
DCOA: Double-Check Offloading Algorithm
to Road-Side Unit

and Vehicular Micro-Cloud in 5G Networks
Bo-Jun Qiu∗, Cheng-Ying Hsieh∗, Jyh-Cheng Chen∗ and Falko Dressler†

∗Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan
†School of Electrical Engineering and Computer Science, TU Berlin, Berlin, Germany

qiubj759@cs.nctu.edu.tw, ingyaya36.me03g@nctu.edu.tw,
jcc@cs.nctu.edu.tw, dressler@ccs-labs.org

Abstract—Next generation intelligent transportation systems
aim at many cooperative perception and cooperative driving
functions that need significant computational resources. Offload-
ing such tasks to some mobile edge computing solutions is
considered part of the solution, which is currently investigated
in the scope of 5G networks. In the automotive context, such
edge systems could be road-side units (RSU), which, however,
can easily be overloaded at peak times. Vehicular micro-cloud
approaches have been proposed to overcome such problems by
sharing computational resources of nearby cars. In this study,
we propose an offloading system architecture to enable such
offloading such vehicular micro-cloud interconnected by a 5G
core network. We model the system as a queueing model to
derive closed-form solutions for selected performance metrics.
Based on these insights, we propose the Double-Check Offloading
Algorithm (DCOA) to obtain the best offloading ratio to the
vehicular micro-cloud. Our simulation results show the proposed
DCOA has better system performances compared with four other
offloading schemes.

Index Terms—Edge computing, offloading, 5G core network,
vehicular micro-cloud

I. INTRODUCTION

In recent years, there has been an increasing number of
vehicle-related applications, such as collision avoidance, with
the need for high calculating resources and low latency.
Because of the lake of computing resources on a general
vehicle, it is not sufficient to perform the calculations of such
applications within a short time. Thus, computing resources
are one of the main limitations of vehicle-related applications.
A popular solution is to offload the calculating tasks to a
road-side unit (RSU) [1] deployed at the edge side of the
cellular network. The RSU can complete tasks independently
or directly deliver them to a local edge server[2].

However, the performance of the RSU may decrease when
there are many vehicles simultaneously using the RSU[3].
A potential solution is to offload the calculating tasks to a
remote server through infrastructure networks, such as the 5th
generation (5G) core network with the next generation node B
(gNB). Vehicular micro-cloud[4] is a promising candidate for
remote servers because parked vehicles in a vehicular micro-
cloud typically do not use their resources.

In comparison with RSU, offloading tasks to a remote
vehicular micro-cloud may result in serving a larger number

of users, thus increasing the system scalability. Unfortunately,
benefits are always accompanied by overheads, i.e., the task
response time increases because of the long distance between
the users and the vehicular micro-cloud. Additionally, the cost
increases owing to the use of the infrastructure network and
the fee for parked vehicles. From the viewpoint of system
operators, balancing these benefits and overheads is essential.

In this study, we propose an offloading system architecture
and describe it as a queueing model to derive closed-forms
of metrics. Then, we use network simulator 2 (ns-2) to verify
the correctness of the closed-forms interactively. Additionally,
we propose our double-check offloading algorithm (DCOA)
to obtain the offloading ratio of the remote vehicular micro-
cloud by observing system performance. The proposed DCOA
is based on an objective function, in which operators and
service providers can decide the weights of metrics to define
their priorities.

II. BACKGROUND

A. Road-Side Unit (RSU)

RSU is a unit placed beside the road and plays an im-
portant role in many vehicle-related applications. It commu-
nicates with nearby vehicles and provides diverse services,
such as calculating tasks[1], locating vehicles[5], transmitting
safety-related messages[6] or information[7], and download-
ing data[8]. For supporting these applications, an RSU should
have the ability to compute complex calculations or directly
connect to an edge server instead.

