008) lation (time for tranferring  local/remote sites  performance
computer data & remote (regret in ms) for
execution) and local different task
cost sizes
Zhang et Bayes Amazon Use Naive Bayes to Device status Average Image
al. [161] (2010) EC2 & find the optimal (CPU, memory, throughput, processing,
S3 weblet configuration  network average CPU augmented
(# of weblets on consumptions), usage reality
device and cloud) user preference
(expected # of
images processed),
history data
Folino and Genetic ~ VMs GP-based tool for Parameters in 4 Error ratio, false Dataset A (call,
Pisani (2014) based on  building the decision  categories: negative & false  message), B
[183] the ORA- tree-based model application, user, positive rates (game, image
CLE deciding whether to network, device processing), C
virtual- offload (multimedia),
box real scenario
(OCR)
Deng et al. Genetic  Intel Consider the Population sizes, # The optimal Service
[184] (2015) Core i7 dependency relations  of iterations, muta- fitness, workflows with
CPU among component tion/crossover fault-tolerance, random
with 2.3 services and optimize probabilities scalability component
GHz, 8 execution time and services and
GB of energy consumption control
RAM structures
Zhang et Markov ~ Mobile Solve MDP to obtain  Users’ mobility Expected cost, Linear
al. [106] (2015) Cloudlet  optimal threshold pattern, cloulets’ offloading rate structured face
policy for mobile user admission control recognition
(minimize (cloudlet program
computation and availability)

offloading cost)
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Table 6 Continued: A summary of computation offloading algorithms.

Work Algo- Infra- Core idea Parameters Evaluation Applications
rithm structure metrics
(Year)
Ko et al. Markov  Cloud Model the sequential  Task data size, Expected energy  Simulation
[185] (2017) task transition as a latency consumption (in
Markov chain, apply ~ requirement, # of  dB)
stochastic candidate tasks,
optimization to prefetching
design the duration
online-fetching
policies
Cardellini  Game Hetero- Formulate the # of users, # of Probability of Simulation in
et al. [186] theory geneous problem of cloudlet, task infrastructure MATLAB
(2016) (mobile selfish-selecting execution time, selection, # of
nodes, infrastructure (any of maximum power iterations
cloudlets, the 3 tiers) as a consumption
cloud) generalized Nash
equilibrium problem
Jovsilo Game Elastic Formulate the # of mobile users,  Cost ratio, Simulation
and Dan theory cloud, problem of selecting average input data  offloading
[187] (2017) non- wireless AP for size difference ratio,
elastic computation # of iterations
cloud offloading as Nash
equilibrium
Yu et al. Deep MEC Formulate the Data number for Offloading Simulation
[188] Learn- offloading decision as  training, distance accuracy
ing a multi-label between UE and
(2017) classification problem SCceNB
and develop a Deep
Supervised
Learning (DSL)
method to minimize
the computation and
offloading cost
Wang et Deep MEC Address the # of tasks, # of Avg. latency Random
al. [189] Rein- challenges of task dependencies application
fornce- dependency in between tasks, graphs
ment offloading decision by = communication-to- (synthetic
Learn- using DRL-based computation ratio, DAG)
ing offloading framework  transmission rate
(2019)
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6.5.8. Other algorithms

Many recent works focused on scheduling problem in
computation offloading. Under the stringent constraints of
application completion time and unstable operating condi-
tions, the problem of how to efficiently offload computation-
intensive tasks from local to more-resourced clouds is more
challenging. Several strategies were proposed to address
such challenges. Guo et al. [190] developed a distributed
resource scheduling algorithm that reduces energy consump-
tion and satisfies the task dependencies and completion
time constraints. The constructed model takes both CPU
clock frequency control at local devices and transmission
power allocation in clouds into consideration. In [191],
taking into account the impact of wireless network char-
acteristics and the delay constraints of applications, the
authors suggested an algorithm that schedules the wire-
less transmissions to minimize the communication cost but
still guarantee the responsiveness of applications. Another
scheduling algorithm for the offloading problem in LTE-
based networks was presented in [192]. Due to the increase
in complexity and the relationship between the problems
involved, today, the offloading task is normally formulated
by jointly considering different sub-problems like task dis-
tribution, channel assignment, power allocation, or data
offloading [119, 98]. Table 6 provides additional informa-
tion and shows a summary of basic characteristics of the
selected offloading algorithms.

