
On Time Constraints for Internet-Connected
Multi-User Real-Time Traffic Simulation

Marie-Christin H. Oczko∗, Lukas Stratmann∗, Florian Klingler†, and Falko Dressler∗
∗ School of Electrical Engineering and Computer Science, TU Berlin, Germany

† Department of Computer Science, TU Ilmenau, Germany
{oczko, stratmann, dressler}@ccs-labs.org, florian.klingler@tu-ilmenau.de

Abstract—In recent years, the inclusion of vulnerable road users
(VRUs) such as bicyclists in road traffic systems has become a topic
of general interest. However, the development and testing with
humans in the loop are complicated. Co-simulation of cyclists
on a training stand together with road traffic and vehicular
networking simulation helps to get more insights into traffic
interactions. This approach is currently limited as that only one
real-time cycling stand can be supported. Therefore, we extend a
centralized intelligent transportation systems (ITS) simulation to
allow multiple real-time users simultaneously. We developed an
architecture building upon new extrapolation and convergence
algorithms to deal with communication lags. Our proof-of-concept
for internet-connected multi-user real-time simulation confirms
the general feasibility and allows us to gain insights into its
technical limitations.

I. INTRODUCTION

Looking back at the last decades, one observes enormous
progress in the domain of vehicular networking and cooperative
driving. Many car makers have already equipped their recent
models with cellular and WiFi modems; some have also added
vehicle-to-everything (V2X) communication technologies. So
far, much of this work focuses almost exclusively on cars but
leaves out communication and coordination with vulnerable
road users (VRUs) such as pedestrians and bicyclists.

A possible solution is the co-simulation of human behavior
together with intelligent transportation systems (ITS) simulation
(road traffic and V2X communication). Such coupling of real-
time systems (e.g., hardware-in-the-loop (HiL) simulation)
and event-driven simulation (e.g., OMNeT++, SUMO, Veins)
was first introduced by Buse et al. [1]. In previous work,
we developed the virtual cycling environment (VCE) [2],
which integrates a bicyclist on a training stand into a virtual
cooperative driving scenario. Similar activities have been
reported in [3], [4]. This allows the development and, most
importantly, testing of safety solutions in a safe environment.

Now, integrating one real-time system with an event-driven
simulation framework has been challenging already. In this
paper, we go one step further and investigate the challenges
of a multi-user concept, where multiple real-time systems
simulators or instances of our VCE connect for live interaction
as well as to the simulation framework for road traffic and V2X
communication. We identified communication lag as the most
critical issue. This may simply be caused by latency but also
by packet loss. Extrapolation and convergence algorithms help
to overcome such communication lag if designed appropriately.

We developed a proof-of-concept to show the feasibility and
to study the limits of the system. Our results show that using
a state-of-the-art computer system, about 20 users can be
supported for experimentation on safety solutions based on
V2X communication among the VRUs and nearby cars.

Our contributions can be summarized as follows:

• We explore the challenges of internet-connected multi-user
integration into real-time traffic simulation;

• we introduce an architecture to couple distributed VCE
instances with a central Veins simulation;

• we present extrapolation and convergence algorithms to
handle communication lag; and

• we developed a proof-of-concept implementation to obtain
first insights into the technical limits of the system.

II. RELATED WORK

A vast number of traffic simulators with different complexity
levels and purposes have been designed. Various single-user
setups have been developed to research human behavior in
traffic scenarios [3]–[5]. With the increasing need to study
complex scenarios focusing on human interaction, the focus
has begun to shift to multi-user simulation and the resulting
requirements [6]. Abdelgawad et al. [7] designed a networked
driving simulator for testing, training, and development pur-
poses in cooperative vehicle systems and autonomous driving
systems. In their setup, two driving simulators are connected
via a central station controlling the simulation session. However,
all of these systems are not able to also co-simulate complex
scenarios with additional simulated traffic, support for multiple
participants at the same time, and, most importantly, V2X
communication at the same time.

To combine a real-time HiL setup with discrete-time simula-
tors for traffic and V2X simulation, Buse et al. [1] developed
the ego vehicle interface (EVI). Besides the ability to study
advanced driver assistance systems (ADAS) in a HiL setup with
integrated V2X communication, the potential application range
of the EVI is huge. We are particularly interested in the use
case of studying bicyclists’ behavior in traffic scenarios. For
this, in earlier work, we developed the VCE [8], which enables
a single person on a stationary bicycle trainer to interact with
potential ADAS applications and simulated traffic. In our work,
we use and further extend the VCE to study internet-connected
distributed multi-user simulation.