B. 5th Generation (5G) Core Network

The 5G core network comprises a data plane and a control
plane. The data plane is independent of the control plane[9]
and can be deployed close to users to improve communication
qualities, such as latency. The control plane is a service-based
architecture, which organizes different service blocks into
network slices according to the service requirements of users.
The service requirements can be mapped to a corresponding
Slice/Service Type (SST) defined in 3GPP TS23.501, clause
5.15.2.2[10]. The Ultra-Reliable Low-Latency Communica-
tion (URLLC) slice will enable the use of the Internet with
low latency and high reliability[11].

C. Vehicular Micro-Cloud

A vehicular micro-cloud comprises vehicles that are usually
parked and rarely use their CPU resources, and it provides
services as a server[12], [13], [14]. Additionally, it improves
the resource usage rate of the parked vehicles, which may
obtain benefits (for example, fees) as feedback. The scale of
a vehicular micro-cloud is dynamic because parked vehicles
may leave. Therefore, the calculating ability of a vehicular
micro-cloud is also dynamic, and depends on the number of
vehicles being used .

III. RELATED WORK

A. Edge Traffic Offloading

Guo et al.[15] proposed an algorithm based on deadlines
to decide whether to offload and then deliver tasks to an edge
server or the cloud according to the cost involved. Li [16]
focused on the offloading decision and the wireless scheduling
to an edge server among many mobile devices. Zhan et al.[1]
used deep learning to determine when and how to schedule
offloading tasks to the RSUs along a road. Xu et al.[17] used
vehicle-to-vehicle communications to offloading data traffic
to other vehicles, which use WiFi to deliver these data traffic
to the Internet. Dai et al.[18] focused on the relaying scheme
to determine when and which vehicle cloudlets to be offload.

In this study, we focus on determining the offloading ratio
to the remote vehicular micro-cloud by using the queueing
model and the proposed algorithm. Additionally, rather than
focusing on the method of offloading traffic to RSUs, we
enable tasks to be directly offloaded to a vehicular micro-
cloud through the gNBs and the 5G core network.

B. Dynamic Scaling System

Several studies[19], [20], [21] have focused on the tradeoff
between cost and performance when turning on or off service
instances. These studies observe the relationships between the
metrics, propose algorithms or schemes to achieve a balance
between these factors.

In this study, we do not focus on the algorithm to dynam-
ically turn on or off service instances. Rather, our proposed
algorithm determines the value of the offloading ratio to the
vehicular micro-cloud.

IV. PROPOSED OFFLOADING SYSTEM

The proposed offloading system architecture is illustrated in
Fig 1, and the notations are listed in Table I. The goal of the
proposed offloading system is to reduce the RSU loadings
by offloading the tasks of user equipment (UE) directly to
the vehicular micro-cloud through the gNBs and the 5G core
network. The UE may be vehicles or smartphones, the RSU
represents the local system, and the vehicular micro-cloud
represents the remote system. We assume that the task arrival
rate of the system follows a Poisson distribution with mean
λ.

When the local system is overloaded, offloading tasks to
the remote system can not only increase the system service
rate, but also increase the cost. As mentioned in section I, the

Figure 1. Proposed offloading system architecture

Table I
LIST OF NOTATIONS

Notation Explanation

P System performance
λ System task arrival rate
β Offloading task ratio to remote system
C Average system cost
Wq Average system response time in queues per task
S Average system service rate
λl Task arrival rate in local system
µl Service rate for each instance in local system
Kl The number of maximum tasks can be accommodated in

local system
Cl Average local system cost
cl Average cost for each instance in local system
Wql Average local system response time in the queue per task
Sl Average local system service rate
λr Task arrival rate in remote system
µr Service rate for each instance in remote system
Kr The number of maximum tasks can be accommodated in

remote system
Cr Average remote system cost
cr Average cost for each vehicle instance in remote system
Wqr Average remote system response time in the queue per task
Sr Average remote system service rate
k The number of vehicle instances in remote system
α Setup rate for each vehicle instance in remote system
ω1 Weight factor for C
ω2 Weight factor for Wq