7. Offloading Frameworks

At early stages, computation offloading was carried
out by simply migrating full processes [194] or even a
full Virtual Machine (VM) [195, 104] to the remote infras-
tructure. In order to provide more fine-grained offload of
mobile code, programmers have to specify, which methods
or applications could or should be moved to the servers
for execution as well as the offloading strategies to adapt
with the changing of network conditions as well [196, 175].
With the objectives of reducing these heavy burdens on
application developers and providing a more flexible way
for outsourcing expensive tasks on smartphones, different
frameworks have been suggested to facilitate the offloading
implementation and deployment.

In this section, we survey selected existing computation
offloading frameworks that allow smartphone applications
to dynamically offload the intensive parts of their execu-
tion to the cloud in order to improve the performance
and save the energy consumption. Most of the frame-
works aim to reduce the energy consumption on devices
while still guarantee or even improve the performance of
applications [4, 193, 110]. Some others try to offer the
scalability [7, 180] or the capability of transparent code
migration [5, 8]. We summarize the basic features of the
selected computation offloading frameworks in Table 7.

Typically, a computation offloading framework inte-
grates all the common discussed components of the com-
putational offloading process, namely profilers, partitioner,

18

energy models, and an offloading decision engine. Most of
these components are responsible for a particular phase in
the offloading process except for the profiler that partici-
pates in all most phases.

In the initial step, developers use the profilers to gather
the necessary training data to construct power models,
which are then applied to dynamically estimate the run-
time energy consumption of the smartphones at different
granularities. When an application is started, the profil-
ing data related to environmental conditions like network
availability and quality is among the parameters used for
deciding where and when to perform module offloading.
During the execution, profilers continuously keep track of
variant important hardware and software information of
the smartphone and feed them into the energy models. The
data obtained after the end of applications, such as the
energy consumption, execution time, amount of resources
used, and network parameters, is then used to improve
the accuracy and efficiency of applications partitioning and
offloading decision for future invocations. In other words,
the data from profilers is indispensable for optimization
and adaptation problems in computation offloading.

Besides that, other important issues need to be taken
into consideration when building a framework is the offload-
ing mechanism. This includes different technical problems
concerning the implementation and deployment of com-
putation offloading in reality. First, depending on the
platform on which smartphone is operating, an appropriate
application runtime environment is used for the offloading
framework. It can be either Microsoft .NET Common Lan-
guage Runtime (CLR) [4] used by the Microsoft Windows
or Java VM [176], Dalvik VM [5, 7, 8, 9, 193], or Android
Runtime (ART) [197] used by the Android OS.

Second, there are several strategies to execute offload-
able modules in the cloud. The two most common ones are
Remote Procedure Calls (RPCs) [4], which performs offload-
ing for some specific computational tasks with pre-specified
remoteable annotations and using VMs [5], which allows
to carry out computation offloading for general cases. In
RPC-based frameworks, a remote version for each method
marked as remoteable is created by the compiler and loaded
onto the server. Whereas for VM-based frameworks, a de-
vice clone or a replication of the smartphone VM image is
deployed in the cloud. For transferring local states, data,
and control from user devices to the server, the serialization
technique can be used to convert necessary data structure
into an array of bytes, which is suitable for transmission [4].
At the server side, the opposite process, i.e., deserialization,
is performed for parsing data. The transmission of the
computation results and returned states from the server to
local is conducted in the same manner.

Finally, the cloud infrastructure and the software instal-
lation for the execution of offloadable modules in the cloud
are important factors that need to be considered when
developing an offloading frameworks. With the strong de-
velopment and the ubiquity of MCC, it is promising to
improve the mobile users’ experience in terms of battery



Frame- Objectives Platform  Offload  Partitioning Offloading Mechanism Testing

work Level Approach Applications

Cloudlets  Cloudlet-based  Virtual- Entire Migrating entire ~ Dynamic VM synthesis ~ Abiword, GIMP,

[104] offloading box apps images or Gnumeric,

(2009) partitioning VM Kpresenter,
images for PathFind, and
parallelism SnapFind

MAUI [4] Energy saving, Microsoft Method Manual LP model, based on the Face recognition,

(2010) guaranteeing NET annotations inputs of profilers and video& chess game,
the execution solver language translator
time

CuckCoo  Simplifying the Android Method  Using AIDL to Decision depending on Object recognition

[6] (2010) development & define interfaces  the availability of & face detection
deployment of for intensive and  remote resources
offloading apps interactive parts

