
An Overlay Network for Integration of WSNs in
Federated Stream-Processing Environments

Niko Pollner∗, Michael Daum∗, Falko Dressler†, Klaus Meyer-Wegener∗
∗Department of Computer Science, University of Erlangen, Germany
†Institute of Computer Science, University of Innsbruck, Austria
{niko.pollner,md,kmw}@cs.fau.de, falko.dressler@uibk.ac.at

Abstract—This paper presents an approach for seamless in-
tegration of hosts in heterogeneous networks in the context
of data-stream processing. The integration of multiple hetero-
geneous hosts from the sensor-node level up to the level of
high-performance workstations is one of the most promising
concepts for extensive and efficient analysis of streaming data.
For controlling such a network, communication between hosts is
needed, e. g., to initiate stream processing, to configure queries,
and to transmit streams. One of the key challenges is global
addressing and transparent yet efficient data exchange despite
diverse, differently capable networks involved.

For this purpose, we developed a cross-platform overlay
network that enables transparent communication between au-
tonomous stream-processing systems on different hosts in miscel-
laneous networks for both data streams and control commands.
The system directly uses underlying native protocols within each
network so that the most efficient communication method is
applied. Furthermore, global addressing of instances of stream-
processing systems and routing over the individual communica-
tion paths is provided.

I. INTRODUCTION

In the scope of our Resource-constrained Distributed Stream
Processing (RDSP) project1, the Data Stream Application
Manager (DSAM) [1] manages distributed stream processing
queries that includes the reorganization of those queries. In
this article, stream refers to a stream of tuples and not to a
multimedia stream. DSAM integrates heterogeneous Stream
Processing Engines (SPEs) and Wireless Sensor Networks
(WSNs) and provides a federated stream-processing environ-
ment. In the remainder of this article, both full-fledged SPEs
like Borealis [2] usually running on workstations and stream-
processing WSN nodes are subsumed as Stream Processing
Systems (SPSs) for reasons of simplicity. Queries can be
submitted to the central DSAM controller running on a certain
host. The queries are automatically partitioned, optimized, and
disseminated to the SPEs available for processing. Section II
details the architecture of DSAM.

For dissemination of partial queries, a communication path
to each SPE and WSN node is needed. As long as all
hosts reside in a common network this imposes no problems
and standard protocols like TCP/IP can be used. But on
sensor networks the TCP/IP protocol is often not natively
available. Moreover, there exist many different connection
techniques and protocols for communication between sensor

1http://www.rdsp.uni-erlangen.de/

nodes. The WSN’s connection to the stationary network is
usually achieved by connecting the gateway node and a
stationary computer via a serial line that needs its own special
communication protocols.

The DSAM controller needs to communicate with the
different SPSs to start and stop stream processing, disseminate
new queries and maintain running queries. Communication
among the SPSs is necessary to forward streams between the
SPSs involved in the streams’ processing. To provide easy
expandability, it is not desirable to implement special methods
for communication with each system in the upper layers of
DSAM. Instead, a communication layer is worthwhile that
abstracts from the different native communication protocols.
This layer should provide an interface with which messages
can be sent to individual SPS entities addressed by a unique
ID that is independent of addresses used in specific networks.
Automatic routing of messages is necessary, because a mes-
sage may pass more than one network on its way from sender
to receiver. E. g. a message from the DSAM controller to a
WSN node must be first sent through the stationary network
to the host, to which the WSN is connected. Afterwards it
has to be transmitted to the gateway node of the WSN from
which on it must be sent to its actual receiver. Eventually,
this network layer must be suitable for implementation on all
devices in the network of SPSs, i. e. on powerful workstations
as well as on tiny, resource-constrained sensor nodes.

Although resources available on small embedded systems
like sensor nodes increase, they are still very limited. E. g.
in large-scale deployments, very low-cost sensor nodes are
needed for economic reasons. There are also domains that
impose strong limitations on sensor weight and size. This
might be the case when sensor nodes are fixed to animals for
biological research. Such restrictions limit the size of batteries
while the nodes should be running for long time without
human intervention. Thus usage of sensor nodes with only
a few kilobytes of memory and limited computational power
will remain necessary in future deployments. Implementing
involved communication protocols for application in the WSN
is therefore not appropriate.

A. Related Work

There are several publications that deal with communication
in heterogeneous sensor networks. This section presents a brief
summary of projects related to our setting.

2011 The 10th IFIP Annual Mediterranean Ad Hoc Networking Workshop

978-14577-0900-5/11/$26.00 ©2011 IEEE 157

A development kit for building in-network query applica-
tions is provided by the Corona architecture [3]. Queries are
entered into a central server. The server generates a set of tasks
from each query and distributes them to nodes in the network.
Integration of hosts in a stationary and wireless network is
not examined. Furthermore Corona architecture is based on
and limited to powerful SunSPOT sensor nodes whereas we
are also investigating more resource constrained ones.

