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Abstract

Device-to-Device (D2D) communications have expanded the way of managing available network resources to efficiently
distribute data between users. D2D exploits communication alternatives, in Opportunistic Networks, based on short
range wireless radio technologies such as Bluetooth and WiFi-Direct. Besides, nowadays in most urban areas, realistic
human mobility is characterized by often repeated patterns that can be used to accurately predict the next visited
regions—we call these regions hotspots (or Replication Zones (RZs)). In this work, we present Predictive Content
Dissemination Scheme (Precise), to explore and combine the D2D paradigm along with real mobility and predictions
focused on the dissemination of content among hotspots. To analyze the viability of such scheme, we show simulation
results and evaluate the average content availability, lifetime and delivery delay, storage usage and network utilization
metrics. We compare the performance of Precise with state-of-the-art approaches, such as Epidemic, restricted Epidemic,
and Proximity-Interest-Social (PIS) routing protocols. Our results underline the need for smart usage of communication
opportunities and storage. We demonstrate that Precise allows for a neat reduction in network activity by decreasing the
number of data exchanges by up to 92%, requiring the use of up to 50% less of on-device storage. This comes at negligible
costs. In particular, the delivery delay with Precise shows an increase with respect to epidemic dissemination schemes
that varies from 0.03 seconds in the most dynamic case to at most 1.91 seconds for the least dynamic case, and which
however does not hinder the possibility to use Precise for real-time applications. Regarding how contents are spread, we
observe that Precise requires 2% to 20% less mobile users to carry them within a target hotspot, especially under slow
dynamics. This however does not impact on the probability that mobile users entering the hotspots obtain contents,
and barely shortens the lifetime of contents in our experiments from 100 minutes down to about 95, in the worst case.
This demonstrates that the reduction of content availability among mobile users with Precise is either negligible or not
impactful, thus guaranteeing the dissemination of contents as with legacy epidemic dissemination protocols.
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1. Introduction

Our society is experiencing a massive growth in the
number of active devices connected over the Internet gener-
ating vast amounts of data. For many applications, there is
need to offload the communication from cellular networks to
direct Device-to-Device (D2D) communications [1] through
Opportunistic Networks (OppNets) [2]. This is useful, e.g.,
when users are experiencing poor network connection or
they are unable to connect, or when the available network
infrastructure cannot be trusted. For the above mentioned
cases, and for the ones in which it results to be more
cost-effective than infrastructure-based access, the use of
D2D is favorable [3]. This also aligns with next generation
virtualized edge computing concepts [4].
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For instance, consider that the number of users con-
cerned about their privacy keeps steadily growing, so that
many services will rather not trust intermediary parties
to distribute—and be in possess of—certain information.
They would rather trust “friend” devices (e.g., devices
owned by people belonging to the same community or
a social network) than network infrastructures and ser-
vice operators. Examples of this case range from context-
aware social networking to covert communications during
protests.

During the last decade, a multitude of dissemination
techniques have been developed [5, 6, 7]. Survey papers
such as [8, 9, 10, 11] provide deep insights into the different
perspectives adopted. Nevertheless, heterogeneous and
limited resources and capabilities at nodes still impose many
limitations for real-world scenarios. Most importantly, the
dynamically evolving network topology still determines one
of the main challenges.

The presence of memory-constrained devices and net-
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work congestion are some of the causes of these limitations.
The scheme proposed in this paper aims to introduce a
significant reduction in the amount of data kept in mo-
bile devices’ memory, along with a drastic alleviation of
network traffic. We achieve this goal by cutting data ex-
changes down to only meaningful ones. Furthermore, we
aim at exploiting contact opportunities leveraging nodes
movement pattern based on typical daily routines, which
leads to accurate predictions of the network users’ future
behavior. We present a set of configurations that make use
of the previously gathered information to manage network
and device resources efficiently and, therefore, to deliver
messages in a more effective manner with respect to legacy
content dissemination schemes.

The social component is also a great asset to boost for-
warding strategies [12, 13, 14]. Similar to Pannu et al. [15],
both in the algorithmic design as well as in our evaluation,
we support certain interest hotspots towards which pedes-
trians and vehicles are more likely to head. However, here
we consider distinct mobility models with respect to that
work, and substantially different timescales and dynamics,
since we focus on spreading contents within hotspots and
from one hotspot to another without the support of an
infrastructure, rather than focusing on vehicular micro-
clouds as in [15]. A key novel element of our study lays in
the dyadic nature of hotspot-based dissemination, which
requires understanding and supporting data exchange not
only within the hotspots, and not just to move informa-
tion from one hotspot to another, but rather solve the two
problems at the same time. Focusing on hotspots leads us
to use realistic mobility patterns and to be accurate in the
management of data dissemination. In our example, popu-
lation samples relate to two often visited hotspots, but our
approach can be used with any number of hotspots. Fur-
thermore, we claim that the presence of a social component
in the forwarding scheme justifies the use of D2D.

Our service quality metrics are average delivery delay
and content “availability”. The former is the average time
needed for a mobile node to receive a piece of dissemination
content after moving into a hotspot. The content availabil-
ity is the probability that a piece of content be stored on
mobile nodes in the hotspot and so be available for D2D dis-
semination to newly arrived users. As an overall objective,
we want to achieve delivery delay and availability levels as
if we were using epidemic diffusion schemes, except we want
to reduce the overhead in terms of number of connections
and use of storage on mobile devices. However, notice that
availability levels above a critical threshold make little dif-
ference in terms of how probably a newcomer will obtain a
content, and what really matters is to keep availability far
from zero [16]. The efficiency of our proposal is evaluated
in terms of on-device storage utilization, number of data
exchanges required and content lifetime, the latter being
the time a piece of content persists in a target area while
mobile users come and go.

Note that, differently from epidemic routing schemes,
any user in the hotspot is the destination of any content to

be disseminated. In this sense, heterogeneous and limited
resources and capabilities of the involved nodes impose
additional limitations for real-world applications. Note
also that existing opportunistic schemes cannot capture
the social-aware nature of the applications considered in
this work. They can be used if need be, but, as shown
in this paper, they end up wasting precious resources to
disseminate information beyond the needs of the applica-
tions, with no tangible performance gain. For this purpose,
we have designed application-dependent scheme that will
serve information to users with same interests in an inde-
pendent fashion and which take into account the specificity
and predictability of mobility patterns by learning from
past events. For example, nodes involved in a university
environment will subscribe to the same specific channel
and, consequently, share only related event advertisements.
This detached approach, compared to state-of-the-art works
where everyone’s devices are involved in the content dis-
tribution process, is crucial to avoid misusing resources
from nodes that are not willing to cooperate to the routing
process as well as spamming users with different interests.

In order to assess the performance of our Predictive
Content Dissemination Scheme (Precise), we have imple-
mented a simulation model, analyzed the collected data
describing occurring events, and assessed and compared the
performance of Precise to existing dissemination strategies.
Our results provide essential insights on how to manage
available resources in an efficient manner according to the
studied scenarios and mobility requirements.

Our main contributions can be summarized as follows:

• We design a novel and powerful yet lightweight scheme,
named Precise, whose algorithms improve data for-
warding and storage efficiency in opportunistic com-
munication scenarios by leveraging social behaviors
and mobility predictions.

• With Precise, we propose a content forwarding and
storing scheme that we implement in a custom-made
simulator, which uses state-of-the-art approaches for
mobility modeling based on maps and real user mobi-
lity; this approach allows us to experiment also with
epidemic diffusion and benchmarking algorithms with
realistic mobility traces.

• We assess the performance of Precise vs state of the
art schemes in terms of content availability, storage
load, network resource utilization, content lifetime
and losses over time, and delivery delay.

• We compare Precise with three other benchmarks,
such as, content dissemination restricted to Repli-
cation Zones (RZs), a classic full-fledged epidemic
scheme (denoted as Epidemic), and the Proximity-
Interest-Social (PIS) routing protocol, which is the
state of the art algorithm for efficient epidemic rout-
ing. We show that our algorithm clearly outper-
forms other solutions by reducing between 65-92%
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the needed number of connections and halving the
use of storage. Precise produces comparable con-
tent availability most of the time, and even when
we obtain less availability, we do not observe any
perceivable quality degradation. Precise incurs neg-
ligible content lifetime reductions (up to 5%), and
causes delivery delay increases of the order of a small
fraction of a second most of the time, which results
in Precise being suitable for real-time applications
(e.g., to deliver warnings and advertisements timely
when entering an area).

2. Background and Related Work

For more than a decade now, forwarding strategies for
D2D communications in opportunistic networks have rep-
resented one of the most challenging questions to cope
with in terms of content dissemination performance, due
to high node mobility, dynamic evolution of networks and
devices heterogeneity. In this paper, we mainly focus on
providing enhanced heuristics and combinations of those
for data sharing among devices contributing to resource
usage efficiency and dissemination effectiveness. Devices
involved in such scenarios are mostly carried by users who
are considered to influence, to some extent, the behav-
ior of their smartphones, tablets, etc. According to this
perspective, previous works on content dissemination in
opportunistic networks can be categorized into four main
groups, as discussed in what follows.

