
TSOA: Two-State Offloading Algorithm from Users
to Co-Located Vehicular Microclouds

Bo-Jun Qiu∗, Jyh-Cheng Chen∗ and Falko Dressler†
∗Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan

†School of Electrical Engineering and Computer Science, TU Berlin, Berlin, Germany
email: qiubj759@cs.nctu.edu.tw, jcc@nycu.edu.tw, dressler@ccs-labs.org

Abstract—Offloading in edge computing scenarios is considered
a prime solution to reduce computational time and also energy
resources of the user equipment. This paper focuses on computa-
tion offloading from the user equipment to co-located vehicular
microclouds. We derive the closed-form system metrics and
cross-validate them with simulations. Through a comprehensive
observation of vehicular microcloud behavior, the proposed two-
state offloading algorithm (TSOA) provides the optimal offloading
configuration in both planning and operating states. Finally,
our evaluation demonstrates that the proposed TSOA performs
optimally among the three offloading schemes.

Index Terms—Edge Computing, Vehicular Microcloud, Com-
putation Offloading, 5G Application.

I. INTRODUCTION

Mobile edge computing has become an integral part of
fifth-generation (5G) networks. Task offloading is considered
one of the most prevalent applications [1], and supports next-
generation metaverse applications [2]. Many vehicle-related
applications require a significant amount of computational
resources [3], an aspect usually overloaded for consumer
vehicles, so offloading these tasks to road-side units (RSUs)
represents a popular solution [4]. However, the RSU may be
overloaded during the peak time [5].

As the deployment of 5G edge computing is rather slow,
virtualized edge computing has been considered [6], often using
vehicles as they contain significant computational resources
[7]–[9]. In such a situation, one potential solution is offloading
tasks through core networks to vehicular microclouds [9]–[11].
Parked vehicles often are considered part of such microclouds,
which possess substantial idle computational resources [12],
[13]. However, offloading to the same destination may overload
it, whereas offloading to several vehicular microclouds on
average is cost-ineffective because setting up a vehicle instance
consumes time and resources.

This paper focuses on the computation offloading issue from
the user equipment (UE), which usually refers to consumer
vehicles (we call them ’UE’ instead of ’UEs’ in the rest of
this paper), to co-located vehicular microclouds, which may
have different instance scales. We reuse part of the model in
our previous study [14] to describe a vehicular microcloud and
propose the two-state offloading algorithm (TSOA) to obtain
answers to the following questions:

• In the planning state before operating, how many vehicular
microclouds are required? What scales of vehicular micro-

5G Core
Network

UEs

gNB

Offloading
Manager

gNB

Vehicular
Microcloud

Dynamic k3 vehicles

Microclould
ManagerVehicular

Microcloud

Dynamic k2 vehicles

Microclould
ManagerVehicular

Microcloud

Dynamic k1 vehicles

Microclould
Manager

Figure 1. Overview of the offloading system

clouds are more optimal? And what are the appropriate
offloading ratios between these vehicular microclouds?

• In the operating state after planning, which vehicular
microcloud should take the additional tasks blocked by
other vehicular microclouds?

The rest of the paper is presented as follows: Section II
describes selected related work. In Section III, we introduce
the offloading system, derive the closed-form metrics, observe
the behavior of a single vehicular microcloud, and study
cases of labor division between co-located vehicle microclouds.
Section IV presents the proposed TSOA. In Section V, we
measure the proposed TSOA and analyze the results. Finally,
we provide some conclusions in Section VI.

II. RELATED WORK

Offloading in a vehicular environment has been explored
from multiple angles. A complete architecture, the vehicular
microcloud concept, has been proposed by Higuchi et al. [10].
In this paper, the authors focus on data-downloading services.
Furthermore, a local coordination mechanism emerges to
maximize the system’s benefits. Following up, Higuchi et
al. [15] focus on the consisting-event of vehicular microclouds
to provide several services. Therefore, they establish a remote
server to maintain statistics and design a mechanism to confirm
when sufficient resources exist to form a vehicular microcloud.
Krijestorac et al. [16] concentrate on offloading the computation
to edge servers and vehicles via cellular networks and vehicle-
to-vehicle communications separately, presenting a framework
to optimize the resource assignment.