ω3 Weight factor for S

former can be attributed to the larger number of tasks being
handled, whereas the latter can be attributed to the additional
fee for parked vehicles. Because of the URLLC slice, we
assume the response time does not increase with the longer
delivery distance in the infrastructure networks.
A. Local System (RSU)

We assume that there exists only one RSU (only one edge
server, if any), and its calculating time per task follows an
exponential distribution with mean 1/µl. The RSU always
consumes resources because it does not turn off even when
there are no tasks. If there are too many tasks, the RSU buffers
some of the tasks in a queue and ignores the remaining tasks
because of overloading.
B. Remote System (Vehicular Micro-Cloud)

We assume that the vehicular micro-cloud consists of k
vehicles parked in a parking lot. The calculating time per

task follows an exponential distribution with mean 1/µr for
each vehicle instance. If the number of tasks is greater than
the number of started vehicle instances, a non-started vehicle
instance is set up to reduce the response time. We assume that
the setup time follows an exponential distribution with mean
1/α, and the vehicle instance consumes resources but can not
calculate tasks during the setup time. In contrast, if the number
of tasks is lesser than the number of started vehicle instances,
a started vehicle instance is turned off immediately to save
resources, and vehicle instances, if any, in the setup time are
turned off first. If there are too many tasks, the vehicular
micro-cloud buffers some of the tasks in the queue and ignores
the remaining tasks.

C. Model Analysis

Three metrics are considered in evaluating the system
performance: the average cost of the RSU and the vehicular
micro-cloud by consuming resources, C, the average response
time in the queues per task, Wq , and the average number of
serving tasks, S. The system performance P is defined in (1).

P =
ω1C × ω2Wq

ω3S
(1)

Based on the definition of P , hereafter, we refer to the
system performance as Cost Response time Production
Service rate Division (CRPSD); a smaller CRPSD indicates
a better system performance. Before calculating CRPSD, we
normalize the three system metrics from 0 to 1. The weight
factors in (1) can be set by operators or service providers to
reflect their preferences, and we set them to 1 as the default
value.

System metrics are the combination of the local metrics
and remote metrics defined in (2), (3), and (4).

C = Cl + Cr (2)

Wq =
Sl ×Wql + Sr ×Wqr

S
(3)

S = Sl + Sr (4)
The system follows the remote offloading ratio β to offload

tasks to the remote system and offloads the remaining tasks
to the local system, as defined in (5) and (6).

λr = λ× β (5)

λl = λ− λr = λ× (1− β) (6)
By using the equations from (1) to (6), we express the

system performance with local and remote metrics. Then, we
discuss the forms of these metrics to determine the CRPSD.

Because the RSU (or the edge server, if any) is required
to calculate tasks for many vehicles in typical scenarios, we
assume that its calculating ability is 100 times stronger than
that of a vehicle instance. The resource consumption of an
RSU may also be 100 times greater than that of a vehicle
instance based on the previous assumption that the calculating

speed of an RSU is 100 times faster than that of a vehicle
instance. However, the vehicular micro-cloud involves an
additional fee, and we assume that the additional fee increases
the cost of the vehicle instance by two times. Therefore, the
cost ratio between an RSU and a vehicle instance is 50. We
set both the average service rate µr and the average cost cr
for each vehicle instance to be 1 as default.

The local system can be described as an M/M/1/N queueing
model. Thus, we have the following forms: (7), (8), and (9).