The Global Sensor Network (GSN) project [4] offers a
middleware that integrates heterogeneous WSNs at network
level. Each sensor network is abstracted by a virtual sensor that
produces one data stream. Hereby GSN gets a homogeneous
view on possibly heterogeneous sensors. In contrast to the
article at hand, seamless data transfer between stationary and
wireless networks is not considered. Moreover addressing an
individual WSN node is not designated.

REED [2] integrates the SPE Borealis [5] for stationary
networks with the WSN TinyDB [6]. The integration is spe-
cialized for those two systems and cannot be easily adopted to
integrate additional SPSs. Integration of REED and Borealis
is only covered superficially as the article focuses on the
development of an optimized algorithm for joins in sensor
networks.

The Delay Tolerant Networking Architecture (DTN) [7]
allows for integration of different network types like TCP/IP
networks with native sensor networks. A special communica-
tion protocol is used and network borders are not visible to the
communicating entities. DTN supports general communication
and therefore must be supported by the operating system’s
network stack whereas in our setting a concept tailored to
communication in the context of SPS integration is needed
that runs on top of the network mechanisms present on a target
platform.

B. Contribution

We present an overlay network for seamless communication
across networks of different type and capabilities. Because
it can be tailored individually to the different hosts and
communication paths, the integration of highly diverse devices
becomes possible while using the most efficient communica-
tion method available between two certain hosts. Moreover the
concept is suitable for workstations as well as for memory-
and performance-limited sensor nodes. We also developed an
architecture and implemented the overlay network in form of
a proof-of-concept-study for the integration of a WSN into
DSAM.

The remainder of this article is structured as follows: The
next section sketches DSAM. Its extension by the overlay
network enables collaboration of SPSs situated in different
networks. In Section III, we first discuss different approaches
to communication over heterogeneous networks. Then we
propose our cross-platform overlay network and describe its
modular architecture. Furthermore our approach to global
addressing and possibilities for tailoring the overlay network to
resource-constrained platforms are detailed. In Section IV we

S3

H3

H4

H1H2

S5

S6

S8

S7

S2

S1

S4

Data Stream Application Manager

Catalog

Stream Processing System

Deployer

WSN2

WSN1

Fig. 1. System overview

present evaluation results. The article closes with a conclusion
of our work.

II. DSAM OVERVIEW

A top-down approach for the integration of sensor networks
and the distribution of global queries requires a management
component that accepts the definition of these global queries
and propagates the appropriate partial queries for in-network
stream processing. This section describes our system model
of data streams, queries, and stream-processing components.
It continues with the query management in DSAM, the central
component that manages the deployment and maintenance
of queries. DSAM does not do stream processing itself but
integrates available SPS entities including both SPEs and WSN
nodes to a federated stream-processing environment.

A. System Model of Data Streams, Queries, and SPSs includ-
ing WSNs

Figure 1 shows a system overview of our approach. DSAM
interacts with all participating SPEs and WSN nodes. The
SPEs are installed on standard PCs interconnected via standard
Internet protocols. Further, we integrate the WSN as a col-
lection of individually configurable sensor nodes. A so-called
deployer runs on all hosts that administrates the local SPSs
according to commands received from the DSAM controller.

All SPEs and WSN nodes have potentially different capa-
bilities. A common set of capabilities is grouped using the
notion of a type. An SPS type defines capabilities such as
query language and a core set of operators. A concrete SPE or
WSN node may have additional individual capabilities such as
special operators and characteristics (unique address, lifetime,
etc.). All SPSs have unique addresses, and sensor nodes belong
to a particular WSN. The benefit of the proposed overlay
network is enabling the direct communication among all kinds
of sensor nodes and SPEs.

Streaming data sources must have a unique address and
a schema. Like in relational databases and most SPEs that
refer to a relational model of data stream items, we use typed
data-stream items that consist of a vector of attributes. DSAM
supports the deployment of global abstract queries, i.e., an
abstract query identifies input and output streams as well as the
conceptual operators that manipulate the streams. The abstract

158

Global Query

Partial Query 1 Partial Query 2

Partitioning

Partial Query 3Partial Query 1 Partial Query 2

M d l

Mapping Mapping Mapping

Partial Query 3

M d lgi
ng gi
ng

Module
Description 1

Assembling

SPS‐Query
Module

Description 2

Assemblingri
ng

 B
ri
dg

ur
in
g
Br
id
g

Assembling
<input stream="Packet"
<output stream="Aggregate„

<schema name="PacketTuple">
<field name="time"

Assembling

Co
nf
ig
u

Co
nf
ig
u

Node 1

Deploying

Node 3

Deploying

<input stream="Packet"
<output stream="Aggregate„

<schema name="PacketTuple">
<field name="time"Node 2

Deploying

Node 1 Node 3Node 2

Fig. 2. Mapping of Queries

query and the streams are the model of a data-stream query. Its
concrete counterpart is a set of concrete queries representing
partial queries that are distributed in an appropriate way. They
use the query language or the programming model of the
corresponding SPE or WSN node.