OMNeT++

SUMO

Ego Vehicle
Interface
(EVI)

V2X Simulator (Veins)

M
ul

ti-
U

se
r

In
te

rf
ac

e
(M

U
I)

Unity 3D Env.

Extrapolation

Convergence M
U

I
Unity MUI

..
.

In
te

rn
et

Unity MUI

Figure 1. Architecture extending VCE with the MUI to connect multiple
Unity instances with the EVI. The MUI is split into two parts, one integrated
within Unity and one connected to the EVI.

With coupling simulators and executing distributed simu-
lation, multiple challenges have arisen. Tranninger et al. [9]
discussed strategies for fault-tolerant coupling of real-time
components with a focus on data loss, faults, and time-varying
delays. Stettinger et al. [10] highlighted the general difficulties
of coupling real-time simulators caused by communication
delays. On the positive side, Schreiber et al. [11] showed the
feasibility of X-in-the-loop tests of automotive systems with
distributed laboratories, located in Germany, the Netherlands,
South Africa, and the USA. Furthermore, Aramrattana et al.
[12] tested a distributed simulator for cooperative ITS.

To be able to deal with network delays, extrapolation, as
also often used in multiplayer-computer games, needs to be
introduced to the simulation environment. One approach to
realize extrapolation is dead reckoning, which, for example, has
been used for distributed cars by Chen and Liu [13]. The authors
included additional knowledge about routes in the simulation
to increase their prediction accuracy, introducing path-assisted
dead reckoning. To overcome latencies between geographically-
distributed experiment setups, we apply a similar solution.

III. MULTI-PLAYER SUPPORT FOR VCE

A. Architecture

The current architecture for the co-simulation of an ego user
(i.e., a bicyclist in the case of the VCE) and the Veins simulator
(consisting of the network simulator OMNeT++ handling V2X
communication and SUMO handling road traffic) is based on
the ego vehicle interface [1]. We extend this architecture by
adding the possibility to integrate multiple ego users. These can
be HiL setups, car driving simulators, or bicycles on a training
stand as used in the VCE. In the following, we refer to these ego
users by their Unity3D1 visualization. The extended architecture
is depicted in Figure 1. As it can be seen, an additional interface,
called the MUI, between the EVI and the Unity-based ego users,
is introduced. The MUI organizes the data exchange between
multiple Unity instances and coordinates the message exchange
with the EVI. Technically, the MUI consists of two different
components: a Unity Connector responsible for coordinating
the communication with various Unity instances, and an EVI
Connector, handling the communication with the EVI. During

1https://unity.com/

the initialization phase, the Unity Connector waits until each
Unity instance has connected to the MUI, more precisely until
it has received at least one position update from each entity.
This approach is applied to ease the connection from multiple
experiment sites, which could come with varying delays, and
it guarantees that the expected number of Unity instances is
connected at least once. After initialization, the Unity Connector
only waits until a certain timeout to guarantee the necessary
100 ms update intervals of the EVI. Additionally, the Unity
Connector will collect position updates from the different Unity
instances and join them together in one single EVI message.
As a result, the EVI treats all updates as updates from a
single Unity instance, with multiple human-controlled vehicles
connected to it. This technique offers the advantage of full
transparency for the EVI. In the other direction, the Unity
Connector needs to distribute traffic updates from the EVI to
the different connected Unity instances.

B. Challenges and Feasibility

A known challenge in internet-connected distributed simula-
tions that also commonly affects multi-player computer games
is communication latency and its variations (e.g., intermittent
jitter). To some extent, it is possible to prevent simulated
vehicles from visually jumping by introducing interpolation,
extrapolation, and convergence techniques.

Interpolation can be applied to smooth the transition of
an object between two received position updates since the
frame rate of the 3D environment is typically higher than
the frequency of network updates. This has already been
implemented in the single-user VCE. Extrapolation can be
used to predict the motion of a vehicle even when the next
position update is still pending. One possible approach is
dead reckoning, in which predictions are based on the last
known position, velocity, and, optionally, acceleration. As a
consequence, there might be deviations in the predicted and the
actual position, which can be detected later based on received
updates. Convergence helps correcting these mistakes, ideally
in a visually smooth and inconspicuous manner. Typically, a
vehicle recovering from a significant position deviation would
start a convergence period, during which it smoothly transitions
to the convergence point and catches up with the correct
position. In a vehicular context, it can be useful to limit changes
in linear and angular velocity of a vehicle to prevent unrealistic
motion during the convergence period [13].