2.1. Context-oblivious heuristics
Early logical and elementary techniques for content dis-

tribution can be classified into context-oblivious heuristics.
For example, works like Spyropoulos et al. [6], Grossglauser
and Tse [5] proposed different schemes that constrain the
number of content copies in the system to improve band-
width, storage capacity, and energy consumption. Beyond
the previous concept and given the fact that dropping
messages too early may reduce the speed of information
diffusion, Hernández-Orallo et al. [17] introduce a dynamic
expiration time setting to limit the effects of early content
loss. With these techniques the authors try to overcome the
shortcomings of basic flooding-based schemes but still pose
limitations when mobility patterns are restricted. Chancay-
García et al. [18] study the impact of contact duration
for message broadcasting. They leverage the division of
large messages into smaller parts to improve dissemination
and demonstrate that a fixed size partition is the best
approach. Our scheme does not include context-oblivious
mechanisms since we believe introducing context and social-
aware heuristics better adapt to the mobility dynamics of
most urban scenarios, as explained in what follows and
demonstrated in Section 6.

2.2. Context-aware heuristics
Obviously, there was still a need for more sophisticated

methods to solve dissemination challenges in frequently dis-
connected networks, not only aiming at reducing flooding
and overhead but also effectively distributing data content,
i.e., providing valuable content to potential nodes at ac-
ceptable time delay. For that purpose, an advanced sort of
context-aware heuristics to achieve smarter decision making
processes has been explored. For instance, Dhurandher
et al. [19] present a history-based routing protocol that
exploits nodes mobility information to predict the best
next hop for content exchange. Lindgren et al. [20] and
Barrett et al. [21] combine history of previous encounters
with probabilistic techniques. In both papers, nodes de-
cide to which peer they will forward the content assessing
various parameters to compute the probability that the
chosen node will deliver the content to its destination. Fur-
thermore, Burns et al. [22] incorporate information not
only about past encounters but also about previous visited
regions.

More recently, research studies have coupled several of
the cited features to develop more accurate techniques for
specific D2D communications scenarios. For example, Liu
et al. [23] introduce a distributed online algorithm that
focuses on the optimal node pause strategy in order to select
the best transmission peer. Yamamoto et al. [24] propose a
method that adaptively adjusts the transmission timing and
effective radius of the area in which information is shared.
This decision is based on terminal density and terminal
encounter rate in order to estimate further communication
opportunities. In Rizzo et al. [16], the authors present an
information theoretical model of the storage capacity of
probabilistic distributed storage systems where nodes are
only allowed to exchange content based on their current
position and storage capacity.

Some other works refer to this D2D paradigm with the
Floaty Content term. For example, Pérez Palma et al. [25]
and Rizzo et al. [26] go further and develop Android appli-
cations that support infrastructureless distributed content
sharing among wireless devices using state-of-the-art tech-
nologies, such as Bluetooth and Wi-Fi Direct. The authors
also discuss results gathered from real experiments and
conclude that high device densities determine the perfor-
mance.

What is missing in all these studies is the social fac-
tor, which we instead leverage to increase the efficiency
of dissemination schemes. In this work, we assume that
nodes move according to similar patterns every weekday
following social behaviors like going to their work place,
returning home or to some other frequently visited places.
This allows the application to predict with high accuracy
whether passing information to a user is going to be useful
or not, which reduces unnecessary information exchanges
typical of epidemic schemes.

3



2.3. Social-aware heuristics
Several studies emerged using social-aware heuristics.

Researchers started developing dissemination strategies
initially based on the idea that human mobility presents
certain behavioral patterns that can benefit forwarding
decision making.

A good example has been introduced by Boldrini et al.
[27]. They present ContentPlace, a system that defines
social-oriented policies and analyzes the behavior of users
in pursuance of optimizing content availability by locat-
ing data content in appropriate spots. Boldrini et al. [12]
also exploit a combination of social information to pick
the most suitable next hop based on the similarity of each
peer node context to the destination context. Ying et al.
[28] introduce a Markov chain model of users’ social ties.
They formulate the problems of unfair traffic distribution
and unfair delivery success ratio based on the evaluation
of users’ social relationship. Rahim et al. [29] present a
social Acquaintance based Routing Protocol (SARP) for
Vehicular Social Networks (VSNs). SARP considers the
global and local community acquaintance of nodes to make
a forwarding decision. Moreover, Ullah et al. [30] developed
a reputation mechanism that calculates a trust-score for
each node based on its social-utility behavior and contri-
bution to the network. Built on that idea, the authors
propose a Trust based Dissemination Scheme (TDS) for
Emergency Warning Messages (EWMs) to detect malicious
alarms. Hui et al. [13] analyze the contact patterns between
nodes and infer the social communities which these nodes
belong to. This system aims to exchange data to nodes
belonging to the destination community based on previ-
ous context information and assuming sociable nodes will
have more chances to forward the content to its destination.
Vegni et al. [31] assess a previously introduced probabilistic-
based broadcasting scheme for vehicular communications
leveraging the computation of nodes’ social degree. They
demonstrate its effectiveness in packet transmission reduc-
tion while guaranteeing network dissemination in realistic
scenarios with real traffic traces. They also compare it with
state-of-the-art schemes showing a significant improvement
in terms of delivery ratio.

A very relevant work in this field is also introduced
by Xia et al. [32], where authors propose PIS a routing
protocol based on three different social factors, and dis-
closing next slots social information, in order to decide
the best next hop for content sharing. They present their
results applying the proposed approach to SIGCOMM09
[33] and INFOCOM06 [34] data sets. The results show
that PIS outperforms other well-known protocols such as
Epidemic [7], PROPHET [20] and SimBet [35]. Same au-
thors developed a similar approach in [36] that integrates
vehicles’ social factors into their geographical information.
They introduce a new concept called geo-social distance
and combine it, among other processes, with the message
copy control protocol used in PIS.

Our work is partially shared with this category. How-
ever, unlike previous mentioned works, we use only informa-

tion from past traces in order to predict future positions of
the nodes and make decisions according to it. Furthermore,
we also take into account for how long nodes remain in
their positions based on typical social standards like 7-8
hours work day, 7-9 hours sleep, etc. Filling the gap of
previous approaches, we consider a set of nodes to be the
final destination of the data content instead of targeting
for an individual. We assume that the pieces of informa-
tion shared using our paradigm will be relevant for the
whole portion of the population subscribed to a given com-
munication channel. We are able to significantly reduce
network load by leveraging nodes mobility predictions and
light computation for decision making, contrary to existing
social-based data dissemination approaches, which still fail
to achieve efficient data broadcasting due to high volumes
of overhead and redundant connections.

Part of our work is also devoted to real scenarios, for
instance Rome city center. We have worked with real taxi
cabs traces obtained from [37] and applied Precise to carry
out content dissemination. Additionally, we have imple-
mented the previous mentioned PIS approach to compare
with our solution over a more realistic scenario, closer to
what can be found in urban areas.

2.4. Cognitive heuristics
Cognitive heuristics conform to a whole new set of

forwarding algorithms to which researchers are paying great
attention now. The central concept behind cognitive science
applied to forwarding protocols is to build algorithms based
on human information processing schemes.

In this direction, Mordacchini et al. [38] introduce Ser-
vice Channel (SCH). Their proposal is to evaluate not only
the importance of the content according to the individual
but also take into account the judgement of its commu-
nity. In a similar way, Khelifi et al. [39] focus on vehicular
networks from the Information-centric networking (ICN)
perspective and discuss the role of Named Data Network-
ing (NDN) providing a detailed and systematic review of
NDN-driven Vehicular Ad Hoc Network (VANET).

Our perspective focuses on how valuable a piece of
content is for the population at a given time. For example,
if a node is traveling to a hotspot where the content is
relevant, after a too long travel period, it will be considered
as outdated.

3. A Social-aware Opportunistic Dissemination Sys-
tem

We study the dissemination of information between
mobile users within a geographical context characterized
by the presence of separated hotspots inside which the
disseminated information is relevant.

We take the case in which mobile users opportunistically
leverage D2D and do not rely (because they cannot or do
not want to) on the support of a network infrastructure
and controllers running outside the mobile devices. Instead,
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users leverage the knowledge about social behavior of other
users and the possibility to predict their position in the
short run. We refer to the information to be disseminated
as pieces of content (or contents, for short), and we assume
that each piece of content is exchanged via a single message,
which contains a complete set of instructions and data
that can be processed by a user application. Hence, each
piece of content can be disseminated independently of the
others. The specific mobile dissemination framework and
the system model are presented in what follows.