Cl = cl × 1 = 50 (7)

Sl = min(λl, µl) = min(λl, 100) (8)

Wql =
Lq

λeff
(9)

λeff = λl × (1− pK)

Lq =

Kl × (Kl − 1)

2× (Kl + 1)
, if ϕ = 1

ϕ

1− ϕ
− ϕ× (Kl × ϕKl + 1)

1− ϕKl+1
, otherwise

pK =

1

Kl + 1
, if ϕ = 1

(1− ϕ)× ϕKl

1− ϕKl+1
, otherwise

ϕ =
λl

µl

The remote system can be described as a queueing model,
as proposed in previous study [21]. Because of the page
limitation, we have only defined the key equations in this
paper. For more details on the mathematical derivation or
proof of the equations, please refer to the cited paper. The
remote metrics can be defined as follows:

Cr = cr(
∑

(i,j)∈Sspace

πi,jni+

k∑
i=0

Kr∑
j=ni

πi,j min(j−ni, k−ni))

(10)

Sr =
∑

(i,j)∈Sspace

πi,jni (11)

Wqr =

∑k
i=0

∑Kr

j=ni
πi,jj

λr(1−
∑k

i=0 πi,Kr
)
− 1

µr
(12)

In (10) to (12), πi,j denotes the probability of a vehicular
micro-cloud state, which comprises i vehicle instances cal-
culating tasks (already set up) and j tasks that need to be
completed. The notation Sspace denotes the set of all vehicular
micro-cloud states, and ni denotes the number of vehicles that
perform calculations, which has the same value as i.

The closed-forms of the three local and remote metrics
are obtained from (7) to (12). We used these closed-forms
to calculate the system performance metrics defined in (1)–
(4), and then used the network simulator 2 (ns-2)[22] version

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 0.2 0.4 0.6 0.8 1

C
,
a
v
e
ra

g
e
 s

y
st

e
m

 c
o
st

�, offloading task ratio to remote system

� = 100
� = 150
� = 200
� = 250

(a) Impacts of β on C

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 0.2 0.4 0.6 0.8 1

W
q
,
a
v
e
ra

g
e
 r

e
sp

o
n
se

 t
im

e
 i
n
 q

u
e
u
e
s

�, offloading task ratio to remote system

� = 100
� = 150
� = 200
� = 250

(b) Impacts of β on Wq

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 0 0.2 0.4 0.6 0.8 1

S
,
a
v
e
ra

g
e
 s

y
st

e
m

 s
e
rv

ic
e
 r

a
te

�, offloading task ratio to remote system

� = 100
� = 150
� = 200
� = 250

(c) Impacts of β on S

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
R
P
S
D

,
co

st
 r

e
sp

o
n
se

 t
im

e
 p

ro
d
u
ct

io
n

 s
e
rv

ic
e
 r

a
te

 d
iv

is
io

n

�, offloading task ratio to remote system

� = 100
� = 150
� = 200
� = 250

(d) Impacts of β on CRPSD

Figure 2. Parameter study of the core system metrics

2.35 to implement and run the simulation of the proposed
offloading system. All the simulations in this paper run
1,000,000 simulation-time and have the following default
values: Kl = 200, Kr = 250, k = 150, and α = 0.02. The
results are depicted in Fig. 2a – Fig. 2d. By observing CRPSD
in Fig. 2d, we find that the best remote offloading ratio locates
at the local minimum searched from β = 1.0. Additionally, we
observe that it may locate at the local minimum searched from
β = 0.0 in some particular situations, in which the RSU can
perform calculations fast without consuming a considerable
number of resources.

V. DOUBLE-CHECK OFFLOADING ALGORITHM (DCOA)

A. DCOA Overview

According to the observations of Fig. 2d, we propose the
DCOA in algorithm 1, which checks the two local minimums
searched from β = 0.0 and β = 1.0 to identify the correct
global minimum. We use a gradient descent method, DCOA
gradient descent, to determine the local minimum. If the
feedback result worsens, the algorithm changes the search-
ing direction and reduces the searching step simultaneously.
Fig. 2d depicts that the distance during the search for the
local minimum starting from β = 1.0 is much greater than
that starting from β = 0.0. Therefore, we set a large searching

step (0.16) when starting from β = 1.0 and a small searching
step (0.02) when starting from β = 0.0.