B. Query Management

Users interact with DSAM by writing global queries in
the Abstract Query Language (AQL). AQL features a set of
abstract operators with precisely defined semantics. Examples
of AQL and its explanation can be found in [8], [1]. Figure 2
shows the overall deployment process of a global query on
different kinds of nodes.

The operator-distribution process splits a global query into
several so-called partial queries and decides which partial
query is to be deployed on which node. Thus, the partial
queries are the unit of distribution. A large number of con-
straints limits the number of possible distributions. Within
these constraints, we optimize for performance by minimizing
cost functions. The most important structural constraints are:

• Input streams come into existence at a certain place/node.
• Some nodes realize some abstract operators that others

do not (e.g. because they do not have an operator imple-
mentation with compatible semantics).

• Nodes have individual capacity and performance behav-
ior. The assigned tasks of a node must not exceed its
capacity.

• Nodes’ connections have reachability constraints and
performance properties. Data may only be routed along
existing connections having certain capacities.

In [1], we provide further details about the query partitioning.
After the query-partitioning step, DSAM maps partial

queries to the corresponding platform-specific query lan-
guages. The results of the partitioning process are partial
queries that can be deployed on the according node, i.e. the
node must provide all necessary operators. Like the WSN

Module Description

Code Layer:
C++ Code Module

Template Code
Generating

Compiling Linking

Deploying Linking Running
Contiki ProcessModule

Node

Operator Libs

Fig. 3. Module generation

platform Contiki considered in our experiments, some stream-
processing components do not support query languages. For
those nodes, binary modules are generated that represent
those queries. DSAM generates source code from the model
describing the partial query.

Figure 3 gives an overview of the whole process starting
with the partial query as the module description and ending
with the running process on the target node. In a first step,
C++ source code is generated corresponding to the partial
query. The query mapper writes glue code that takes care of
calling the operators in the correct order and passing tuples
from one operator to the other. Thus, the inner streams of the
partial query graph represented by the module description are
mapped to the generated code. It is compiled together with a
code template for the query module and the code of compile-
time optimized operators. The code template contains all the
standard code that is independent of special queries. In the next
step, the resulting object file is linked with libraries containing
implementations of operators for static linkage and stubs for
resident operators. The originating module is then transferred
to the target node in the deployment process. On the node,
it is linked with operating system libraries and is executed,
which results in a running process ready to serve incoming
tuples. In our earlier work [9], we demonstrate a linker for
size optimization.

Technical integration is achieved during mapping and de-
ployment with the help of the knowledge about platforms and
connections (Figure 2). The addresses of inner streams among
SPS entities can be directly derived from the knowledge about
partitioning.

III. COMMUNICATION ACROSS NETWORK BOUNDARIES

For integration of WSNs with DSAM, a way to commu-
nicate with sensor nodes is needed. TCP/IP communication
is used for message exchange with the deployer on hosts
in stationary networks. The deployer listens on a predefined
port for incoming requests. The DSAM controller connects to
that port when communicating with the deployer. Messages
are serialized to a format suitable for network transport,
delivered to the recipient which deserializes the received data.
Afterwards instructions or tuples contained in the message
are processed and an acknowledgement message may be sent

159

back. TCP/IP may not be available for communication with
small sensor nodes by default. Therefore, passing messages to
nodes in WSNs must be treated specially.

Because DSAM should be able to integrate arbitrary WSNs
and possibly also SPEs in wired networks that run special
protocols, it is not reasonable to adapt the whole system
for each new sensor system to be used. As far as query
distribution and optimization are concerned, different SPSs,
regardless if small sensor nodes capable of query processing or
full-fledged SPEs running on high-performance workstations,
only differ in supported operators, number of operators that
can be executed in parallel and costs for query execution
and data transmission. For integration of arbitrary SPSs with
little effort, a layer is needed that abstracts from the native
methods to communicate with each type of SPS. With such
an abstraction, only a deployer for the target system has to be
implemented and the communication layer to be extended for
support of an additional system. Otherwise development and
especially maintenance costs would highly increase with each
new supported system.