3.1. Infrastructureless multi-hotspot mobile dissemination
The kind of mobile application we target makes use

of contents carried and spread by mobile users via D2D.
Each content is of use within any of two or more hotspots,
and the goal of the system is to make contents available to
devices entering a hotspot as soon as possible, and certainly
before they leave. Therefore, mobile users need to spread
contents not only within the hotspots in which they are, but
also carry or forward them towards other hotspots while
using precious and limited storage and D2D communication
resources parsimoniously.

Note that the goal of the dissemination scheme de-
scribed does not consist in reaching a specific destination
device nor a fully indiscriminate epidemic broadcast of the
pieces of content, but rather in making the information
available in the hotspots, for devices passing by. Therefore,
what is important in the considered dissemination scenario
is not the time to delivery to a specific destination a piece
of content since its generation instant, but the number of
devices that pass through the hotspots and get the piece
of content. It is also important to evaluate the time that
elapses since when a user enters a hotspot to when it gets
an available piece of content (which can be 0 in case the
content was obtained before entering the hotspot). We call
availability of a hotspot, for a given piece of content and
at a given time instant, the ratio between the number of
mobile devices within the hotspot possessing the content
and the total number of devices in that hotspot. High avail-
ability values are desirable, but it is not strictly necessary
to have an availability close to 1 in order to guarantee that
the content persists while mobile users enter and leave the
hotspots. It is however important that the availability be
far from zero, otherwise newcomers will hardy obtain a
copy of the content. In Section 5 we will formally define
how to measure the availability.

3.2. System model
We consider a planar region with topological constraints

for the mobility of users, e.g., a 2D city map with paths,
buildings and obstacles. We assume that hotspots are disk-
shaped areas within the selected region. Hotspots are also
referred to as RZs in the rest of the article. The radius of
an RZ disk is denoted by rRZ , and we assume that there
are K RZs, each denoted as RZk, k = 1, 2, · · · ,K. RZs
are visited regularly by mobile users, and there are Nk(t)

mobile devices in RZk at time t. More in general, in a pla-
nar region, we identify a large set of points where users can
dwell, which we refer to as dwelling points. Some dwelling
points, but not all of them, are within the RZs. Those
points are selected based on the nature of the place (e.g.,
they correspond to an apartment, a university building,
an office, etc.). Dwelling points within an RZ are chosen
by mobile users uniformly at random, because we consider
that an RZ is a homogeneous area including equally im-
portant dwelling points. However, each RZ has a given
probability of being visited as a whole, and different RZs
have different probabilities of being visited. Dwelling points
outside the RZs are chosen uniformly at random, with a
total probability equal to 1 minus the cumulative probabil-
ity to select dwelling points within RZs. The users move
from one dwelling point to another by following a path
on the planar region, which is not necessarily a straight
line due to topological constraints (e.g., in a taxi scenario,
devices can only follow the roads reported on the city map).
The specific mobility pattern reflects the social behavior
of mobile users by specifying the probability to visit a
random dwelling point within an RZ or to move towards a
random destination outside the RZ. To realistically model
user patterns, we consider that users alternate movements
and pauses, and we consider two cases: (i) pedestrian mo-
bility with synthetic traces alternating moves over shortest
path trajectories at a constant speed (chosen uniformly
at random for each move) and pauses with uniformly dis-
tributed duration; and (ii) trace-based vehicular mobility,
in which the speed and trajectories reflects realistic traffic
conditions, and the duration of pauses represent realistic
inactivity periods of taxi drivers.

Since users express stochastic preferences when they
decide to move to the next dwelling point, and preferences
depend on the profile of the user, we assume that it is
possible for a mobile device to predict with high accuracy
where it will be dwelling next, given that it is at a certain
location. Likewise, when a device meets another one and
they are in transmission range, i.e., within Tr space units,
it can not only start exchanging contents, but also predict
whether it will reach or not a new RZ within a certain time.
The user can rely on predictions to decide whether to probe
the other user and initiate a content exchange or not. The
specific prediction mechanism is out of the scope of this
work, but we remark that devices can build statistics or
use machine learning (e.g., Q-learning) to estimate if and
when they will reach a hotspot.

With the above, it is clear that content exchange can
be limited to cases in which mobile users are within an RZ
or predicted to move to RZs soon. The dissemination of
pieces of content outside RZs, in general, is far less critical
than in the case of legacy opportunistic routing schemes.
As such, we claim that, although traditional opportunistic
routing schemes would serve the purposes of the described
application scenario, more specific schemes are needed to
make content dissemination efficient when the pieces of
content are relevant for the RZs only. Indeed, existing
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schemes cannot be efficient in terms of use of resources, i.e.,
the way they use connection opportunities and buffer space
on mobile devices, which are often limited resources. To
this purpose, in the next section we propose a new content
forwarding and storage scheme that leverages the social
behavior of mobile users, and specifically their ability to
predict their location in the near future.

For what concerns data exchange, we assume that mo-
bile nodes continuously send beacons and scan the wireless
spectrum looking for beacons sent by other pears, like, e.g.,
in a Bluetooth system. For simplicity, we assume that the
transmission range is fixed and constant for all devices, be-
cause we assume that D2D connections are established only
upon the detection of a strong link. We also assume that,
once a connection is established, mobile nodes exchange
pieces of content simultaneously in the two directions, at
a constant speed, which is realistic if again we consider
that only strong links are used. As a consequence, the
impact of channel errors and transport protocol dynamics
is neglected, also because we assume short range transmis-
sions of small pieces of content (and one might think of
using smart transport protocols like QUIC [40] to make this
assumption realistic even in the presence of large pieces of
content). However, a content transfer can fail when mobile
devices exchanging data get out of their transmission range
before the transfer is complete. In other words, differently
from many epidemic-like dissemination schemes, we assume
that content transfer is not instantaneous.

The notation used in the rest of the paper is presented
in Table 1 with a short description of each quantity later
used in algorithms and mathematical expressions. Full
details are given in the following two sections, which de-
scribe Precise and the relevant key performance indicators,
respectively.

4. Precise: Data Communication and Storage
Paradigm

Due to frequent link disruptions in opportunistic net-
works, the fundamental forwarding approach is to adopt
pervasive forwarding solutions.

Epidemic spreading techniques, for instance, provide
the most elementary and effective manner of content dissem-
ination where nodes simply exchange content at any given
opportunity [12, 7]. In general, at any encounter nodes
will try connect and send content to their peers, sometimes
restricted to a zone of interest. However, epidemics-based
dissemination schemes introduce a high overhead, which
not only causes network congestion but also high energy
consumption at each node. Often, the number of content
replicas and connections exceeds by far what would be es-
sential for an efficient distribution of the data content in a
realistic environment. For that reason, our work introduces
a simple yet smart scheme to avoid some of the unnecessary
connections and content replication, focusing at the same
time on finding more beneficial exchange opportunities
with no significant increase in computational cost.

Table 1: Notation

Symbol Meaning

α Discount coefficient of the Autoregressive (AR) filter
(adapted to the distance between Autoregressive
(AR) updates so as to obtain an exponential decay of
past values with T ).

Aki Availability of content i in RZk, i.e., the fraction of
nodes that possess content i with respect to the total
number of nodes inside the k-th RZ.

A(t) Mean availability computed over all existing contents
and RZs, at time t.

Ai(τ)
Time-average availability for content i generated τ
seconds after its injection in the network over all RZs

AG(τ)
Statistical mean of the time-average availability for
the group of contents G, computed for content
lifetime equal to τ .

Cj
i Binary variable indicating whether a certain content i

is available at node j.
Cki Number of nodes possessing content i within the k-th

RZ.
Cte Time elapsed since a node has left an RZ without

re-entering in another RZ.
D(t) Set of contents injected in the network until time t.

Fk(tn) Autoregressive (AR) filtered value of Mk(tn).
G Target group of contents.
gi generation time of content i.
K Number of RZs.

Lj(t) Buffer load of a node j.
L(τ1, τ2) Time-average of the buffer load of all nodes, for

interval [τ1, τ2].
MA(tn),
MB(tn)

Number of contents that node A (or B) attempts to
retrive upon a connection is established at tn.

Mk(tn) Number of contents to exchange upon a connection is
established at time epoch tn in the k -th RZ (k = 0
outside of RZs).

Nk Set of nodes within RZk.
Pk Probability to decide to exchange content upon a

meeting, with Precise.
rRZ RZ radius.
R(t) Mean fraction of injected contents held by a node at

time t.
RZk The k -th replication zone.
t, τ Continuous values of time.
tn Current time epoch (discrete value). n is the time

slot index
T Exponential decay time of the Autoregressive (AR)

filter.
Te Maximum time that a node can spend outside an RZ

before emptying its buffer when using Precise;
similarly, nodes outside RZs accept to receive
contents if they predict to reach an RZ within Te.