Algorithm 1: Double-Check Offloading Algorithm
(DCOA)

Procedure DCOA(P)
βr = DCOAGradientDescent(−1, 1.0, 0.16, P);
βl = DCOAGradientDescent(1, 0.0, 0.02, P);
if P (βr) < P (βl) then

βDCOA = βr;

else
βDCOA = βl;

return βDCOA;

B. DCOA Gradient Descent
DCOA gradient descent shown in algorithm 2 is used to

determine the local minimum for DCOA:
• If the searching feedback is worse than the previous one,

change the searching direction and reduce the searching
step.

• Record the searching result for comparison with that
obtained the next time.

• If the step becomes sufficiently small (< 0.01), keep step
0.01 and return the next searching result to DCOA.

 0

 50

 100

 150

 200

 250

 300

100 125 150 175 200 225 250

C
,
a
v
e
ra

g
e
 s

y
st

e
m

 c
o
st

�, task arrival rate

Local, �=0
Remote, �=1

Random, �=0.5
Intuitive

Proposed DCOA

(a) Impact of offloading schemes on C

 0

 0.5

 1

 1.5

 2

 2.5

 3

100 125 150 175 200 225 250

W
q
,
a
v
e
ra

g
e
 r

e
sp

o
n
se

 t
im

e
 i
n
 q

u
e
u
e
s

�, task arrival rate

Local, �=0
Remote, �=1

Random, �=0.5
Intuitive

Proposed DCOA

(b) Impact of offloading schemes on Wq

 0

 50

 100

 150

 200

 250

 300

 350

 400

100 125 150 175 200 225 250

S
,
a
v
e
ra

g
e
 s

y
st

e
m

 s
e
rv

ic
e
 r

a
te

�, task arrival rate

Local, �=0
Remote, �=1

Random, �=0.5
Intuitive

Proposed DCOA

(c) Impact of offloading schemes on S

 0

 0.2

 0.4

 0.6

 0.8

 1

100 125 150 175 200 225 250

C
R
P
S
D

,
co

st
 r

e
sp

o
n
se

 t
im

e
 p

ro
d
u
ct

io
n

 s
e
rv

ic
e
 r

a
te

 d
iv

is
io

n

�, task arrival rate

Local, �=0
Remote, �=1

Random, �=0.5
Intuitive

Proposed DCOA

(d) Impact of offloading schemes on CRPSD

Figure 3. Impact of offloading schemes

• If the step is greater than a thread (0.01), move a step.
• If the current β value is larger than 1.0, set β = 1.0 and

change the searching direction and reduce the searching
step.

• If the current β value is lesser than 0.0, set β = 0.0 and
change the searching direction and reduce the searching
step.

C. Evaluation and Comparison

We compare DCOA with four other schemes: Local, Re-
mote, Random, and Intuitive. The Local scheme offloads all
the tasks to the RSU, whereas the Remote scheme offloads
all the tasks to the vehicular micro-cloud. The Random
scheme offloads tasks to the RSU and the vehicular micro-
cloud randomly (50%). The Intuitive scheme uses an intuitive
method, whereby it allows the local arrival rate λl equal to
the RSU service rate µl, and offloads the remaining tasks to
the vehicular micro-cloud, to prevent the RSU from getting
overloaded and to serve users to the greatest possible extent.
The simulation results are depicted in Fig. 3a – Fig. 3d.

The proposed DCOA exhibits the best CRPSD at each
arrival rate. DCOA performs well, particularly with respect
to response time. The performance of the Intuitive scheme
is extremely close to that of DCOA in terms of cost and
service rate, but significantly worse than DCOA with respect
to response time. This is because the RSU in the Intuitive

scheme undergoes heavy loading. Although the task does
not accumulate and overflow in the queue, the response time
increases considerably.

The Local scheme exhibits the best cost because only
the RSU consumes resources, whereas no started vehicle
instances exist in the vehicular micro-cloud. In contrast, it
performs the worst in terms of response time and service rate.