We have identified the following requirements for a com-
munication layer for integration of arbitrary SPSs:

1) Possibility for message exchange between two hosts
potentially situated in networks of different type

2) Identical message format for all recipients at upper
application layers

3) Global addresses for all SPSs irrespective the type of
network they are connected to

4) Automatic routing of messages across network borders
based on metadata about the global network topology

5) Easy expandability for support of additional network
types

6) Possibility for resource saving implementation
The first requirement is apparent, as communication be-

tween two arbitrary SPSs should be enabled. As there should
not be any special handling necessary at layers above the
communication layer to send instructions or tuples to arbitrary
SPSs, messages must have a common format for all recipients.
This implies requirement 2). Requirements 3) and 4) derive
from the request that no knowledge, about the network the re-
ceiver of a message belongs to, should be necessary. Therefore
it must be possible to globally address the receiver, and mes-
sages must be forwarded to other networks if necessary. The
cause for requirement 5) is described above, as DSAM should
be easily extensible. For integration of resource constrained
sensor nodes, it must be possible to implement the necessary
services of the network layer having few computing effort and
small memory footprint. Omitting some of the services usually
provided by the network layer on small platforms may be
tolerated. E. g. the implementation of full routing capabilities
is not necessary in a sensor network. It will usually not be
used for transit.

A. Discussion of Different Approaches

This section presents a comparison between two approaches
for integration of heterogeneous networks. Pros and Cons

of the concepts are given as well as a comparison with the
requirements stated above.

1) Implementation of TCP or UDP over IP for all Net-
works: A simple approach from the DSAM point of view
is the implementation of the TCP or UDP and IP protocol
for all networks. For networks that do not inherently support
IP, an emulation has to be implemented based on the native
protocols.

The main advantage of such a solution is that all hosts
can be approached using the same communication mechanism.
However there are some major disadvantages. As DSAM sends
serialized messages, recipients must be able to deserialize the
data received. As the same data format should be used for all
hosts (requirement 2) the most restrained system determines
the format. Even worse, different hosts might have conflicting
requirements to message formats. The same issue exists with
the decision between UDP and TCP as transport protocol. It
must be made for the whole network. So it is not possible to
use reliable TCP for the communication between hosts where
the overhead of TCP is reasonable and to use UDP between
hosts where unreliable communication may be tolerated for
the sake of smaller resource consumption.

Resource consumption is important on small sensor nodes.
Overhead in the packets caused by the IP protocol is addressed
by techniques like 6LoWPAN [10]. But also RAM and ROM
consumption of the communication stack must be considered.
Even micro IP (uIP) [11] in its IPv4 version, an implementa-
tion that is specifically tailored for small embedded systems,
has a memory footprint that is not negligible on platforms with
high memory constraints. As stated in [12], usage of TCP/IP in
WSNs may also be disadvantageous because it was originally
designed for stationary networks.

2) Overlay to Abstract from Underlying Physical Network
Topology and Protocols: Problems of the aforementioned ap-
proaches can be solved by introducing a thin overlay network
layer that abstracts from the natively provided network proto-
cols. Other than with the TCP/IP approach, the native protocols
are directly used to send the data. Merely global addressing
and gateways between the different network types are added.
Routing information is extracted from the metadata that is
anyway managed by the DSAM controller. It informs gateway
hosts about necessary routing information via messages.

In Figure 1, two WSNs are connected to the stationary
network via serial interfaces of their gateway nodes. Sensor
nodes inside of a network can directly communicate with
each other using a native multi-hop protocol. The stationary
network is IP based. S7 and S8 are gateways between their
WSN and the serial line connection. Accordingly H2 and H3
are gateways between the stationary network and the serial
line. For a network spanning communication, e. g. between
H1 and S3, the messages are routed by the overlay network
components. In detail, a message from H1 is first transmitted
to H2 which forwards it to S7 over the serial line. S7 finally
forwards the message to S3 using the native protocol of the
sensor nodes.

A major benefit of this concept is the exploration of native

160

protocols. No additional complexity and costs are added to
the communication between two hosts in the same network.
Solely global addresses must be mapped to those used by
the network, e. g. IP address and port, but determination of
the recipient network address, is necessary without overlay
network, too. Moreover, special properties of certain networks
are handled by the native protocols. So, the overlay network
does not need to deal with e. g. dynamics inside WSNs as long
as interconnection points between networks do not change.
Nevertheless all hosts are able to communicate directly with
each other. No special treatment for non-TCP/IP networks is
necessary in the upper application layers.

Using a well-thought-out architecture gives the possibility
to extend the overlay network layer with support of additional
network interfaces and protocols in an easy and maintainable
way. An essential point is that gateways can provide more
functionality than merely forwarding data. Changes to the
payload are also possible. This allows e. g. for the use of
a certain serialization mechanism in the stationary network
and one that is tailored to the needs of resource constrained
systems in a WSN. Conversion is performed by the gateway
hosts. Likewise messages or parts of messages that are not
needed in a certain network can be discarded. E. g. information
needed for transit routing does not need to be forwarded
to a network that is not intended to be used for transit.
Omitting unnecessary data saves resources and energy. As we
will show in the evaluation (Section IV), integration of an
overlay network layer into DSAM deployers has a much lower
memory footprint than uIP.

The raise of complexity that may be caused by integration
of an overlay network into the DSAM system could be men-
tioned as counter-argument. But with a thoughtful design and
application of state-of-the-art software engineering techniques
this fact can be well handled.