Tr Transmission range of mobile devices.
x(tn) Variable containing the time epoch of the last

connection, as observed at time tn.
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A basic example of an epidemic strategy, which we
will use as baseline, consists of allowing nodes to exchange
content with their peers when in communication range and
only within an RZ. Nodes within an RZ can always keep
the content they are carrying. Once they leave the RZ,
they will automatically drop all contents in order to free-up
resources. In the following, we introduce a set of more
advanced predictive scheme, Precise, which helps (a) to
also carry content to other RZs, (b) to specifically pass
content to nodes “going” towards an RZ, and (c) to drop
content after some expiration time.

4.1. Forwarding scheme of Precise
The way nodes forward their content in Precise varies

depending on which zone they are located in. In our for-
warding algorithm (cf. Algorithm 1), nodes within an RZ
can always exchange content and nodes in the outer area are
only allowed to exchange contents if any of them is likely to
reach an RZ before a time expiration threshold Te, which
represents the maximum time during which nodes keep
running their data exchange application while they are out-
side RZs. Since we identify similar node mobility patterns
during weekdays, in order to predict whether the nodes
are likely to visit an RZ at a given time, we analyze the
information obtained from past traces at coinciding times
of the day with a certain probability of failure. We do not
use future information but we assume that the devices can
predict their future position based on statistics collected in
the past. Moreover, in case of nodes that are moving, they
know were they are going (because they have selected a
precise destination) and can reasonably predict when they
will arrive. This process is represented in Algorithm 1 with
the call to the function isVisitingRZ(node/peer). More
precisely, what the function isVisitingRZ(node/peer) does
is, given that a node’s speed is constant, get its value and
check whether the node, moving at its current speed, will
enter an RZ before Te expires. In case one of the node’s
next hop lands inside one of the RZs, the output of the
function isVisitingRZ(node/peer) will be a True value flag.
When nodes are not expected to visit the RZs we assume
the data are not relevant for them.

With Precise, when two nodes establish a connection,
they will only transfer those pieces of content that are miss-
ing at the peer node. The order in which the contents are
transferred is random: prior to the exchange, both nodes
content lists are shuffled to prevent certain pieces from
being repeatedly exchanged in the first place. This way,
we guarantee that all contents have the same probability
of being selected.

In case the data of one node do not completely fill their
assigned capacity, the remaining quota will be relocated
to the peer node. The established connection stays active
until both peers have transmitted the total amount of
contents. Therefore, connections are only interrupted in
two cases: when nodes move away from each other beyond
the transmission range or when both nodes fill up their
storage capacity during the connection.

Besides, if nodes belonging to an established connection
have nothing to exchange or their storage capacity is already
full, the connection will be dropped right after a small fixed
interval. Such interval represents the time needed to check
each node status, which cannot be informed to the peer
in advance with any current technology. In general, when
a connection is interrupted, incomplete file transfers are
dropped.

4.2. Decision making process in Precise
Decision making is a local process, running at each

mobile node, and is based on the computation of the number
of contents that nodes have to exchange when they meet,
i.e., the number of missing contents at a generic node pair
(A,B), indicated as Mk,1 where k = 0, 1, · · · ,K, depending
on which area the nodes are located in the k-th RZ (k = 0
means that the nodes are outside any RZ):

Mk(tn) = MA(tn) +MB(tn), (1)

where tn represents the current time epoch, and MA(tn)
(respectively, MB(tn)) is the number of contents that node

1In the notation, we omit the dependency on the node when not
necessary, but remark that each node has its own version of Mk and
of the derived quantities.

Algorithm 1 Predictive forwarding scheme
Input: {m0,m1, ...}: shuffled list of node’s neighbors

Te: maximum amount of time for data exchanging
outside RZs
Cte: node’s expiration time counter

1: if node in RZ then
2: for peer in {m0,m1, ...} do
3: if peer not busy and peer in RZ then
4: dataExchange(node, peer) ▷ Local node

exchanges data with peer
5: break
6: end if
7: end for
8: else
9: if node not busy and node Cte < Te then

10: for peer in {m0,m1, ...} do
11: if peer not busy and peer Cte < Te then
12: node_prediction← isV isitingRZ(node)
13: peer_prediction← isV isitingRZ(peer)
14: if node_prediction or peer_prediction

then
15: dataExchange(node, peer) ▷ Local node

exchanges data with peer
16: break
17: end if
18: end if
19: end for
20: end if
21: end if
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B (respectively, A) possesses and are missing in node A
(respectively, B).

Considering that not all the previous pieces of infor-
mation might be interesting at a given time, a low pass
filter that covers a predefined previous amount of events
is needed, specially to filter out some noise from instanta-
neous measurements, as done in any real system. We then
use Fk(tn) as the mean observed number of contents to
exchange, which is obtained by applying an Autoregressive
(AR) filter to Mk(tn) when a connection occurs, i.e.:

α = e−
tn−x(tn−1)

T ,

x(tn) = tn,

Fk(tn) = αFk(xn−1)+(1− α)Mk(tn),

(2)

where tn is the current time epoch, x(tn) stores the time
epoch of the last connection started until tn, and α is an
adaptive value that accounts for the time elapsed in between
two consecutive connections, so that the AR filter operates
with an exponential decay time T . This corresponds to
a negative exponential decrease of the importance of old
samples. We used the time constant T of the order of hours
because we follow realistic human patterns, which have to
be measured in hours. If no connection occurs at tn, the
values of Fk(tn) and x(tn) are set as their respective values
at tn−1.

We need to wisely choose the value of T according to
the amount of previous encounters that nodes are going to
consider in order to derive the average number of contents
that were exchanged in the past. Then, whatever happened
before the decay time does not practically affect the value
of the current average.

By computing Fk(tn) and comparing it with previously
computed values, we tune an exchange probability Pk of
actually starting a content exchange, i.e., the meeting
devices might decide to skip a content exchange, to save
resources. To this purpose, we use Algorithm 2. The
proposed algorithm uses a negative control feedback: the
more contents to exchange, the less nodes need to connect
and exchange (because contents are already present in
the scenario). The opposite is true when a node sees less
contents than in the past: this is taken as a sign that less

Algorithm 2 Computation of Exchange probability per
RZ
Input: tn: current time slot

Fk(tn): current mean number of contents to exchange
Fk(tn−1): previous mean number of contents to ex-
change
Pk: probability to exchange content

1: if Fk(tn−1) < Fk(tn) and Pk > 0 then
2: Pk ← Pk − 0.01 ▷ Decrease probability
3: end if
4: if Fk(tn−1) > Fk(tn) and Pk < 0.1 then
5: Pk ← Pk + 0.01 ▷ Increase probability
6: end if

contents are around, so that the nodes must help the system
more, by connecting and exchanging more frequently (with
higher probability). The constant step chosen to adapt
the exchange probability at every connection is set to 0.01,
and we bound Pk to the interval [0, 0.1] according to the
sensitivity analysis presented in Section 6.3. Those values
score a good tradeoff between avoiding large oscillations and
adapting fast while reducing the number of data exchanges
without paying in terms of dissemination performance.

It is important to note that nodes operate with differ-
ent probability values depending on which RZ they are.
This is enforced because nodes present different mobility
patterns and therefore heterogeneous information exchange
behaviors that will be more accurately analyzed separately.

4.3. Local storage management
To make smarter storage management decisions, we

define a scheme to either preserve or drop the content from
nodes’ local buffers. In Precise, nodes within an RZ can
always keep the content. If a node is in the outer area
and visiting an RZ after a long period of time, we assume
the content stored on its local buffer will be outdated
and, thus, irrelevant for the RZ. Therefore, nodes should
eventually discard such content to also reduce the resource
consumption. We perform this by allowing nodes leaving an
RZ to keep their stored content for a certain time, i.e., until
the time elapsed since leaving the RZ reaches a maximum
allowed value, which to be consistent with the forwarding
scheme described in Section 4.1, is set to Te.

Our storage scheme (described in Algorithm 3), along
with the forwarding scheme, seeks to favor content avail-
ability by allowing nodes traveling between RZs to carry
and exchange data in advance to other nodes heading down
the RZs. Besides, nodes returning to the same RZ after
a period of time shorter than Te will also keep their data
alive.

5. Key Performance Indicators

There are many parameters in Precise that can be fine-
tuned to optimize the system. In the following, we briefly
discuss the key performance indicators of the system.

Algorithm 3 Local storage scheme
Input: rRZ : radius of RZ

Te: max amount of time for data exchange outside RZs
Cte: node’s expiration time counter

1: pos← getPosition() ▷ Set node’s position
2: if pos not within rRZ then
3: if Cte == Te then
4: dropData() ▷ Drop all data
5: else
6: Cte ← Cte + 1 ▷ Keep data and increase Cte

7: end if
8: end if
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We use Cj
i (t) to denote a binary variable indicating

whether a certain content i is available at node j at time t.
Therefore, the number of nodes possessing content i within
RZk is expressed as

Cki(t) =
∑

j∈Nk(t)

Cj
i (t); (3)

note that Cki(t) is the number of replicas of content i
available within RZk.