Several papers have been published focusing on selected
components. Zhan et al. [4] focus on the offloading scenario

from vehicles to roadside units and propose a deep reinforce-
ment learning-based method to handle vehicle mobility and
dynamic environment challenges. Wang et al. [17] focus on
the computation offloading issue from a mobile device to
nearby smart vehicles and propose corresponding algorithms
to obtain the optimal candidate of the next cloudlet with the
best switching time. Xu et al. [18] concentrate on offloading
vehicular data from cellular networks to WiFi networks by
using nearby vehicles’ idle WiFi resources. Moreover, the
authors utilize an M/G/1/K queueing model to analyze the
efficiency. Celes et al. [19] focus on the actual characteristics
of vehicular microclouds in real urban scenarios. They trace
vehicle mobility and employ statistical modeling to identify
the metric distribution.

The works mentioned above focus on vehicular microcloud
features or offloading issues. However, there needs to be a
study to assess the offloading configuration among co-located
vehicular microclouds, which is this paper’s main focus and
contribution.

III. PROPOSED OFFLOADING SYSTEM

The offloading system’s overview appears in Figure 1. UE
offloads tasks to vehicular microclouds through the 5G core
network and next-generation node B (gNB). The offloading
manager can view the whole system to decide the offloading
configurations, thereby answering the questions outlines above,
and the system offloads tasks to each vehicular microcloud
according to those configurations. If tasks are blocked because
the destination vehicular microclouds are overloaded, the
offload manager must yield new destinations. Additionally, each
vehicular microcloud may have a different vehicle instance
scale and a corresponding task capacity.

As for the vehicular microcloud, we reuse the model from
our previous study [14] to describe its behavior. It was first
proposed in another study [20]. In this model, the microcloud
manager can dynamically set up and turn off every vehicle
instance. If the number of tasks exceeds the number of vehicle
instances, it sets an instance up to decrease the response time
in the queue; in contrast, if the latter exceeds the former, it
turns an instance off immediately to reduce cost. Furthermore,
it turns off the setup state vehicle instance first.

A. Derivation of Closed-Form Metric

The notations are listed in Table I. In this paper, we assume
that the calculation time per task follows an exponential
distribution with a mean of µ−1 for each vehicle instance,
the task arrival rate follows a Poisson distribution with mean λ,
and the instance setup time follows an exponential distribution
with a mean α−1. All simulations in this paper set Kx = 2 kx,
µ = 1, and α = 0.02 as the default value [14]. Additionally, we
define each vehicle instance’s cost as its resource consumption
during the run time, including the setup procedure, and we
finally define the objective function P to assess the system
performance as

P =
C(W + 1)(B + 1)

S
. (1)

Table I
LIST OF NOTATIONS

Notation Explanation

P System performance
C Average system cost
W Average system response time in queue
B Average system blocking rate
S Average system service rate
λ Task arrival rate in the system
µ Service rate for each vehicle instance
α Setup rate for each vehicle instance
X The number of vehicular microclouds in the system
Kx The number of maximum tasks can be accommodated in the

xth vehicular microcloud
kx The number of maximum vehicle instances in the xth

vehicular microcloud
Cx Average cost in the xth vehicular microcloud
Wx Average response time in queue in the xth vehicular micro-

cloud
Bx Average blocking rate in the xth vehicular microcloud
Sx Average service rate in the xth vehicular microcloud
λx Task arrival rate in the xth vehicular microcloud

According to the definition in (1), a lower value of P implies
superior system performance, such as lower cost, response time
in the queue, and blocking rate, as well as higher service scale.
We normalize the metrics to range [0 : 1] before calculating P .
Therefore, once a metric adds a value of 1 after normalizing, it
degrades the impact scale of the metric from multiplication to
addition. There are several considerations behind this design:

• Viewpoints of System Operators and Consumers: From the
viewpoint of consumers, they pay the usage fee to offload
tasks and anticipate the correct results as expected. In
other words, it is acceptable when the response time W
is shorter than a certain threshold, and further improving
W may not be cost-effective. On the other hand, from the
viewpoint of operators, the critical metrics are the cost
C and service rate S because the former is overhead and
the latter is profit.

• Make Comparison Fairness: To clarify the optimal of-
floading configuration, comparisons between vehicular
microclouds with diverse instance and cooperation scales
are essential. Because maxima of C and S always present
the same value kx in the model, their normalization
impacts on P can offset each other to facilitate a fair
comparison if system operators do not add an additional
value to them. In contrast, the maxima of W and B are
α−1 +µ−1 and 1.0; they are constant and incur the same
normalization impacts for all vehicular microclouds even
if operators add a value of 1 to them.