Considering the arguments presented so far, we decided
for the overlay network to be the best solution for the given
requirements.

B. Overlay Network

In this section we detail our approach for integration of
heterogeneous networks using an overlay network.

Definition. In this article we use the term overlay network in
the following sense: The overlay network provides the ability
to hosts to communicate with other hosts that are situated in
the same network or in another network that is directly or
indirectly connected to a host in their network. This ability is
achieved by a globally unique address for each participating
host and forwarding and translation of messages from one
network to another by hosts that are connected to two different
networks.

The overlay network layer provides the ability for commu-
nication between two deployer instances running on arbitrary
hosts. Therefore global addressing must be provided. The
actual target of a control command or a data stream is not the
deployer itself but one of the SPSs running on the deployer’s
host. Commands for installing or starting queries should be

performed on a certain SPS and tuple streams are to be
processed by a certain SPS. The overlay network supports
this by using global unique addresses for each SPS. Since
all SPS entities must be known and distinguished for query
distribution and optimization, they are listed in the metadata
repository with unique IDs anyway. These IDs can be used
for communication purposes, too.

Communication services are provided to upper layers by
means of an interface. This includes methods for sending mes-
sages to an SPS ID and for listening for incoming messages
addressed to the ID of an SPS on the local host.

For sending a message to a certain host, upper layers call a
method of the interface with the ID of the addressed SPS. The
overlay network searches the local routing table for an entry
with the target ID. This entry holds the interface to be used
and the parameters necessary to establish a native connection
either with the recipient itself or with an intermediate node that
has to forward it to another network. For a recipient directly
available through TCP/IP parameters would be the IP address
and port number of the recipient. For a message to a sensor
node, e. g. S1 in the scenario of Figure 1, from a host in
the stationary TCP/IP network, the parameters would be IP
address and port of the host to which the WSN is connected
(H2). The local routing table is filled by messages from DSAM
controller. More details are given in Section III-C.

At startup of a deployer instance or the DSAM controller the
overlay network layer starts listening for incoming connections
on all interfaces that are supported on the host. For TCP/IP, this
means opening a predefined port; for a serial line connection,
a read operation is started. When a new connection attempt
is received, the type of connection is determined by reading
the first message arriving. Connections may be dedicated to
one of the SPSs on the local host. Those connections are
forwarded to the upper layers if they are listening for incoming
connections. Otherwise the connection is aborted. Connections
might also transport information for the overlay network layer
like routing information. The handling of routing information
is explained in Section III-C. Incoming connections may also
be addressed to an SPS on a foreign host and have to be
routed by the local host. In this case a connection addressed
to the target host of the connection is established in the
same way as when sending messages from the local host.
The new connection might end at the actual target of the
forwarded connection or at another intermediate routing point
depending on information in the local routing table. A thread is
started that receives all messages arriving at one connection,
accomplishes necessary conversions, and sends the message
on the other connection. When one of the two connections
closes, the other one is closed too. Closing a connection by
either of the two communication parties propagates through
all intermediate connections.

To accomplish the goal of easy expandability, support for a
certain network is encapsulated in a plugin in form of a so-
called adapter. At system startup of the DSAM controller or
a deployer all available adapters are loaded and set to listen
for incoming connection attempts. When a connection should

161

be established the corresponding adapter is determined by the
local routing table and asked to create the new connection.
Incoming messages are deserialized and put into a message
object in generic format. This object is passed to upper layers
or, if the connection is just routed, passed to the adapter for
the outgoing interface.

Additional interfaces and networks can be supported by
implementing an adapter that deals with the low-level details
of sending and receiving in its network. Furthermore serial-
ization and deserialization as well as any transformations of
message content are provided by the adapters. Through utiliza-
tion of a common network-independent format for message
exchange between components like adapters and higher-level
ones, support for new networks can be added without changes
to existing parts of the system.

C. Determination and Dissemination of Routing Information

Topology of the whole network, including both stationary
and wireless hosts, has to be known centrally in this approach.
This data is needed for query distribution and optimization.
Routing information can also be obtained from this metadata.
Each deployer instance on a host has a local routing table to
hold routing information that is locally needed. An item in the
routing table contains the target of a connection, the adapter
that has to be used for communication with the next routing
point towards the target or with the target itself and parameters
necessary for initiating a connection with this host. For a serial
line adapter, parameters may be e. g. the device name of the
serial interface and the baud rate. Local routing tables are
empty at startup and the IDs of local SPSs are unknown to
the deployer.