We therefore measure the availability per RZ and per
content, Aki(t), as the fraction between the number of
nodes that possess content i and the total number of nodes
inside the RZ, i.e., nodes with contents outside the RZ are
not considered. With the above, the availability at time t
for content i in RZ k is expressed as

Aki(t) =
Cki(t)

|Nk(t)|
, (4)

where | · | denotes the number of elements in a set. To
evaluate the overall scheme, we will use the mean content
availability at time t, which is the statistical average of the
Aki values computed over all RZs and contents, i.e.:

A(t) =
1

K|D(t)|

K∑
k=1

∑
i∈D(t)

Aki(t) , (5)

where D(t) denotes the set of contents injected in the
network until time t.

Another relevant metric is the time-average availability
for content i generated at time gi, computed τ seconds after
its injection in the network over all RZs. This quantity can
be expressed as

Ai(τ) =
1

τ

∫ gi+τ

gi

1

K

K∑
k=1

Cki(t)

|Nk(t)|
dt , (6)

and the overall statistical mean of the time-average avail-
ability (the total content availability, for short) for a target
group of contents (denoted by G) is the statistical average
of per-content availability values Ai(τ), ∀i ∈ G:

AG(τ) =
1

|G|
∑
i∈G

Ai(τ) . (7)

It is important to note that, at content generation time
(τ = 0), the total content availability AG is low given
that each piece of content belongs to a unique node before
the spreading process starts. Thus, the availability curve
over time undergoes a transient period prior to stabilizing
according to the system capacity.

It is also critical to understand the load Lj(t) of each
node’s local buffer, so to compare the efficiency of the
different configurations applied to the system. The load of
a node j is defined as

Lj(t) =
∑

i∈D(t)

Cj
i (t) , (8)

and the following quantity expresses the mean fraction of
injected contents held by a node at time t:

R(t) =
1∑K

k=1 |Nk(t)|

∑
j∈∪K

k=1Nk(t)

Lj(t)

D(t)
. (9)

Taking into account the nodes’ load, we can observe
the saturation value of the system as a whole, using the
total average load L over the time interval [τ1, τ2], which
is defined as

L(τ1, τ2) =
1

τ2 − τ1

∫ τ2

τ1

K∑
k=1

∑
j∈Nk(t)

∑
i∈D(t)

Cj
i (t)dt. (10)

Finally, other important performance indicators are:
(i) the number of connections used by the nodes, which
depends on mobility, frequency of meeting events and avail-
ability of nodes to connect when they are in transmission
range, (ii) the fraction of contents that disappear from the
network after being injected, (iii) the time during which a
content survives in the network, and (iv) the delivery time
needed by a node to receive a content after entering an
RZ. The number of connections measures the communica-
tion load due to the dissemination process, while the loss
count and the content lifetime express the ability of the
dissemination process to keep information available over
time without the help of any infrastructure. The delivery
time tells how efficient the dissemination is with respect to
RZ visits.

6. Performance Evaluation

We have built an opportunistic content dissemination
simulator using Python, to reproduce the D2D-enabled
application scenarios described in Section 3, with the al-
gorithms of Section 4. New features are developed in our
custom simulator that are not present in state-of-the-art
simulators. For instance, the ability to exchange contents
combining different circumstances, such as, certain peri-
ods of time and selected places in the scenario, basing the
previous decisions on predictive information. This way, we
can flexibly explore diverse scenarios according to our spec-
ified input parameters. It also facilitates the configuration
of more complex scenarios, the post-processing of several
metrics and opens doors to further modular extensions [16].

6.1. Geographical and mobility scenarios
To evaluate Precise, we consider two realistic geographi-

cal environments, which are suitable to simulate pedestrian
and vehicular (taxi) mobility, respectively. The structure
of our application scenarios is composed of the following
mutually associated components:

• The scenario consists of a squared 2D region, ex-
tracted from either a map of Paderborn, Germany
(for pedestrian mobility cases) or from the one of
Rome, Italy (for taxi mobility patterns).
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Figure 1: Scenario of Paderborn including two RZs and 50
users moving within the scenario

Replication 

Zones (RZs)

Transmission range

Max 500 m

Figure 2: Detail of the full scenario of Rome including two
RZs and up to 199 mobile devices moving on taxi cabs
within the scenario.

• Within this region, we define two (circular) RZs that
represent hotspots where disseminated data is espe-
cially valuable for nodes traversing them. RZs are
placed at opposite locations of the maps and all data
contents are aimed to travel between these two zones.

• The scenario also contains mobile users (nodes), that
move according to two different methods: for pedes-
trians, we use synthetic traces based on the city map
of Paderborn, while for taxis, we use real traces ob-
tained from [37]. In case nodes follow synthetic traces,
they are uniformly distributed in space with a certain
user density. In all cases, nodes have an accurate
estimate of their position and can forecast the time
at which they will reach RZs.

Figs. 1 and 2 show the map sections used in this paper,
from the city of Paderborn and Rome respectively. In the
case of Rome, the figure only shows a detail of the full
map. The traces used cover a larger area which cannot be
modeled as a uniform square region. However, the taxis
spend 67% of their time in a square area of dimensions
4 kmx6 km within which we selected the RZs. Figures
depict, approximately, the size and location of both defined
RZs together with the type of nodes of each scenario, being
pedestrians in the first case and vehicles in the second. We
also indicate in the figures the node transmission range
of each setting (see Table 2 for numerical values). We
initialize the system based on a set of parameters explained
in Section 6.2, which can be tuned according to the desired
scenario. Note that the structure of a scenario can take
more complex configurations, composed of one or multiple
RZs and also supports multiple types of content per RZ.

We have used the ONE Simulator [41] to generate pedes-
trian traces based on the map of the center of Paderborn
and a set of manually selected dwelling points which cor-
responds to gathering places in the city. Moreover, we
consider three pedestrian mobility models, which show the
different dynamicity levels typical of a Businessman, a
Clerk, or a Student. Business’s mobility assumes rather
long pause time and inhomogeneous RZ visiting probabili-
ties. This leads to a less routine movement of the nodes,
which resembles business people’s mobility. Clerk ’s mobi-
lity increases pause periods and RZ visiting probabilities.
This mobility represents the case of commuters. Student ’s
mobility represents an intermediate case, with nodes mov-
ing between positions at shorter periods and visiting a
RZ with a probability higher than in the Businessman’s
mobility case. This reflects a university environment.

In the case of taxi cab’s mobility in Rome, we count on
5 sets of 2 days traces each, obtained from cabs mobility
measurements [37]. These traces were collected during con-
secutive complete days where cabs reported their position
with 15 s granularity. By previously studying the sets of
traces, we could observe the most visited regions of the
city along different days, such as the airport and the main
streets of the city center. Thus, defining them as our RZs.
The key characteristic of the traces from Rome, compared
to Paderborn scenario, is the dynamicity of the nodes. In
this case nodes are vehicles, not pedestrians, which move
at a higher speed. This will entail larger number of visited
places and nodes encounters but will impose shorter contact
intervals.

In all cases, we assign nodes to two groups, each with
different RZ visiting probabilities, so that each group has a
preferred RZ to visit. This way, nodes will likely visit both
RZs, but will stay for longer periods within one of them.
By so doing, we test the ability of Precise to efficiently
move contents between two disjoint hotspots located within
a larger area.
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Table 2: Input parameters

Parameter Paderborn Rome

Region size 2.25 km2 24 km2

Radius of
replication

(rRZ)

200m 1000m

Transmission
range (Tr)

30m 500m

Channel rate 10Mbit/s 10Mbit/s
Memory limit infinite infinite

Number of
users in the

region

50 199

User speed 0.5−−1.4m/s From traces
Slot length 1 s 1 s

Content size 5Mbit 5Mbit
Injected
contents

2 2

Periodic
injection time

1000 s 1000 s

Elapsed time
(Te)

400, 600 and 800 s 400, 600 and
800 s

Pause time
2–5 h (Businessman)
3–8 h (Clerk)
15–30min (Student)

4.6min on
average

RZ visiting
prob

0.2 and 0.1 (Businessman)
0.7 and 0.2 (Clerk)
0.4 and 0.3 (Student)

0.036 (RZ1)
0.441 (RZ2)

6.2. Parameter setting
In the simulations, time is subdivided into slots of 1

second. In each slot, nodes can connect and exchange
data: connection establishment is always completed within
a slot, while data exchange can involve one or more slots.
Simulations were run for a duration of 172800 time slots,
i.e., 48 h, which we identified to be sufficient to observe the
system out of any transient. Besides, we have carried out
20 simulation runs per specific configuration in Paderborn
and 15 for Rome scenarios, which was enough to gather
sufficient statistics.

As for the simulation settings, the main parameters used
are listed in Table 2. We differentiate among Paderborn
and Rome scenarios due to the different characteristics and
dimensions of each case.