Clone- context-aware,  Dalvik Thread  Offline Selecting the most Virus scan, image

Cloud [5] seamless code VM generation of appropriate partition at search, and

(2011) migration partitions based  runtime depending on behavior profiling
on static the environmental
program analysis conditions
& profiling data

ThinkAir Scalability, Android, Method Manual Decision depending on N-queens, face

[7] (2012) multiple-user Virtual- annotations the data from profilers,  detection, virus

Box historical execution, scan, and image
and cloud resources merging

COMET  Transparent Dalvik Thread  Not mentioned Applying DSM, decision Image editors,

[8] (2012) code offload for VM depending on the turn-based games,
multi-thread workload trip planner, and
apps math tools

EMCO Energy saving,  Android Task Not mentioned Using Fuzzy logic & Cloud-based

[180] scalability & GCM asynchronous resource intensive

(2013) notification, based on mobile applications

mobile and cloud
variables

COSMOS Performance Android Task Not mentioned Selecting VM-instance Face detection,

[9] (2014) improvement & VM using greedy strategy voice recognition,
efficient cloud based on the network and chess game
resources usage and resource conditions

Jade Energy-aware Java VM Class An offloadable Decision depending on Face detection and

[193] offloading for class must the profiling path finding

(2015) Android apps implement one information (system (Dijkstra)
of two status and execution
remoteable costs)
interfaces

NFC Energy saving Android, Method Not mentioned Enabling-disabling N-Queens, RSA

[110] & performance NFC API strategy (lowest data key genera-

(2017) improvement transmission delay & tion/encryption,

highest bandwidth of all and
NFC protocols) gaming/puzzles

Table 7: A comparison of computation offloading frameworks.
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life, data storage capability, processing power, and service
reliability [198].

In the last few years, many other frameworks for com-
putation offloading have been proposed. Contrary to pre-
vious studies, which mainly focused on the problem of
where and how to offload, these recent works put more
effort on the optimization problem for suggested offloading
frameworks. In [199], the authors propose a demand-based
offloading framework for Android systems, in which user
devices apply a dynamic partition algorithm to potential
offloading applications to maximize energy saving depend-
ing on the demand. Also, the goal of maintaining Quality
of Service (QoS) is considered along with the allocation
of shared resources. An offloading framework, called Mir-
ror [200], has been designed specifically for sophisticated
games, which helps to improve the performance and reduce
the energy consumption of the games. The framework
presented in [201] aimed to jointly optimized timing pre-
dictability and energy dissipation for embedded systems,
e.g., Android smartphone.

A more recent lightweight framework, which has also
been tested on Android systems, called ULOOF [202], ex-
ploits the benefits of mobile edge computing to offer better
timing performance and energy efficiency. In [203], the
authors present a framework that can produce faster re-
sponses to offloading requests from multiple users while
still maximizing energy savings. This objective is examined
under the constraints of completion time and bandwidth.
Also investigating the offloading problem in MEC, the CCO
framework [204], on the other hand, concentrates on en-
abling cross-edge collaboration in computation offloading
for partitionable applications.

In the context of a large-scale IoT system, the FogFlow
framework [205] was proposed to address different issues in
most of other existing fog computing frameworks for IoT
smart city platforms. This framework offers a standard
programming model for service developers, enables the
share and reuse of contextual data across services, and
helps to improve performance of existing solutions. For the
development of Fog Computing technology that aims to
tackle the challenges coming from large-scale IoT systems,
service orchestration is an indispensable part [206]. Service
orchestration refers to the process involved in the design,
management, and delivery of end-to-end services. Besides
the mass adoption of IoT technology, the dynamicity and
heterogeneity of devices and networks make the challenges
for service orchestration be even greater.

8. Open Research Questions

We conclude our survey of computation offloading for
smartphones with a discussion of selected open research
questions, which, we hope, will help researchers and practi-
tioners to contribute to the field and to understand current
limitations.
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8.1. Offloading Framework Standardization

Even though a number of computation offloading frame-
works have been developed, software developers and users
still have difficulties in making their applications offload-
able. Most constraints and annotation of offload candidates
are handled manually [4, 7], which makes the system in-
flexible and application-specific. Automatic systems have
been suggested to overcome these problems [5, 8], however,
they normally require modifications of the mobile core sys-
tem. In order to support developers to benefit most from
computation offloading, it is necessary to have a set of
general rules and guidelines on developing and optimizing
offloadable applications. In [22], the authors briefly present
such instructions for designers to build their systems more
efficiently. However, these guidelines are still quite generic
and lack many important aspects of offloading systems like
optimization problems and security.