To assess whether implementing a multi-user VCE would be
feasible at all and to gain first insights into the requirements

7750 8000 8250 8500 8750 9000 9250
Average latency in s

0

100

200

#
 o

f p
ac

ke
ts message size 64 bytes

message size 123 bytes
message size 512 bytes
message size 1514 bytes

Figure 2. Histogram of the observed communication latencies between
Paderborn and Berlin for message sizes of 64 B, 123 B, 512 B, and 1514 B.

for an extrapolation algorithm, we performed the following
preliminary experiments. By default, the VCE operates with
update intervals of 100 ms. Communication delays should stay
below this threshold to allow for smooth operation even in
large simulation scenarios requiring longer computation time.

To check the feasibility of our concepts, we first used tcp-
dump2 to determine the maximum size of messages transmitted
between the 3D environment of the VCE and the EVI in our
reference scenario. In the direction from the 3D environment to
the EVI this turned out to be 123 B and 1514 B in the reverse
direction. We used SockPerf 3 to transmit TCP packets of size
64 B, 123 B, 512 B, and 1514 B in intervals of 15 min between
Paderborn and Berlin over the course of six days. As shown
in Figure 2, the observed communication latencies stayed well
below 10 ms, with an average of 7.82 ms for 64 B messages,
7.83 ms for 123 B, 8.1 ms for 512 B, and 8.2 ms for 1514 B.

C. Extrapolation and Convergence
Since the different simulator instances are connected via the

internet, delays could adversely affect the visualization and
update rate of the various simulation components. Furthermore,
to provide a smoothly running environment, delays and packet
loss effects must be counteracted. Thus, we introduced an
extrapolation algorithm to the internet-based multi-user VCE.
It is applied to predict vehicle behavior when traffic updates
are delayed to support a smooth and realistic visualization.
When developing an extrapolation and convergence concept
for vehicles, certain assumptions can be made. Usually, traffic
updates in the multi-user VCE should arrive regularly (e.g.,
every 100 ms), which means that extrapolation should only
be applied for small time intervals. Furthermore, most situ-
ations being examined with the VCE involve bicycles and
are restricted to city traffic. Thus, we can assume that the
convergence algorithm only has to handle small deviations of
predicted and actual position received via an update.

We started with the concepts introduced by Chen and Liu
[13] and included path knowledge in our predictions. However,
this information was not available in the original Unity system.
For that purpose, we reused the SUMO file representing the
street network information as a graph structure.

We realized two approaches for extrapolation, distinguishing
human-controlled vehicles and other road users. Human-
controlled vehicles behave less predictably than simulated
ones, and, in the case of bicycles, usually travel quite slowly.
Thus, we simply extrapolate the position of a human-controlled
vehicle based on its current speed, position, and direction. We
used the equation from [13]: s = s0 + v∆t, where s refers
to the next position, s0 to the last received position, v to the
velocity, and t to the time that has passed since the last update.
For simulated vehicles, the behavior is more predictable. As
long as the vehicle is not close to an intersection, it is most
likely to keep its speed and keep following the lane.

In the SUMO configuration file, each lane has its shape, more
precisely its center line, defined by a sequence of coordinates,

2https://man7.org/linux/man-pages/man8/tc-netem.8.html
3https://manpages.debian.org/bullseye/sockperf/sockperf.1.en.html

section 0 section 1 section 2 la
ne

(a) Case A (b) Case B

Figure 3. Case A: The vehicle continues following the lane during extrapolation.
The lane consists of at least one section. The center of the lane, here yellow,
is defined by shape-defining points (red). Case B: If the vehicle is close to an
intersection, it stops shortly in front of it.

as shown in Figure 3a. We compute the two points defining the
center of the vehicle’s current street segment and the direction
it is driving:

• To get the closest shape-defining point p1, our algorithm
iterates over all shape-defining points of the lane, computes
the distance to each, and returns the closest one.

• Next, we compute the index of this point in the lane’s list
of shape-defining points.

• We check whether our vehicle is moving to or away from
point p1. Based on that, we can compute the index of the
second point p2 defining our current street section, and
by that, get its coordinates from the SUMO file.

• As a result, we can calculate a vector streetSection based
on p1, p2, representing a direction parallel to the center
of the lane.

• Our next step is to compute the angle of the vector
streetSection, which gives us the degree we have to
adjust the direction of the vehicle.