6.2.1. Set up
In the simulations, the radius of the RZs has been set

to 200 m for Paderborn and 1000 m in Rome. A randomly
chosen node within an RZ injects a new piece of content
every 1000 slots, and the initial number of injected contents
in the first slot is two, i.e., one content per RZ. The max
amount of stored contents per node is given by the storage
capacity described by the memory limit parameter, which
here we consider unbounded, for simplicity. We assume
that when two nodes are in contact, the channel rate is
constant over time and equal to 10Mbit/s.

For pedestrian mobility, 50 nodes are uniformly dis-
tributed across allowed dwelling points, and when they
move they follow the shortest path allowed by roads and

squares in the map. The two selected RZs have quite dif-
ferent characteristics: the RZ on the left of the map only
includes dwelling points spaced more than 30 m, which is
the transmission range, while the RZ on the right includes a
cluster of attractor points within transmission range. This
will enforce differences in the metrics observed in the two
RZs, because dwelling points within transmission range
behave like a single dwelling point with the sum of the
respective mobile users.

For Rome, 199 nodes follow the trajectories provided
by the taxi cabs deployed across the city from which not
all nodes might be present in the scenario at initial time,
neither during the whole simulation. Note that, as a con-
sequence, nodes will remain within the area for limited
periods of time.

6.2.2. Precise
Experiments with Precise are structured to study three

fundamental features. The first feature is node mobility,
defining speed and pause times. For Paderborn scenario,
we consider Businessman’s, Clerk ’s, and Student ’s mobility
scenarios, according to mobility dynamicity. In all scenarios,
nodes are split in two equally sized groups: each group has
a preferred RZ, which is visited more often (see Table 2).
Business’s mobility assumes rather long pause time of 2–
5 h, and RZs are visited with relatively low probabilities
(0.2 and 0.1). Clerk ’s mobility increases pause periods to
3–8 h and RZ visiting probabilities are quite high (0.7 and
0.2), leading to low probability to select a dwelling point
outside the RZs. Student ’s mobility sees nodes moving
often, visiting for only 15–30 min the two RZs with mildly
high probabilities of 0.4 and 0.3, respectively.

For Rome scenario, the pause time reported in Table 2
corresponds to the average pause time computed over the
first 2 days of traces. A pause is described as every interval
of time longer than 30 s where taxi cabs report the same
position. We have also directly obtained from traces the RZ
visiting probabilities for Rome by computing the average
time spent by taxis at every RZ and outside.

The second feature concerns the content exchange
scheme, which is mainly affected by Te, i.e., the interval
during which nodes can keep data stored and also exchange
content when they are outside the RZs. We studied a wide
range of configurations for this parameter, between 0–800 s.

The third feature concerns the data exchange area,
i.e., the restrictions on where data exchange can take place.
We label with ‘in’ the scenarios in which exchanges are
allowed only inside RZs and with ‘out’ those in which
exchanges are allowed everywhere.

6.2.3. Benchmarks
Besides, we consider two extreme benchmark cases.

In the first, labeled as ‘Restricted Only In RZ’, nodes
cannot carry any piece of content outside the RZ. This
is the typical approach used in other works dealing with
content dissemination in RZs. In a second benchmark, we
use a scheme that allows to keep and exchange contents
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limitless outside RZs, labeled as ‘Epidemic Te =∞’ in plots.
This represents a typical uncontrolled epidemic diffusion
scenario.

In addition, we have implemented PIS, a content dis-
semination protocol that bases its content dissemination
decisions on three different social dimensions called similar-
ities. First, PIS takes into account the physical proximity
between nodes. Each node builds a so called Ego Matrix
to keep track of, not only its own previously met contacts,
but also the contacts of the peer devices that it encoun-
ters. Each node’s Ego matrix is updated at every time
slot with the information of the neighboring nodes. Then,
the physical proximity similarity is computed using the
information stored in the matrix for the next n time slots,
and we use n = 1. Second, PIS considers users interests
to decide whether they will possibly meet the destination
node and therefore, be selected as a next hop candidate.
We have randomly generated lists of interests for PIS with
the dwelling points selected in the application scenarios,
which is the same as we do for Precise. Third, PIS spots
friendship between nodes according to the number of uni-
cast messages that they have exchanged in the past. Social
relationships for PIS are also randomly generated since we
assume that the only piece of information that a system will
be able to retrieve is the mobility of nodes, thus avoiding
extra overhead.

We run PIS routing protocol in our scenarios with the
previous settings and, bearing in mind that we consider
all nodes as potential destinations, we also inject a high
number of content copies. When computing the exchange
decision parameter simPIS, as explained in [32], a constant
value of γ needs to be selected in order to assist or constrain
the dissemination of contents. This value has an impact
on the system when the number of content copies is low.
Given that, when γ is high it allows for a rapid content
dissemination, thus PIS takes the risk of sharing all pieces
of content earlier than the destination node is reached
according to the following equation:

simPIS + γ > 0. (11)

To prove that, we have run experiments for the two
extreme cases of γ: 0.2 and 0.8.

We compare our results with these three benchmark
cases, whose results are reported within each figure.

6.3. Sensitivity analysis
We have carried out a parameter study of the proba-

bilities involved in the decision making process explained
in Section 4.2. Our goal is to reach a fair trade-off between
the content availability and the overhead generated due
to the number of connections established. This trade-off
can be regulated by adapting the probability with which
a content can be exchanged given the requirements of our
predictive scheme.

We performed a set of one-day simulations for the group
of student mobility nodes on Paderborn scenario, with
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Figure 3: Average content availability and standard devi-
ation versus number of connections for different values of
the content exchange probability.
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Figure 4: eCDF of content availability over one day experi-
ment in Paderborn.

Te = 800s and allowing nodes to exchange contents also
outside RZs. We test different probability values as shown
in Fig. 3 and observe that using a very restrictive condition,
i.e., forcing Pk < 0.05, gives a desirable reduction in the
number of connections in exchange of some decrease in the
content availability value. However, we aim at comparing
Precise with other approaches such as Epidemic or PIS
routing protocol, which are proven to be very competitive in
terms of content availability [32]. We notice a sharp flop of
performance in the availability from Pk < 0.1 to Pk < 0.05.
For that reason, we observe that configurations closer to
Pk < 0.1 are more beneficial because they increase content
availability while still getting benefit from the overhead
compared to the mentioned approaches. In the following
results, we fixed the constraint to Pk < 0.1

In Fig. 3, we can see the significant impact of the param-
eter chosen for the probability. This is one of the reasons
why, instead of using a fixed value for the probability con-
dition, we have decided to use Algorithm 2, in which Pk

is adjusted in steps, based on a quantity Fk which is the
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Figure 5: eCDF of content availability over one day experi-
ment in Rome.

output of an AR filter. We based the probability on the av-
erage number of contents that two nodes have to exchange
at every encounter as presented in Eq. (2).

Content availability results for adaptive values of α are
depicted in Figs. 4 and 5 for synthetic traces and real traces
from the literature [37], respectively. Note that, in both
cases we run again a single one-day simulation which is a
good representative example for the parameter study. From
the figures, we can observe that the variations in content
availability are almost negligible. In the case of synthetic
traces in Paderborn scenario, the best results are grasped
when α has a fixed value of 0.7. In the case of real traces
in Rome, the content availability increase is sensed when
adaptive α is computed from a large value of T = 5000,
which means larger memory, corresponding to about 7 h2.

Surprisingly, Figs. 4 and 5 do not show a significant
improvement when no memory is taken into account, i.e.,
α = 0 which means that all connections are allowed at any
time. Therefore, increasing the network load, as shown
in Section 6.6, is not essential to get content availability
values close to 1.

This way, we have verified that the value of T , or even
fixing alpha, does not bring in notable differences, so we
picked a round value of T = 1000, which is enough to keep
in the memory of the filter whatever happens while a node
is outside the RZs for about Te.

6.4. Content Availability
One of the main performance parameters of the sys-

tem is the mean content availability AG inside RZs. In
each of the tested configurations, we have obtained AG

by averaging per-content availabilities across all contents
(i.e., we use G = D(t)). Fig. 6 shows this metric for each

2With an auto-regressive filter like the one used in this work,
the importance of a sample fades exponentially with decay time T ,
therefore it becomes practically negligible after 5T .