Additionally, the variety of mobile platforms and cloud
infrastructures also leads to many challenges in standardiz-
ing offloading frameworks. For example, different smart-
phone models provide different ranges of available infor-
mation regarding hardware status and system statistics,
so that their energy models are quite varying. This limits
offloading frameworks to one or a few smartphones models.

8.2. Optimization Problems

In the early time when the idea of computation offload-
ing was just introduced, the attention of most researchers
mainly focused on the question of how to migrate com-
putation to the remote servers rather than on offloading
strategies. Recently, many approaches have been proposed
to solve the offloading problem in different contexts and
scenarios (cf. Section 6.5). Overall, the application of these
optimization techniques in practice is still limited and their
efficiency is not always clear. This is particularly due to a
non-constant overhead.

Moreover, the optimization also depends on the objec-
tives and requirements of smartphone applications. There
are many applications do most of their processing locally,
others have high workload on data communication over
the network. This has a high influence on the expected
benefits of offloading techniques. Besides, some additional
optimizations can be applied to specific applications to
further enhance the performance and save more energy on
the systems. For example, in [3], the authors showed the
possibilities to adjust the fidelity level of receiving data
from the server in order to lower the energy consumption on
handheld devices. Alternatively, in [207], a technique called
offloading shaping was introduced to reduce the demand for
resources on mobile devices by sometimes performing addi-
tional cheap computation locally before offloading. Other
schemes and algorithms need to be used for computation
offloading for real-time applications [208, 209] in order to
satisfy the strict constraint of application completion times.
Thus, there is always a trade-off between the generality and
efficiency, which makes optimization an ongoing challenge.



8.3. Context Awareness

Context awareness is one of the most timely features
being investigated as static offloading is not always bene-
ficial [17]. We are talking about the ability of systems to
sense and react to the changing of user location, system
states, and environmental conditions. Context awareness
has been considered in different phases of computation
offloading. First, application partitioning algorithms need
to be aware of the current resource status of the local
system, characteristics and resource demand of offloading
applications, from which remoteable partitions can be iden-
tified optimally [165]. Repartitioning applications might
be required every time the parameters change. Second,
offloading decision making heavily depends on context in-
formation, such as network quality and availability of cloud
servers. A context-aware framework is able to monitor and
adapt its offloading decisions to the current context [5, 210].
For example, in the case of poor network quality the commu-
nication might be too expensive (in term of energy and/or
time) and local execution would be preferable compared to
migrating to cloud systems.

Even though there have been several works on develop-
ing context-aware offloading algorithms and systems [17,
18, 13], experiments are often simplified to only cover se-
lected environmental parameters that influence offloading
operations. More general models and techniques are needed
to ensure the adaption of systems to a wide range of vari-
ables. Moreover, more real-world field testing is needed to
complement lab experiments.

8.4. Offloading in Mobile Cloud Computing

The current main problem of MCC is how to exploit its
full potential in augmenting mobile devices [198, 211]. Re-
lated to the cloud infrastructure, another problem arising
in computation offloading is to select the most appropri-
ate system in a very heterogeneous environment to most
improve the overall performance. Generally, mobile cloud
architecture can be divided into different tiers: a local tier
of mobile end-devices like smartphones, tablets, wearables,
and cameras; a middle tier of nearby clouds like cloudlets or
mobile edge computing; and a remote tier of Internet cloud
systems [186, 138]. Here, offloading in mobile cloud com-
puting is a special case of context awareness. Depending on
the current state, environmental conditions, and available
cloud services, user devices can offload their computation
to any part of the infrastructure [210] or even to a hybrid
cloud [126, 149] in order to maximize offloading benefits.
Experiments have shown many positive results, however,
many practical aspects need to be investigated in more
detail.

8.5. Fault Tolerance

During computation offloading process, the network
conditions and the availability of cloud services can vary
significantly due to the user’s mobility. This may cause
offloading operations failing, which could be either because
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of lost connections or server-related problems. It is, there-
fore, crucial for offloading systems to handle these failures
and guarantee the continuous and successful execution of
offloaded applications. When connection problems happen,
systems could try to reconnect until a timeout expires.
Otherwise, the devices need to make a decision on whether
to execute applications locally or to make use of verti-
cal handoff between different wireless media [212, 213] to
continue the computation offloading process. Similarly, if
server failures occur, user devices could switch to another
available server or ignore the current offloading operation
and perform the computation at local. In case of server
switching, handheld equipments can execute either hori-
zontal handoff between cloud servers in the same tier or
vertical handoff between resources in different tiers, e.g.,
cloud to cloudlet or vice versa [214].