The DSAM controller is responsible for disseminating nec-
essary routing information before it sends a command to a
deployer that has not received commands before and before
the forwarding of stream data between two SPSs is initiated.
Therefore, the shortest path between sender and receiver is
determined. A message containing the routing information
is composed and sent to the sender. The message states the
information for the routing tables for all hops that are involved
in the communication between sender and receiver. The sender
adds the first entry of the messages to its routing table and
deletes it. Afterwards the message is sent to the receiver using
the routing table entry currently created. The next hop does the
same as the sender and forwards the message. As last entry the
routing message contains the ID of the receiving SPS. When
the message arrives at the receiver only this entry is left telling
it that the SPS with the stated ID is running locally. By this
way only one message is needed to setup a complete routing
path over several hops. Figure 4 shows this process for setting
up a route between H1 and S2 in the scenario given in Figure 1.
S2 has the SPS-ID 5.

D. Tailoring to Resource-Constrained Platforms

On resource-constrained platforms like wireless sensor
nodes it is essential to keep memory and CPU usage low.
For this some functionality may be omitted. Other work can

ToNode
5

Hop0-1
IP: 192.168.0.3 Port: 4711

Hop1-2
Dev: /dev/com1

Hop2-3
RimeAddress: 1.2

H1

ToNode
5

ToNode
5

S7

ToNode
5

S2

Adapter: TCP/IP

Adapter: Serial

Adapter: Rime

Hop1-2
Dev: /dev/com1

Hop2-3
RimeAddress: 1.2Adapter: Serial Adapter: Rime

Hop2-3
RimeAddress: 1.2Adapter: Rime

Routing table
To, Adapter, Parameters
5,TCP/IP,(IP: 192.168.0.3,
Port: 4711)

Routing table
To, Adapter, Parameters
5,Rime,(RimeAddress: 1.2)

Routing table
To, Adapter, Parameters
5,Local,

H2

Routing table
To, Adapter, Parameters
5,Serial,(Dev: /dev/com1)

Fig. 4. Schema of routing information dissemination

be prepared and supported by the adapter on the stationary
gateway node to relieve the sensor nodes. Since messages are
routed and not just bridged, adapters have all possibilities in
message processing. This section presents some approaches.

Routing tables may allocate lots of memory when the node
communicates with many different recipients. So moving rout-
ing tables out of the wireless network is advantageous. WSNs
are usually not used for transit and native communication
protocols often provide multi-hop communication. Connec-
tions that would be normally established by the deployers on
the sensor nodes can be established by the adapter on the
stationary gateway instead. In this case, the global IDs used
in the overlay network can be translated to native addresses of
the sensor network by the adapter on the stationary gateway
host. Messages are transmitted to the wireless gateway node
that can directly forward them to the recipient. No lookup of
the recipient’s native address is needed by the overlay network
layer on the wireless node. So keeping a routing table can
be omitted. This saves both memory consumption and CPU
power. Additionally, messages with routing information need
not to be forwarded to the WSN. E. g. transmissions between
H2 and S7 and between S7 and S2 could be omitted in
the routing information dissemination scenario of Figure 4.
Less messages implies less energy consumption and a longer
lifetime. Messages from sensor nodes to hosts in the stationary

162

Type Total payload
length

Connection/
Stream ID

Payload

Dependent on message typeMessage type:
• Start message
• Deploy message
• Output stream message
• Tuple message

Fig. 5. Message format in the Contiki TelosB WSN

network are generally sent to the gateway node, which sends it
to the stationary network. On the stationary gateway, messages
are reassigned to connections and forwarded.

Since adapters are responsible for serializing messages, a
format can be chosen that is most suitable for processing on
the sensor nodes. Furthermore unnecessary parts of messages
may be omitted or additional parts added. Certain messages
can even be handled by the adapter itself instead of forwarding
them to the actual recipient. E. g. a field with a connection ID
may be added to preserve the mapping between messages and
connections on connectionless protocols.

Figure 5 shows the message format used inside the WSN
in our prototype implementation for TelosB nodes running
Contiki OS. The type field states the type of payload contained
in the message. SPS-IDs are omitted since messages are
directly send to the receiving node via Contiki’s native network
stack. Only messages send to the gateway node from the
stationary host via serial line need to state the receivers
address. Once inside the WSN this information is passed to the
native communication layer and is no longer needed inside the
application message data. Because the native communication
protocol chosen does not provide connections, a connection or
stream ID is included for control or data stream connections
respectively. Furthermore the first packet of a message states
the total payload size. This enables the receiver to determine
if the message was split into several packets due to packet size
constraints.

IV. EVALUATION

We implemented the overlay network demonstrating integra-
tion of WSNs in a federated stream-processing environment.
For the proof-of-concept study, we chose a WSN of TelosB
sensor nodes running the Contiki operating system [13].
TelosB nodes are based on an MSP430 microcontroller and
provide 48 KiB of flash ROM and 10 KiB of RAM. Contiki
provides several native communication protocols and uIP. In a
first step, we integrated an overlay network layer as described
in the previous sections into DSAM, replacing the existing
solution for TCP/IP communication between deployers. The
necessary information about network topology is taken from
the DSAM metadata catalog for this prototype implementation.
The only network adapter implemented so far was one for
TCP/IP communication. By deploying several queries, we
ensured that the overlay network adequately replaces the
former communication solution

As next step, we added a network adapter for communi-
cation with the WSN gateway node over a serial line and

s t r u c t Over layNetwork {
/ / A cc ep t incoming c o n n e c t i o n s
s t a t i c C o n n e c t i o n a c c e p t () ;

/ / E s t a b l i s h new c o n n e c t i o n
s t a t i c C o n n e c t i o n g e t C o n n e c t i o n (unsigned i n t s p s I d

) ;
/ / . . .