• Based on the angle, the new vehicle’s yaw rate is
computed, as well as its new speed vector.

• Using this speed vector, the old vehicle position, and the
passed time since the last update, we can compute the
new position of the vehicle.

Otherwise, as shown in Figure 3b, if a vehicle is close to
an intersection, we stop the vehicle by keeping its position
and setting its speed to zero. Even though the turn signals of
the vehicle are available in Unity, it is not always possible to
unambiguously determine the lane the vehicle will continue on
after the intersection as there might be multiple lanes on the
left and right of the intersection. Thus, we avoid jumps due
to wrong predictions but we have to compromise on the next
update, which will forward the vehicle faster than in reality.

IV. RESULTS

We evaluated the practicality of our multi-user VCE in
terms of performance, stability, and scalability. Our main goal
is to connect virtual cycling environments from different sites
via the internet to conduct joint experiments. As a proof-of-
concept, we connected a cyclist at TU Berlin with a cyclist at
Paderborn University in a coupled simulation. For about ten
minutes, both participants rode their bicycles and interacted
with both the simulated traffic and each other. Comparing screen
recordings of the experiment sites, we confirmed that both
cyclists experienced the same situation at the same time. To gain
more insights into scalability and stability, we investigated the

Table I
SCALABILITY OF THE CO-SIMULATION OF MULTIPLE EGO VEHICLES

of ego
vehicles

Visualization MUI EVI

2 to 10 smooth normal normal
20 environment/car visualization

(slightly) lagging
normal normal

30 environment/car visualization
lagging, cars missing

normal partly
delayed

Table II
NETWORK TRAFFIC MEASUREMENTS FROM THE MUI TO A UNITY

INSTANCE FOR AN INCREASING NUMBER OF UNITY INSTANCES AND
DIFFERENT EVI UPDATE INTERVALS

of Unities
EVI 1 3 5 10 20

100 ms 27.4 pps 29.3 pps 32.2 pps 31.5 pps 31.3 pps
95 ms 29.1 pps 30.6 pps 33.1 pps 31.0 pps 33.3 pps
80 ms 31.8 pps 32.1 pps 35.0 pps 36.2 pps 34.6 pps
60 ms 29.0 pps 37.0 pps 35.7 pps 31.3 pps 17.3 pps
50 ms 27.5 pps 37.6 pps 36.4 pps 30.9 pps 3.0 pps

impact of the number of ego vehicles on the simulation quality.
For that, we connected a varying number of Unity instances
(2 to 30) to our newly developed MUI. For reproducibility,
we used a well-defined traffic scenario. For each configuration,
we measured the data rate, the packet size distribution, and
the number of messages between the different simulators.
Additionally, we monitored the changes in the visualization
in Unity, as well as in the MUI and the EVI behavior. As
a platform, we used a computer with an AMD RyzenTM 7
5800X and an MSI RTX 3070 graphics card. The results are
listed in Table I. Starting at twenty connections, the observed
visualization quality quickly decreased; some cars behaved
jerky. Additionally, the general visualization quality decreased
slightly. These effects were even more pronounced for thirty
connections, marking the limit where the Unity simulation
executed on the laptop became unusable. Yet, for realistic
experiments, this seems a suitable performance to conduct
experiments on vulnerable road users.

Based on these results, we looked further into the update
interval. We measured packet rate from the MUI to a Unity
instance for an increasing number of Unity instances and
different EVI update intervals as shown in Table II. Comparing
update intervals of 80–100 ms, the packet rate slightly increases
for a decreasing update interval for an equal number of Unity
connections. However, they started decreasing after further
decreasing the update interval to 60 ms. We conclude that
changes in the EVI update interval can help to improve the
quality of the simulation.

V. CONCLUSION

We investigated opportunities and challenges related to
coupling multiple internet-connected real-time simulators in
a joint environment with event-based road traffic and a V2X
simulation toolkit. This was already challenging for a single
ego vehicle case with the ego vehicle interface. Our application

domain is the development and testing of safety solutions for
vulnerable road users, specifically bicyclists. We developed a
novel architecture and implemented the multi-user interface
(MUI) as a proof of concept. The core functionality of the
system is based on extrapolation and convergence algorithms to
cope with communication lags. Starting from available solutions
in the scientific literature, we extended these for our use case.
In a set of experiments, we confirmed the general functionality
and also showed the technical limits of the system.