• Avoid drastic impacts on P : In most cases, if task arrival
rates λx are significantly less than the instance scales
kx, the system blocking rates Bx will be 0, zeroing the
performance metric P . Therefore, system operators must
add a value on Bx. Additionally, when Bx increases from
0 to 0.01, it creates a minor impact for operators and
consumers, whereas it drastically changes P if operators
use a multiplication scale on Bx.

 0

 50

 100

 150

 200

 250

 300

 350

 1 20 40 60 80 100 120

C
,
av

er
ag

e
sy

st
em

 c
os

t

λ (%), task arrival rate percentage of microcloud scale k

k= 30
k= 100
k= 300

(a) Impact of λ on C

 0

 1

 2

 3

 4

 5

 6

 7

 1 20 40 60 80 100 120

W
,
av

er
ag

e
re

sp
on

se
 t

im
e

in
 q

ue
ue

λ (%), task arrival rate percentage of microcloud scale k

k= 30
k= 100
k= 300

(b) Impact of λ on W

 0

 0.05

 0.1

 0.15

 0.2

 1 20 40 60 80 100 120

B,
 a

ve
ra

ge
 s

ys
te

m
 b

lo
ck

in
g

ra
tio

λ (%), task arrival rate percentage of microcloud scale k

k= 30
k= 100
k= 300

(c) Impact of λ on B

 0

 50

 100

 150

 200

 250

 300

 350

 1 20 40 60 80 100 120

S,
 a

ve
ra

ge
 s

ys
te

m
 s

er
vi

ce
 r

at
e

λ (%), task arrival rate percentage of microcloud scale k

k= 30
k= 100
k= 300

(d) Impact of λ on S

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 20 40 60 80 100 120

P,
 a

ve
ra

ge
 s

ys
te

m
 p

er
fo

rm
an

ce

λ (%), task arrival rate percentage of microcloud scale k

k= 30
k= 100
k= 300

(e) Impact of λ on P

Figure 2. Parameter study of a single vehicular microcloud

After clarifying the definition of P in (1), we provide
the equations of the other system metrics, which need the
corresponding metrics of vehicular microclouds as

C =

X∑
x=1

Cx (2)

W =

∑X
x=1 WxSx

S
(3)

B =

∑X
x=1 Bxλx

λ
(4)

S =

X∑
x=1

Sx (5)

Then we derive the closed-form metrics of the vehicular
microclouds as

Cx =

kx∑
i=0

Kx∑
j=i

πi,j min(j, kx) (6)

Wx =

∑kx

i=0

∑Kx

j=i πi,jj

λx(1−
∑kx

i=0 πi,Kx
)
− 1

µ
(7)

Bx =

kx∑
i=0

πi,Kx (8)

Sx =

kx∑
i=0

Kx∑
j=i

πi,ji (9)

In (6) to (9), πi,j denotes the probability of a vehicular
microcloud state, which runs i vehicle instances calculating j
tasks. The detailed derivation of πi,j can be found in our
previous research [14] (not included because of the page

limitation). Additionally, system operators decide the task
arrival rate of each vehicular microcloud λx in (10) through
an offloading algorithm, which can use the TSOA proposed in
Section IV:

λx =

{
λ , if X = 1
decide by offloading algorithm , otherwise (10)

B. Observation of a Single Vehicular Microcloud

To observe the behavior of a single vehicular microcloud,
we cross-validate the closed-form metrics with simulations by
using the network simulator 2 (ns-2) [21], and the results match,
as demonstrated in Figure 2. Additionally, because vehicular
microclouds may have diverse vehicle instance scales kx, we
assume there are three primary sizes for the corresponding
scenario:

• Small size (kx = 30): It consists of vehicles parked along
a road on both sides.

• Medium size (kx = 100): It consists of vehicles parked
in a regular parking lot.

• Large size (kx = 300): It consists of vehicles parked in a
parking tower of a hypermarket.

To present and compare vehicular microcloud behaviors
between these primary sizes graphically, we set the x-axis as
the percentage arrival rate λ(%) of each kx. For example, if
the value of λ(%) is 20, it implies λ is 6 for the small size,
20 for the medium size, and 60 for the large size.