All of these operations consume extra processing time
and energy on local devices. So, an effective offloading strat-
egy needs to cover such scenarios as well by also taking
into account the extra costs for handling the error and re-
covering the operation in the decision-making problem. Up
to now, most of the frameworks mainly focus on offloading
only; failure handling is normally considered separately.

8.6. Security and Privacy

Computation offloading requires data exchange between
mobile devices and cloud servers, therefore, ensuring the
confidentiality of private user data during the offloading
process is an important task. Security needs to be main-
tained from all three perspectives of mobile cloud comput-
ing including user device, network transmission, and cloud
server [215].

From the end system perspective, security and pri-
vacy are handled in both upload and download procedures.
The constraints related to the privacy of data should be
taken into consideration when making offloading decisions.
The data/modules that contain or access much private
information may have less possibility for remote execu-
tion or require to apply additional privacy-preserving tech-
niques before offloading [216]. Also, there should be mech-
anisms to detect and prevent malware or malicious code
in the download streams when receiving the results from
clouds [217]. Looking at the data transmission over (public)
networks, utilizing security protocols and data encryption
methods can limit information leakage [218]. On the cloud
side, trustworthiness is a must [219, 220]. The servers
can also suffer unwanted intrusions, thus, protecting user
data on the servers is required. This issue can be ad-
dressed by applying authentication and access control as
well as other security technologies [221]. More details on
security-related questions can be found in other excellent
surveys [222, 21, 215, 19].

The development of security solutions for computation
offloading, however, comes with an increased complexity
and costs, are big concerns as they may reduce the of-
floading benefits [223]. Currently, the number of works on
security and privacy problems in computation offloading is



still limited and the integration of suggested solutions into
offloading software frameworks remains challenging.

8.7. Supporting Tools & Frameworks

For most mobile applications, the offloading potentials
are highly dependent on the concrete implementation. This
is because not all the methods or modules in an application
can be offloaded to the cloud due to constraints such as re-
quired hardware support (e.g., GPS and sensors) or the user
interface [4]. In practice, programmers are required to iden-
tify these constraints and determine offloading candidates
manually, which is normally non-trivial. It is, therefore,
challenging to evaluate the effectiveness of an application
in terms of maximizing computation offloading benefits.
Frameworks are needed to support developers addressing
this issue.

A good example is SmartDiet [224]. It can be used as an
assisting toolkit for many existing method-level offloading
frameworks. It performs the specification of constraints
and partitioning applications automatically based on the
traces of method executions. Besides, the toolkit also
calculates the communication cost and energy-saving po-
tential of offloading tasks. The output helps developers
modifying and improving their applications in the terms of
energy efficiency as well as computation offloading poten-
tials. However, there is room for many improvements, e.g.,
in terms of further program characterization and mobile
device support.

Additionally, developers also have difficulties in set-
ting up offloading scenarios and profiling data during the
working process due to the diversity of system states and
network variables. Thus, initial experiments are normally
quite simplistic, exploring only a few parameters. For this
reason, simulation frameworks need to support simulating
different offloading operations and scenarios, i.e., helping
with detailed parameter studies. One possibility would
be to integrate offloading frameworks with network simu-
lation or even dedicated MCC simulators. However, the
integration of cost models (energy and execution time),
communication models, and offloading policies in such in-
tegrated simulator is still quite challenging.

9. Conclusion

In this paper, we investigated research solutions in the
scope of computation offloading. Our work is mainly asso-
ciated with the objective of saving energy. We provide a
review of existing methods for measuring or estimating the
energy consumption of smartphones as a fundamental basis
for computation offloading. We examine the functionali-
ties of different software components as well as algorithms
and strategies proposed in the literature. We also per-
form a comprehensive comparison among several existing
offloading frameworks. Finally, we discuss relevant research
challenges that explain need to be solved in order to make
computation offloading a success. Overall, most previous
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works mainly concentrated on the feasibility of offload-
ing, i.e. answering the questions what and how to offload.
Recent research tries to solve the offloading problem in
different contexts and scenarios, in which the questions
where and when to offload become the main focus. Along
with that, optimization issues are also concerned.
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