ACKNOWLEDGMENT

This work was supported in part by the Federal Ministry
of Education and Research (BMBF, Germany) within the 6G
Platform under Grant 16KISK050.

REFERENCES

[1] D. S. Buse, M. Schettler, N. Kothe, P. Reinold, C. Sommer, and F.
Dressler, “Bridging Worlds: Integrating Hardware-in-the-Loop Testing
with Large-Scale VANET Simulation,” in 14th IEEE/IFIP Conference
on Wireless On demand Network Systems and Services (WONS 2018),
Isola 2000, France: IEEE, Feb. 2018, pp. 33–36.

[2] M.-C. H. Oczko, L. Stratmann, M. Franke, J. Heinovski, D. S. Buse,
F. Klingler, and F. Dressler, “Integrating Haptic Signals with V2X-
based Safety Systems for Vulnerable Road Users,” in IEEE International
Conference on Computing, Networking and Communications (ICNC
2020), Big Island, HI: IEEE, Feb. 2020, pp. 692–697.

[3] M. Aramrattana, T. Larsson, J. Jansson, and A. Nåbo, “A simulation
framework for cooperative intelligent transport systems testing and
evaluation,” Elsevier Transportation Research Part F: Traffic Psychology
and Behaviour, 2017.

[4] A. Hussein, A. Díaz-Álvarez, J. M. Armingol, and C. Olaverri-Monreal,
“3DCoAutoSim: Simulator for Cooperative ADAS and Automated Vehi-
cles,” in 21st IEEE International Conference on Intelligent Transportation
Systems (ITSC 2018), Maui, HI: IEEE, Nov. 2018.

[5] F. Schramka, S. Arisona, M. Joos, and A. Erath, “Development of virtual
reality cycling simulator,” Journal of Computers, vol. 13, no. 6, 2018.

[6] K. Abdelgawad, J. Gausemeier, R. Dumitrescu, M. Grafe, J. Stöcklein,
and J. Berssenbrügge, “Networked Driving Simulation: Applications,
State of the Art, and Design Considerations,” Designs, vol. 1, no. 1, Jun.
2017.

[7] K. Abdelgawad, S. Henning, P. Biemelt, S. Gausemeier, and A. Traechtler,
“Networked Driving Simulation for Future Autonomous and Cooperative
Vehicle Systems,” in 8. VDI/VDE Fachtagung Automatisiertes Fahren
und vernetzte Mobilität, Berlin, Germany: VDI, Jul. 2017.

[8] J. Heinovski, L. Stratmann, D. S. Buse, F. Klingler, M. Franke,
M.-C. H. Oczko, C. Sommer, I. Scharlau, and F. Dressler, “Modeling
Cycling Behavior to Improve Bicyclists’ Safety at Intersections – A
Networking Perspective,” in 20th IEEE International Symposium on a
World of Wireless, Mobile and Multimedia Networks (WoWMoM 2019),
Washington, D.C.: IEEE, Jun. 2019.

[9] M. Tranninger, T. Haid, G. Stettinger, M. Benedikt, and M. Horn,
“Fault-tolerant Coupling of Real-Time Systems: A Case Study,” in
3rd Conference on Control and Fault-Tolerant Systems (SysTol 2016),
Barcelona, Spain: IEEE, Sep. 2016.

[10] G. Stettinger, M. Benedikt, N. Thek, and J. Zehetner, “On the difficulities
of real-time co-simulation,” in International Conference on Compu-
tational Methods for Coupled Problems in Science and Engineering
(COUPLED 2013), Santa Eulàlia, Spain: CIMNE, Jun. 2013.

[11] V. Schreiber, V. Ivanov, K. Augsburg, M. Noack, B. Shyrokau, C.
Sandu, and P. S. Els, “Shared and Distributed X-in-the-Loop Tests for
Automotive Systems: Feasibility Study,” IEEE Access, vol. 6, pp. 4017–
4026, May 2018.

[12] M. Aramrattana, A. Andersson, F. Reichenberg, N. Mellegård, and H.
Burden, “Testing cooperative intelligent transport systems in distributed
simulators,” Elsevier Transportation Research Part F: Traffic Psychology
and Behaviour, vol. 65, pp. 206–216, Aug. 2019.

[13] Y. Chen and E. S. Liu, “Comparing Dead Reckoning Algorithms for
Distributed Car Simulations,” in ACM SIGSIM Conference on Principles
of Advanced Discrete Simulation (PADS 2018), Rome, Italy: ACM, May
2018.