A non-institute trend of the Remote scheme exhibits in
terms of CRPSD, which decreases with the increasing task
arrival rate from 100 to 150. This trend is because the
vehicular micro-cloud always consumes resources for vehicle
instances in setup time. In contrast, the vehicle instances
sometimes immediately turn off if any task is completed
during this period. Therefore, the cost of the Remote scheme
is extremely close to the maximum, k, while the service rate is
increasing and then improves the CRPSD. Additionally, this
trend affects other offloading schemes except for the Local
scheme.

VI. CONCLUSION

In this study, we proposed an offloading system architecture
comprising the RSU, 5G core network, and vehicular micro-
cloud. Then, we interactively verified the correctness between
the closed-forms and ns-2 simulations. Additionally, we pro-
posed DCOA, including the DCOA gradient descent, and
compared it with other offloading schemes. The simulation

Algorithm 2: DCOA Gradient Descent
Procedure DCOAGradientDescent(Sign, βinit,
Step, P)

βcurrent = βinit;
Pprevious = 2.0;
Flagrunning = True;
Flagterminal = False;
while Flagrunning do

if P (βcurrent) > Pprevious then
Sign = Sign× (−1);
Step = Step/2;

Pprevious = P (βcurrent);
if Step < 0.01 then

βcurrent = βcurrent + Sign× 0.01;
Flagrunning = False;

else
βcurrent = βcurrent + Sign× Step;

if βcurrent > 1.0 then
βcurrent = 1.0;
if Flagterminal then

Sign = Sign× (−1);
Step = Step/2;

else
Flagterminal = True;

else if βcurrent < 0.0 then
βcurrent = 0.0;
if Flagterminal then

Sign = Sign× (−1);
Step = Step/2;

else
Flagterminal = True;

else
Flagterminal = False;

βDCOAGradientDescent = βcurrent;
return βDCOAGradientDescent;

results demonstrated that DCOA exhibited the best system
performance. In the future, we intend to further investigate
this issue by considering more factors, such as the mobility
of vehicles, previously turning on and slowly turning off the
vehicle instance in the vehicular micro-cloud, and attempting
to simulate the effects of 5G core network slices.

ACKNOWLEDGMENT

This work was supported in part by the Ministry of Science
and Technology of Taiwan under grant numbers 109-2218-E-
009-004, 108-2221-E-009-042-MY3, and MOST 108-2218-E-
009-028.

REFERENCES

[1] W. Zhan, C. Luo, J. Wang, G. Min, and H. Duan, “Deep Reinforcement
Learning-Based Computation Offloading in Vehicular Edge Computing,”

in IEEE Global Communications Conference (GLOBECOM), Waikoloa,
HI, USA, 2019.

[2] 3GPP TR 22.885 - Study on LTE support for Vehicle to Everything
(V2X) services.

[3] Z. Y. Rawashdeh and S. M. Mahmud, “Admission Control for Roadside
Units Based on Virtual Air-Time Transmissions,” in IEEE Global
Communications Conference (GLOBECOM), Houston, Texas, USA,
2011.

[4] T. Higuchi, R. V. Rabsatt, M. Gerla, O. Altintas, and F. Dressler,
“Cooperative Downloading in Vehicular Heterogeneous Networks at
the Edge,” in IEEE Global Communications Conference (GLOBECOM
2019), Workshop on New and Disruptive Technologies and Applications
for Mobile Edge/Fog Computing (MobileEdgeCom 2019). Waikoloa,
HI: IEEE, 12 2019.

[5] R. Zhang, F. Yan, W. Xia, S. Xing, Y. Wu, and L. Shen, “An Optimal
Roadside Unit Placement Method for VANET Localization,” in IEEE
Global Communications Conference (GLOBECOM), Singapore, 2017.

[6] P. Gu, C. Hua, R. Khatoun, Y. Wu, and A. Serhrouchni, “Cooperative
Anti-Jamming Relaying for Control Channel Jamming in Vehicular Net-
works,” in IEEE Global Communications Conference (GLOBECOM),
Singapore, 2017.