0.72 0.73

0.94 0.92

0.91 0.91

0.82

0.92

0.75 0.74

0.94 0.93

0.89
0.94

0.87
0.94

0.74
0.78

0.92 0.94

0.95 0.95

0.89
0.96

0.94

0.96

1

0.99

0.94 0.94

0.95 0.96

0.99 0.99

0.99 0.99

0.34

0.47

0.44

0.32

Precise

T e = 400s

Precise

T e = 600s

Precise

T e = 800s

Epidemic

T e = ¥

PIS

Routing Prot

Restricted

Only In RZ

P
aderborn

B
usiness`s m

obility

P
aderborn

C
lerk`s m

obility

P
aderborn

S
tudent`s m

obility
R

om
e m

obility

in out in out in out out pis02 pis08 in

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Policy

A
va

il
ab

il
it

y 
A
G|

Figure 6: Time-average content availability (cf. Eq. (6)–
Eq. (7)) for all forwarding and storage configurations, com-
puted over the entire duration of the experiments and for
all contents (G = D(12h) in Eq. (7)). Plotted is the mean
together with the standard deviation.

configuration. The figure shows also the standard devia-
tion observed in the simulations. The computed confidence
intervals are small and hence we do not report them in
the figure. Their value indicates that, with probability
95%, the actual average is within ±0.19% of the estimated
average reported in the plot. As it can be seen, if data
exchange outside the RZs is permitted, the content avail-
ability increases in comparison to the traditional paradigm,
where content exchange is only allowed for nodes inside
RZs. When it is possible to carry a piece of content outside
the RZ, performance improves drastically: in fact, results
for the case ‘Restricted Only In RZ,’ in which nodes clear
their storage as they leave the RZ, are the worst. Moreover,
configuring our proposed scheme so to keep contents stored
on nodes for a limited amount of time performs comparably
well with respect to the uncontrolled dissemination case
(‘Epidemic Te =∞’ in the figures). These results provide
valuable information on how to manage resources of the
network.

Results show a similar trend over all mobility cases.
However, if we compare results obtained from different mo-
bility patterns in Paderborn, Clerk’s and Student’s mobi-
lity cases look similar while Businessman’s mobility depicts
lower availability numbers. In the Student’s case, nodes
move with the lowest pause time at hotspots and, therefore,
the higher number of nodes encounters explains the rapid
pervasion of contents. We can clearly appreciate this fact in
Fig. 7, where we plot the mean content availability across all
contents, A(t), as it evolves over time3. Student’s mobility

3Note that, in Fig. 7, time is relative to content generation epoch.
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Figure 7: Evolution over time of the mean content availabil-
ity (cf. Eq. (6)–Eq. (7)) observed under different forwarding
and storage configurations.

subplots illustrate a quick content spreading among nodes
and very small variation across different contents behavior,
that is why standard deviation in Fig. 6 is smaller than un-
der Businessman’s and Clerk’s mobility cases. Here, when
contents are first generated, it takes around one hour only
to hit the highest availability values compared to Clerk’s
mobility patterns that reach its highest point later on but
keeps it in steady state. Businessman’s mobility subplots
depict a rising curve that, in most of the cases, does not
reach either availability values as high as nodes under the
Clerk’s or Student’s mobility over the entire run.

Finally, the simulations executed over the traces ob-
tained from taxi cabs in Rome depict lower values of content
availability due to higher nodes speed and the frequent dis-
appearance of nodes from the considered area. On average,
nodes are present in the scenario for 11 h, and once they
leave the scenario the content stored in their local buffer
is erased. In view of these results, we can perceive the
influence of the nodes mobility pattern over the content
availability. Fig. 8 shows the evolution over time of the
number of users present at each RZ for each scenario. Com-
paring the results with the number of nodes in the scenario
over time, and specifically for each RZ in Fig. 8d, we can
appreciate that the rising trend in content availability cor-
responds to higher visits to the RZs, however we are clearly
able to overcome the decreasing trend by applying our
proposed scheme. Nodes leaving the RZs in a short period
of time but remaining in the scenario are still a critical
asset to spread the collected contents until time elapsed
value is up.

This is to be able to homogeneously compute the statistical mean for
a set of contents generated at different instants.
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(b) Clerk’s scenario

0 10 20 30 40 50
Time [h]

0

5

10

15

20

25

Nu
m

be
r o

f n
od

es
 in

 th
e 

RZ
s

RZ 1
RZ 2

(c) Student’s scenario
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(d) Taxi’s scenario

Figure 8: Evolution over time of the number of users present
at each RZ for each scenario.

From the results, it is clear that availability increases
dramatically when nodes are allowed to keep the contents
while outside RZs. Likewise, it is clear that there is an extra
benefit due to allowing nodes to connect and exchange data
outside RZs, at least under the mobility models explored.
More importantly, we demonstrate that there is no need to
allow nodes to store and exchange contents for long periods
of time. A fair performance can be reached by constraining
the time elapsed parameter Te according to the scenario
settings while maintaining comparable values of content
availability to those reached by epidemic dissemination
techniques.

In all cases, we have observed high availability values.
Although we can notice that Precise achieves slightly lower
availability with respect to Epidemic and PIS, the avail-
ability is high enough to guarantee content persistence over
long intervals. Indeed, we will see later in this section that
content lifetime is not affected and losses are negligible.
The only exception is the case in which we restrict con-
tent exchanges within RZs in the Rome scenario, where
we can see that availability approaches zero dangerously
when there are only a few cabs in the region. This confirms
that allowing some content exchange outside RZs is key to
obtain good performance.

6.5. Storage usage
Another significant system metric is the amount of stor-

age used. As shown in Fig. 9 (we plot again the mean
together with the standard deviation and we do not re-
port confidence intervals in the figure since value indicates
that, with probability 95%, the actual average is within
±2.71% of the estimated average reported in the plot.),
our predictive scheme performs better than the benchmark
that restricts storage and data exchanges to RZs, and is
comparable to the uncontrolled dissemination scheme in
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Figure 9: Average number of replicas of a content, com-
puted across both RZs and time-averaged over the entire
simulation. Plotted is the mean together with the standard
deviation (taken with respect to the time-averaged number
of replicas of each content).

terms of available replicas. Note that, with the high values
of content availability achieved by our predictive scheme,
the number of replicas should be comparable to the number
of nodes inside each RZ (see Fig. 8). With the parame-
ters chosen for the three mobility scenarios that we have
simulated in Paderborn, 30%, 70% and 90% of nodes will
lay within RZs, for Businessman’s, Student’s and Clerk’s
mobility cases, respectively. Therefore, with the availability
values reported for our scheme in Fig. 6, we should expect
to observe about 13 to 15 replicas for the Businessman’s
case, 19 replicas for Student’s case, and 23 for the Clerk’s
case. For Rome, we expect to have between 9 and 11
replicas inside the RZs according to the average number
of nodes visiting the selected RZs. However, Fig. 9 shows
lower values because it accounts for the delay incurred for
spreading newly injected contents. More in detail, Fig. 10
shows how the number of contents stored in each node
tends to increase as time passes. Abrupt changes visible in
the figure are due to the periodic injection of fresh contents.

In the figure, we can observe how fast the storage capac-
ity of nodes fills up, according to each mobility pattern. It
draws our attention that the Businessman’s case presents
a slower increase in memory usage compared to Clerks and
Students nodes. This is due to the fact that, in Business-
man’s case, nodes do not visit RZs as often as in Clerk’s
case, therefore, they miss opportunities to retrieve the data;
in the Businessman’s case, nodes neither have as many new
peers encounters as in the Students mobility case, due to
higher pause times. However, if we analyze again Fig. 6, we
see that Businessman’s mobility settings provide fair avail-
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Figure 10: Average number of contents stored at a node
(this quantity corresponds to R(t) ·D(t)). The final amount
of injected contents in one simulation run is 345.
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Figure 11: R(t), mean fraction of contents possessed by a
node (cf. Eq. (9)).

ability compared to Clerk’s and Student’s mobility cases,
while occupying 50% of their storage and experiencing less
content exchanges, as explained later in Section 6.6. Fig. 11
further shows the normalized number of per-node stored
content, R(t), i.e., the fraction computed with respect to
the number of injected contents. The computed confidence
intervals are small and hence we do not report them in the
figure. Their value indicates that, with probability 95%,
the actual average is within ±0.22% of the estimated aver-
age for the whole runs. Content injection epochs are clearly
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Figure 12: Total number of connections per simulation run
in millions (average over 5 runs). Shown is a stacked plot
of connections in each RZs and outside.

visible in this figure. The figure shows that the system
tends to quickly spread fresh injected contents, though this
process is strongly correlated with the speed and dynamic-
ity of nodes. Indeed, it is clear that in Student’s mobility
scenario contents are distributed more rapidly. Despite the
fact that the results for Businessman’s and Clerk’s mobility
traces present a slower increase, Clerk’s mobility figures
illustrate a more agile dissemination of contents among
nodes due to higher probability of visiting RZs.

Again in Fig. 10 and Fig. 11, we can notice the evident
impact of real mobility traces in the average number of
contents stored at the nodes. In Rome, even though the
RZs are highly visited areas, the speed of the cabs and
the low pause time in both zones introduce a considerable
decrease in the storage usage of the nodes, due to faster
content acquisition and imminent loss, as we could earlier
notice when analyzing Businessman’s mobility case.

Still, when connections are allowed outside the RZs,
we can observe a slightly higher usage of the system stor-
age, although less than in the case in which dissemination
operations are unbounded (‘Te = ∞’). However, while
gaining some content availability from adding connections
outside RZs, the overall storage capacity is not significantly
affected.