As shown in Figure 2a, the cost increases with a higher task
arrival rate, and the increasing trend flattens out accordingly.
Thus, the overhead per task is more expensive when the
task arrival rate is low because the instance setup procedure
consumes time. During this period, the system accumulates
tasks and sets more instances, which may turn off quickly and
create additional waste.

 1

 1.05

 1.1

 1.15

 1.2

301 305 310 315 320 325 329

300*1 + 30*1 (fill 300)
300*1 + 30*1 (fill 30)

(a) Case 1-1

 1

 1.1

 1.2

 1.3

 1.4

301 320 340 360 380 399

300*1 + 100*1 (fill 300)
300*1 + 100*1 (fill 100)

(b) Case 1-2

 1

 2

 3

 4

 5

 6

 7

1 5 10 15 20 25 29

300*1
100*1
30*1

(c) Case 2-1

 1

 1.3

 1.6

 1.9

 2.2

31 40 50 60 70 80 90 99

300*1
100*1

(d) Case 2-2

 1

 1.1

 1.2

 1.3

 1.4

200 225 250 275 300

300*1
100*3

(e) Case 3-1

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

240 255 270 285 300

300*1
30*10

(f) Case 3-2

 1

 1.3

 1.6

 1.9

 2.2

30 40 50 60

100*1
30*2

(g) Case 4-1

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

100 125 150 175 200

300*1
100*2

(h) Case 4-2

Figure 3. Offloading case study of co-located vehicular microcloud configurations
(impacts of λ (x-axis) on P (y-axis))

We study the response time in the queues in Figure 2b. It
decreases with a higher task arrival rate because the system
sets more vehicle instances up to consume tasks. However, the
response time increases when the system overloads because
there are no more instances to set up. At the same time,
the blocking rate increases with a higher task arrival rate
(see Figure 2c) because the system becomes busy, especially
when it is overloaded. Additionally, the trend differs slightly
in the small-size vehicular microcloud because its instances
are terminated more easily and thus drastically increase the
blocking rate. As shown in Figure 2d, the service rate increases
with a higher task arrival rate until the system is overloaded.
However, the service rate of the small-size vehicular microcloud
still increases even in the overloaded range; this occurs because
that vehicular microcloud turns off the vehicle instances easily
and thus needs a higher task arrival rate to set up all instances.

Finally, in Figure 2e, the system performance improves with
a higher task arrival rate until overloaded. Each scale’s best
percentage of task arrival rates λ(%) differs (119% for the small
size, 105% for the medium size, and 101% for the large size).
In other words, overloading benefits vehicular microclouds
regarding their efficiency, especially the smaller ones.

Thus far, we can derive a brief conclusion for a single
vehicular microcloud:

• The average cost per task is cheaper with a higher task
arrival rate.

• The average response time in the queue per task shortens
with a higher task arrival rate and a larger instance scale.

• The average blocking rate increases drastically with a
higher task arrival rate and a smaller instance scale.

• The average service rate increases linearly with a higher
task arrival rate until the system sets up all instances,
and a smaller vehicular microcloud requires a higher task
arrival rate to set up all vehicle instances.

• The best task arrival rate λx is 36 for the small-size
vehicular microcloud, 105 for the medium-size one, and
303 for the large-size one.

Table II
CASE 5 CONFIGURATIONS AND RESULTS

Case λ Config. 1 Config. 2 Pconfig.1 Pconfig.2

5-1 120 100*1+30*1 30*4 1.2127 1.3893
5-2 320 300*1+30*1 100*2+30*4 1.0818 1.2759

C. Case Study of Co-located Vehicular Microclouds

To clarify the behaviors among co-located vehicular mirco-
clouds, we compare different offloading configurations in five
cases by running simulations. Figure 3 reveals the simulation
results. In this figure, the x-axis represents the task arrival rate
λ, and the y-axis describes the system performance P , in which
a lower value implies improved performance. Additionally, the
figure legend presents the system configuration. For example,
the description "100*1+30*2" in a legend implies that the
offloading system consists of one medium-size and two small-
size vehicular microclouds.

Case 1. Filling size choice: In this case, we set two vehicular
microclouds in different scales and prioritize offloading tasks
to fill one completely (λx = kx) to observe filling which scale
performs better. The results of comparing different scales in
Figures 3a and 3b prove that filling the large one is always
desirable because of the lower C and B.