[7] T. Liu, S. Zhou, and Z. Niu, “Joint Optimization of Cache Allocation
and Content Placement in Urban Vehicular Networks,” in IEEE Global
Communications Conference (GLOBECOM), Abu Dhabi, UAE, 2018.

[8] N. Wang and J. Wu, “Opportunistic WiFi offloading in a vehicular
environment: Waiting or downloading now?” in IEEE International
Conference on Computer Communications (INFOCOM), San Francisco,
CA, USA, 2016.

[9] 3GPP TS 23.214 - Architecture enhancements for control and user plane
separation of EPC nodes.

[10] 3GPP TS 23.501 - System architecture for the 5G System (5GS).
[11] V. Millnert, J. Eker, and E. Bini, “Achieving Predictable and Low End-

to-End Latency for a Network of Smart Services,” in IEEE Global
Communications Conference (GLOBECOM), Abu Dhabi, UAE, 2018.

[12] F. Hagenauer, C. Sommer, T. Higuchi, O. Altintas, and F. Dressler,
“Vehicular Micro Cloud in Action: On Gateway Selection and Gateway
Handovers,” Elsevier Ad Hoc Networks, vol. 78, pp. 73–83, 2018.

[13] F. Malandrino, C. Casetti, C.-F. Chiasserini, C. Sommer, and F. Dressler,
“Content Downloading in Vehicular Networks: Bringing Parked Cars
Into the Picture,” in 23rd IEEE International Symposium on Personal,
Indoor and Mobile Radio Communications (PIMRC 2012). Sydney,
Australia: IEEE, 9 2012, pp. 1534–1539.

[14] F. Malandrino, C. Casetti, C.-F. Chiasserini, C. Sommer, and F. Dressler,
“The Role of Parked Cars in Content Downloading for Vehicular
Networks,” IEEE Transactions on Vehicular Technology, vol. 63, no.
14720546, pp. 4606 – 4617, 2014.

[15] H. Guo, J. Liu, H. Qin, and H. Zhang, “Collaborative Computation Of-
floading for Mobile-Edge Computing over Fiber-Wireless Networks,” in
IEEE Global Communications Conference (GLOBECOM), Singapore,
2017.

[16] B. Li, “Optimal Offloading for Dynamic Compute-Intensive Applica-
tions in Wireless Networks,” in IEEE Global Communications Confer-
ence (GLOBECOM), Waikoloa, HI, USA, 2019.

[17] W. Xu, H. Wu, J. Chen, W. Shi, H. Zhou, N. Cheng, and X. S.
Shen, “ViFi: Vehicle-to-Vehicle Assisted Traffic Offloading via Road-
side WiFi Networks,” in IEEE Global Communications Conference
(GLOBECOM), Abu Dhabi, UAE, 2018.

[18] Z. Wang, Z. Zhong, D. Zhao, and M. Ni, “Vehicle-Based Cloudlet
Relaying for Mobile Computation Offloading,” IEEE Transactions on
Vehicular Technology, vol. 67, no. 18246123, pp. 11 181 – 11 191, 2018.

[19] Y. Song, J. Peng, K. Liu, F. Jiang, W. Liu, and Z. Huang, “A Hybrid
Particle Swarm Ant Colony Based Resource Reservation for Geo-
Distributed Cloud Service,” in IEEE Global Communications Confer-
ence (GLOBECOM), Washington, DC USA, 2016.

[20] Y. Ma, W. Liang, M. Huang, and S. Guo, “Profit Maximization of
NFV-Enabled Request Admissions in SDNs,” in IEEE Global Commu-
nications Conference (GLOBECOM), Abu Dhabi, UAE, 2018.

[21] T. Phung-Duc, Y. Ren, J.-C. Chen, and Z.-W. Yu, “Design and analysis
of deadline and budget constrained autoscaling (DBCA) algorithm
for 5g mobile networks,” CoRR, vol. abs/1609.09368, 2016. [Online].
Available: http://arxiv.org/abs/1609.09368

[22] "The network simulator - ns-2", Available:
http://www.isi.edu/nsnam/ns/.