6.6. Number of connections
Since any forwarding policy will introduce constraints

in terms of data sharing attempts, the number of connec-
tions will inevitably affect the network performance and,
therefore, also the content availability. Fig. 12 reports the
average number of connections observed during simulations.
Connections are divided into three groups depending on

Table 3: Comparison of the total number of connections for
Epidemic and PIS schemes with and without the restriction
of exchanging contents only inside RZs

Configuration Number of connec-
tions with restriction

Number of connec-
tions without restric-
tion

Epidemic Busi-
ness

1.1684×106 1.6154×106

PIS08 Business 1.1693×106 1.6167×106

PIS02 Business 1.1568×106 1.6031×106

Epidemic Clerk 3.1815×106 3.272×106

PIS08 Clerk 3.1819×106 3.2722×106

PIS02 Clerk 3.0559×106 3.1399×106

Epidemic Stu-
dents

2.2924×106 2.5739×106

PIS08 Students 2.2932×106 2.5746×106

PIS02 Students 2.2331×106 2.5028×106

Epidemic Rome 0.9048×106 3.2551×106

PIS08 Rome 0.9058×106 3.2560×106

PIS02 Rome 0.8877×106 3.2289×106

where they take place: inside RZ1, inside RZ2, or outside
RZs. Under the Businessman’s mobility, the number of
connections is lower than in the other cases for Paderborn
city, which is due the lower probabilities of visiting the RZs.
The same happens in Rome’s subplots, despite the fact that
the RZs defined in this scenario are the most frequently
visited areas, they are still not as visited as in Paderborn
scenario plus nodes do not remain there for long periods.

In all considered cases, even if negligible in the plots, the
number of connections outside RZs increases with Te, and
it is more pronounced in Businessman’s and Rome’s mobi-
lity scenarios, as we can clearly see when Te is unbounded,
in which case all nodes will always attempt to establish a
connection when they meet, independently from their mo-
bility characteristics. Therefore, since in the Businessman’s
and Rome’s scenario nodes tend to travel to the defined
RZs with lower probability, having more opportunities for
complete new encounters, they also end up using the most
amount of connections outside RZs, even when Te→∞.
Note that the number of connections outside RZs is quite
limited for finite values of Te, which means that our scheme
does not require much use of network capacity when nodes
are outside RZs. Therefore, our predictive scheme performs
comparably to unbounded epidemic diffusion schemes for
what concerns dissemination of contents, although they
require much less network resources. In some cases, the
number of connections in the two RZs is not symmetric.
Indeed, the RZ in which we observe less connections is
the one in which dwelling points are spaced apart, out of
transmission range. When the average number of nodes in
each RZ is low, they end up being, with high probability,
far apart to establish connections, which results in less
connections than in the other RZ. Instead, under mobility
scenarios where the number of nodes in the RZs is higher,
various nodes will be going towards the same dwelling point
and thus they will be able to connect.

Besides, to assess the importance of bounding content
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Figure 13: Average lifetime of contents generated between
t ≈ 14−15 h. Plotted is the mean together with the stan-
dard deviation.

exchanges within or nearby RZs, we have tested the be-
havior of Epidemic and PIS in case they are forbidden to
operate outside RZs. Table 3 compares the number of con-
nections with Epidemic and PIS (with γ = 0.2 and γ = 0.8)
with and without such restriction. In the table, we can
appreciate that, with the restriction, the number of con-
nections experienced decreases substantially only in case of
highly dynamic mobility—e.g., in the taxi cab scenario—,
although in all cases it remains much higher than what
observed for Precise (cf. Fig. 12).

6.7. Data lifetime, losses and delivery delay
We now compare our predictive scheme to the bench-

marks in terms of their ability to keep contents alive with-
out the support of an infrastructure. Fig. 13 shows the
average lifetime of contents that were generated between
t ≈ 14−15 h, with a residual simulation duration of ≈ 33 h.
The computed confidence intervals are small and hence we
do not report them in the figure. Their value indicates
that, with probability 95%, the actual average is within
±0.25% of the estimated average reported in the plot.

We observe that most of the contents are kept alive a
bit longer than 1.5 h (for about 95-100 minutes), for all
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Figure 14: Average content pieces lost over time. Average
losses are much less than a single piece of content in 6.5
simulated hours (in most of the runs, there are no losses at
all).

settings and schemes. However, the baseline ‘Restricted
Only In RZ’ scheme shows a smaller average lifetime, up
to only ≈ 45min in Rome scenario, and more variability
across contents and simulations. This shows that, even
with only 50 nodes in the case of Paderborn, our predictive
forwarding scheme, along with realistic mobility patterns,
is as resilient as pure unconstrained dissemination schemes,
although it requires less use of communication resources.

Losses are very infrequent, as shown in Fig. 14. In-
deed, the number of contents disappearing is less than 1
on average, under any of the tested configurations. The
computed confidence intervals are small and hence we do
not report them in the figure. Their value indicates that,
with probability 95%, the actual average is within ±0.03%
of the estimated average reported in the plot.

It is interesting that most of the lost contents disappear
at the very beginning of their lifetime, when only one node
possesses each specific piece of content injected. Never-
theless, contents that manage to survive to that transient
period remain alive until the end of the simulation, thanks
to a fast dissemination. Especially, in the cases of Clerk’s
mobility with more nodes gathering for longer around the
same areas and Student’s mobility with shorter pause times
and, consequently, higher number of encounters. Addition-
ally, with Businessman’s and Rome’s mobility, we notice
a significant reduction of content loss when we allow ex-
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changes outside RZs.
In most cases, and especially in Rome scenario, our pre-

dictive scheme suffers much less losses than the ‘Restricted
Only In RZ’ benchmark, although not as good as for the
uncontrolled case with Te→∞. We can conclude that the
introduction of the Te parameter in our predictive scheme
plays an interesting role: by varying its value, it is possible
to trade-off reliability (losses) for costs (network resources)
with only a limited impact on the availability of contents
in RZs.

Finally, we have also measured the content delivery
delay in Paderborn and Rome scenarios. Note that, the
classic delivery delay metric cannot be applied for our
scheme since the behavior of content exchanges is different
for each case. I.e., in our predictive scheme, nodes drop the
content when they are out of the RZs for too long (> Te)
and that does not happen in epidemics-like configurations.
In epidemic (or PIS), nodes never drop the content so only
the first time they get the content is taken into account.
However, in our scheme, nodes can get the content soon
for the first time and drop it after a while if they are
out of RZs. Then, they can retrieve the content again
if the conditions allow for it. Besides, the contents are
needed only inside the RZs, so what matters is that they
are received by the time a node enter an RZ or shortly after.
Given these circumstances, we measure the delivery time
as the time elapsed since a node enters an RZ. With this
metric, in Fig. 15 we see that cases where content exchanges
are allowed outside the RZs, the content delivery delay
decreases since nodes that enter the RZs already possessing
the content report a delay of 0 s. Despite the fact that
epidemic and PIS configurations show the lowest content
delivery delay values, Precise presents comparable results
with the smallest difference in the order of milliseconds for
the most dynamic case (Rome). It also draws our attention
the higher values obtained for Clerk’s mobility. As stated
in Section 6.2.1, the RZs defined for Paderborn scenario
contain some attractor points towards the nodes move
with higher probability and, in this case, remain for longer.
This will imply that, even though nodes eventually get the
content because they remain during long periods inside the
RZs, they will need more time to find someone to exchange
content with. In one of the RZs, the distance between some
attractor points is larger than the transmission range. This
means that if nodes fall into separate points, they will not
be able to retrieve the content until they move again after
a long pause.

7. Conclusions

We presented Precise, a series of data forwarding, stor-
ing and decision making schemes to benefit the infras-
tructureless content dissemination process in opportunistic
networks, particularly focusing on D2D data exchange be-
tween hotspots. Our predictive scheme leverages node
mobility patterns to make effective forwarding decisions
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Figure 15: Average delivery delay of contents. Plotted is
the mean together with the standard deviation.

and efficiently use network resources while maintaining fair
content availability values.

Precise specifies how a node adapts its probability to
decide to exchange contents when it meets another node, so
as to speedup content diffusion when encounters are rare,
or save resources when contacts are frequent. It also uses
the knowledge of pedestrians and vehicles’ position and
mobility pattern to carry out meaningful connections be-
tween nodes and improves the main performance indicators
of our system especially in the selected RZs. Since node
density and device limitations impair dissemination and
system scalability, Precise encourages only the exchange of
valuable data between potential peers according to their
predicted movement, encounters and content expiration
time. In such a way, we dramatically reduce the number
of connections by 65-92% and the use of on-device storage
by 50%, consequently avoiding network congestion and
memory shortage. Indeed, our results show that existing
schemes use unnecessary high amount of storage and com-
munication resources, while Precise can easily provide the
same quality of service (achieving real-time messaging de-
lay and very high availability of contents) and the same
content lifetime at a much lower cost.
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