} ;

s t r u c t C o n n e c t i o n {
v i r t u a l vo id sendMessage (c o n s t Message& cmd) ;
v i r t u a l vo id readMessage (Message∗& cmd) ;
/ / . . .

} ;

Listing 1. Extract of the interface provided by the overlay network to higher
application layers

developed a deployer for Contiki together with an adapter for
communication inside the WSN using a native Contiki multi-
hop protocol. We implemented the techniques presented in
section III-D. Because of the overlay network layer abstracting
from the native communication protocols, no existing code
had to be changed. The serial line adapter was placed as
an additional dynamic link library into the search path of
the overlay network layer. Adapters to integrate devices that
use other connections and protocols, e. g. Bluetooth, may be
added in the same simple way. Listing 1 shows an extract
of the interface provided by the overlay network to higher
application layers. They only have to deal with message
objects, containing payload in a network independent format,
and the globally unique SPS entity ID. Higher application
layers do not need any knowledge about the receiver’s platform
or network connection. So the aim of global addressability,
easy expandability, and possibility of resource conserving
implementation were achieved.

We evaluated network spanning communication in the sce-
nario shown in Figure 1. We simulated the WSNs with Cooja
instead of using real hardware sensor nodes. Cooja is a simula-
tor for WSNs with sensor nodes running the Contiki operating
system. It executes unmodified versions of the applications
built for real hardware nodes. The serial link connection
is substituted by pipes. The advantage of the simulator is
the possibility to obtain additional information necessary for
detailed testing that is not easily available on hardware sensor
nodes. In this set-up we successfully verified the exchange
of messages between the DSAM controller and deployers on
both sensor nodes and stationary hosts. To evaluate transit
routing, the stationary network was split into two parts with
one host being connected to both networks. We successfully
tested communication between a host in the first stationary
network and a sensor node in a WSN connected to the
second stationary network. This shows that the requirements
of message exchange between hosts on arbitrary networks and
automatic routing are fulfilled.

A code review indicates that the overlay network imposes
only little additional costs for format conversion compared to

163

TABLE I
COMPARISON OF MEMORY FOOTPRINT OF PURE CONTIKI, CONTIKI WITH
DEPLOYER AND OVERLAY NETWORK, AND CONTIKI WITH DEPLOYER AND

UIP

Memory footprint Available memory
(Improvement to uIP)

ROM RAM ROM RAM
(text) (data + bss)

Totally available 48 KiB 10 KiB

Pure Contiki 22.3 KiB 5.2 KiB 25.7 KiB
(656 %)

4.8 KiB
(45 %)

Overlay network 38.2 KiB 5.5 KiB 9.8 KiB
(188 %)

4.5 KiB
(36 %)

uIP 44.6 KiB 6.7 KiB 3.4 KiB
(0 %)

3.3 KiB
(0 %)

uIP. Messages have to be serialized at the sender anyway. The
same holds for deserialization at the receiver. Overhead could
only be introduced at gateways by conversion of the serializa-
tion format. But format conversion before and after serial line
transmission is also necessary in uIP due to limitations of the
Contiki serial interface. Moreover the format conversion gives
the possibility to use the best suited format in each network,
which is worth the small conversion costs.

To show the advantage in memory consumption of the
utilization of native specialized protocols with the overlay
network instead of TCP/IP in sensor networks a second version
of the deployer for sensor nodes was developed that uses
uIP for communication. uIP uses the Serial Line IP (SLIP)
protocol on serial links. Nodes have unique IP addresses and
can be directly addressed from the stationary network.

Table I shows the size of text and data segments with
both approaches. The results for pure Contiki represent the
memory footprint of the operating system itself without added
functionality. The following two rows show the memory
consumption by Contiki with deployer and overlay network
or the IPv4 version of uIP respectively. The deployer’s size is
mainly determined by the size of the dynamic linker which is
always needed independent of the communication layer. uIP
increases the size of the text segment leaving merely 3.4 KiB
for operators and sensor reading. Also the data + bss segment
consumes additional 1.2 KiB of RAM. Considering the small
amount of memory available, the memory saved by the overlay
network approach is essential for the ability to accomplish
elaborate data-stream processing on such small sensor nodes.