Case 2. Remaining tasks handling: In this case, we set
one vehicular microcloud in diverse scales to handle the
remaining tasks. In other words, the tasks are insufficient to
fill any vehicular microcloud. The results in different scales in
Figures 3c and 3d convey that asking the small one to handle
the remaining tasks is most successful because of the lower C.

Case 3. A single fully-filled larger vehicular microcloud
vs. many fully-filled smaller ones: In this case, we set only
one scale of vehicular microclouds at a time to observe the
difference between filling a larger one and filling many smaller
ones. The results in different scales in Figures 3e and 3f
display that filling the larger one is preferred because of
the lower W and B. In other words, separating a large-size

vehicular microcloud to fill several medium-size or small-size
microclouds worsens system performance. Additionally, the
performance gap between them decreases and even reverses
with a lower task arrival rate because of a lower C.

Case 4. A single partially-filled larger vehicular microcloud
vs. many fully-filled smaller ones: In this case, we set only
one scale of vehicular microclouds at a time to observe the
difference between offloading to a partially-filled larger one
and fully-filled smaller ones. The results in different scales
in Figures 3g and 3h prove that filling at least one smaller
vehicular microcloud is better because of a lower C.

Case 5. Single fully-filled larger and single partially-filled
smaller vehicular microclouds vs. many fully-filled smaller
ones: In this case, we observe the difference between two
configurations as displayed in Table II: Config. 1 sets a fully-
filled larger vehicular microcloud and an additional partially-
filled smaller one. In contrast, Config. 2 sets many fully-filled
smaller vehicular microclouds. The results in different scales
indicate that filling a larger vehicular microcloud, even with
an additional partially-filled smaller one, outperforms because
of a lower W and B.

Thus far, we can derive a brief conclusion for offloading
tasks between co-located vehicular microclouds:

• Always prioritize filling a large vehicular microcloud
instead of a smaller one.

• Always offload remaining tasks to a small vehicular
microcloud instead of a larger one.

• Never separate a fully-filled vehicular microcloud into
many smaller ones.

• Always offload tasks to fully-filled smaller vehicular
microclouds instead of a partially-filled larger one (it
relies on appropriately fine-grained instance scales).

• Always offload tasks to a fully-filled larger vehicular
microcloud instead of fully-filled smaller ones, even if it
creates an additional partially-filled smaller one.

IV. TWO-STATE OFFLOADING ALGORITHM (TSOA)

According to vehicular microcloud observations in Sec-
tions III-B and III-C, we propose TSOA offloading tasks
from UE to co-located vehicular microclouds. TSOA runs
for different purposes during the planning and operating states:

• Planning state: In this state, the offloading system makes
decisions offline for planning the optimal offloading config-
urations, including the list of used vehicular microclouds
and their task offloading ratios.

• Operating state: In this state, the offloading system only
has a short time to make decisions online for assigning the
appropriate vehicular microcloud as the new offloading
destinations for the blocked tasks.

The proposed TSOA performs different reactions according
to the system state as demonstrated in Algorithm 1. In the
planning state, TSOA calls the corresponding subroutine
to obtain the optimal offloading configurations and begins
operating the offloading system based on it. On the other hand,
in the operating state, TSOA waits to handle blocked tasks.

Algorithm 1: Two-State Offloading Algorithm (TSOA)
Input: State,Model, λ,X,Kx, kx, jx
Output: Listuse, λx, Targetoffload
if State is Planning then

Listuse and λx ← call TSOAplanning

offload λ to Listuse with λx

if State is Operating then
for State is Operating do

if Task is blocked then
Targetoffload ← call TSOAoperating

offload Task to Targetoffload

Algorithm 2: Planning State TSOA (TSOAplanning)
Input: Model, λ,X,Kx, kx
Output: Listuse, λx

for each vehicular microcloud do
Tablebest ← record best λx through Model

λcurrent ← λ
Listuse ← call TCOAsearch

λblock ← sum of λx ×Bx in Listuse
λcurrent ← λ+ λblock

Listuse ← call TCOAsearch again
return Listuse with λx

Algorithm 3: TSOA Search Scheme (TSOAsearch)
Input: λcurrent, Tablebest, X,Kx, kx
Output: Listuse, λx

Listuse ← clear
for λcurrent > 0 do

if λcurrent < everyone in Tablebest then
Listuse add smallest instance scale one
λx ← λcurrent

λcurrent ← 0
break

λuse ← search Tablebest for largest one, which
< λcurrent and is not in Listuse
Listuse add the searched one
λx ← λuse

λcurrent ← λcurrent − λuse

return Listuse with λx

Algorithm 4: Operating State TSOA (TSOAoperating)
Input: Listuse, X, kx, jx
Output: Targetoffload
Listnonblocking ← search non-blocking vehicular

microclouds in Listuse
Targetoffload ← search smallest instance scale in
Listnonblocking

return Targetoffload

Once a vehicular microcloud becomes blocked, TSOA calls
the corresponding subroutine to obtain the new offloading
destination and offloads the blocked tasks.