V. CONCLUSION

In the context of a federated data-stream environment
project, it has been possible to provide a carefully designed
overlay network for the sensor nodes and their connections
to SPEs for a simple addressing mechanism and a very small
footprint on the sensor nodes. We compared alternatives for
interconnection of different networks and argued why abstrac-
tion is fitting best by evaluating our resource efficient approach
compared to uIP. Requirements especially for integration of

small, resource constrained sensor nodes were identified. Our
solution provides a modular architecture that enables tailoring
in order to reduce ROM and RAM memory footprint. In the
evaluation, we offer concrete measurements for the resource
consumption of different approaches.

Up to now, development of in-network streaming applica-
tions had to be deferred as the available memory (uIP in Tab. I)
did not meet the requirements. Streaming applications using
our overlay network could be evaluated successfully using a
strongly reduced set of operators. Future work will consist of
the development of additional operators for stream processing
on sensor nodes, the analysis of metadata requirements for
automatic management of WSNs, and the development of
network adapters for additional communication protocols.

REFERENCES

[1] M. Daum, F. Lauterwald, M. Fischer, M. Kiefer, and K. Meyer-Wegener,
Wireless Sensor Networks Technologies for the Information Explosion
Era, ser. Studies in Computational Intelligence. Berlin Heidelberg,
Germany: Springer, 2010, no. 278, ch. Integration of Heterogeneous
Sensor Nodes by Data Stream Management, pp. 139–172.

[2] D. J. Abadi, S. Madden, and W. Lindner, “REED: Robust, Efficient
Filtering and Event Detection in Sensor Networks,” in 31st Conference
on Very Large Data Bases (VLDB), Trondheim, Norway, Aug. 2005.

[3] R. Khoury, T. Dawborn, B. Gafurov, G. Pink, E. Tse, Q. Tse,
K. Almi’ Ani, M. Gaber, U. Röhm, and B. Scholz, “Corona: Energy-
Efficient Multi-query Processing in Wireless Sensor Networks,” in
Database Systems for Advanced Applications (DASFAA). Tsukuba,
Japan: Springer, Apr. 2010.

[4] K. Aberer, M. Hauswirth, and A. Salehi, “Infrastructure for Data
Processing in Large-Scale Interconnected Sensor Networks,” in Inter-
national Conference on Mobile Data Management (MDM), Mannheim,
Germany, May 2007.

[5] D. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J.-
H. Hwang, W. Lindner, A. S. Maskey, A. Rasin, E. Ryvkina, N. Tatbul,
Y. Xing, and S. Zdonik, “The Design of the Borealis Stream Process-
ing Engine,” in 2nd Biennial Conference on Innovative Data Systems
Research (CIDR), Asilomar, CA, USA, Jan. 2005.

[6] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TinyDB:
An Acquisitional Query Processing System for Sensor Networks,” ACM
Transactions on Database Systems, vol. 30, pp. 122–173, 2005.

[7] K. Fall, “A Delay-Tolerant Network Architecture for Challenged Inter-
nets,” in Proceedings of the 2003 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communications
(SIGCOMM). Karlsruhe, Germany: ACM, Aug. 2003, pp. 27–34.

[8] F. Dressler, R. Kapitza, M. Daum, M. Strübe, W. Schröder-Preikschat,
R. German, and K. Meyer-Wegener, “Query Processing and System-
Level Support for Runtime-Adaptive Sensor Networks,” in 16. GI/ITG
Fachtagung Kommunikation in Verteilten Systemen (KiVS). Kassel,
Germany: Springer, Mar. 2009, pp. 55–66.

[9] M. Strübe, R. Kapitza, K. Stengel, M. Daum, and F. Dressler, “Stateful
Mobile Modules for Sensor Networks,” in 6th IEEE/ACM International
Conference on Distributed Computing in Sensor Systems (DCOSS), vol.
LNCS 6131. Santa Barbara, CA, USA: Springer, Jun. 2010, pp. 63–76.

[10] G. Mulligan, “The 6LoWPAN Architecture,” in Proceedings of the 4th
Workshop on Embedded Networked Sensors (EmNets). Cork, Ireland:
ACM, Jun. 2007, pp. 78–82.

[11] A. Dunkels, “Full TCP/IP for 8-Bit Architectures,” in Proceedings of
the 1st International Conference on Mobile Systems, Applications and
Services (MobiSys). San Francisco, CA, USA: ACM, May 2003, pp.
85–98.

[12] A. Dunkels, T. Voigt, J. Alonso, H. Ritter, and J. Schiller, “Connecting
Wireless Sensornets with TCP/IP Networks,” in Proceedings of the
Second International Conference on Wired/Wireless Internet Commu-
nications (WWIC), Frankfurt (Oder), Germany, Feb. 2004.

[13] A. Dunkels, B. Grönvall, and T. Voigt, “Contiki – a Lightweight and
Flexible Operating System for Tiny Networked Sensors,” in 29th Annual
IEEE International Conference on Local Computer Networks (LCN),
Tampa, FL, USA, Nov. 2004, pp. 455–462.

164