The subroutine for the planning state appears in Algorithm 2.
It derives and records the best offloading ratio for each
vehicular microcloud from the closed-form solution mentioned
in Section III-A. Assessing the number of blocked tasks,
TSOAplanning calls the subroutine, which searches the optimal
configurations according to the policies and roughly obtains the
number of blocked tasks. Considering the task arrival rate and
the blocked amount, TSOAplanning calls the same subroutine
again to update the offloading configuration for the final result
returned to the TSOA.

Algorithm 3 presents the subroutine, which obtains the
optimal offloading configurations according to the input task
arrival rate and search policies summarized in Section III-C,
used in TSOAplanning to update the optimal configurations.
Following the search policies, TSOAsearch searches the records
Tablebest for the largest one that is less than the current task
arrival rate under planning λcurrent. TSOAsearch places the
search results into the using list Listuse, sets the corresponding
offloading ratio λx, and updates the remaining λcurrent.
Before returning the configurations, TSOAsearch selects the
remaining smallest vehicular microcloud additionally to handle
the remaining tasks if λcurrent is not zero.

Finally, in Algorithm 4, the subroutine for the operating state
attempts to find the optimal vehicular microcloud as the offload
target for the blocked tasks. As the first step, TSOAoperating

searches the list Listuse to obtain information about all
non-blocking vehicular microclouds. Next, by searching the
obtained list Listnonblocking, TSOAoperating selects the one
with the smallest instance scale and returns it to TSOA as the
final offloading target. In TSOAoperating , the search range of
the target is limited to using list Listuse. In other words, it
cannot invite a new vehicular microcloud to join the offloading
system.

V. EVALUATION

To assess the proposed TSOA, we further propose two
intuitive methods as baselines for comparison:

• Distributed scheme: It distributes tasks uniformly with the
same percentage of the instance scales to avoid blocking
(λx = λ × kx/ksum) and offloads blocked tasks to the
idlest target (the largest gap between Kx and jx).

• Centralized scheme: It properly centralizes tasks to large
vehicular microclouds (λx = kx× 90%, higher if λ/ksum
> 90%) to achieve cost-effectiveness and avoid blocking,
offloading blocked tasks to the idlest target as well.

We provide a composite scenario including one large-size,
three medium-size, and six small-size vehicular microclouds
(300*1+100*3+30*6) for the offloading system, and Figure 4
exhibits the simulation results.

In terms of cost C, the distributed scheme sets instances in
each vehicular microcloud with the ratio of λx to kx, which
is relatively low compared to other methods, thus causing
poor cost-efficiency. Besides the cost-efficiency factor of the

offloading ratio, the centralized scheme performs slightly worse
than TSOA by offloading the remaining tasks to a large
vehicular microcloud.

In terms of response time W , the distributed scheme
possesses longer W in low task arrival rates λ because it
is more likely to consume a non-negligible amount of time
to set up instances before calculating tasks. In contrast, the
centralized scheme yields shorter W in the same range of λ
because it sets up more instances to consume the task buffers.

In terms of blocking rate B, in the range of the lower task
arrival rate λ, TSOA incurs relatively higher B compared
to other methods because TSOA employs smaller vehicular
microclouds to save cost. A finer granularity of instance scales
kx for vehicular microclouds eases and decreases this blocking
feature with increasing λ. In other words, TSOA relies on the
fine granularity of kx, as mentioned in Section III-C.

In terms of service rate S, the values in all schemes appear
close to the task arrival rate λ because the system offloads
blocked tasks to new destinations for computational services.

Finally, in terms of performance P , the proposed TSOA
always offers advantages over the baselines because of the
combined effect of the aforementioned reasons.

VI. CONCLUSION

This paper considers offloading computational tasks from
UE to co-located vehicular microclouds. We derive closed-form
metrics and summarize the features of single and co-located
vehicular microclouds with diverse instance scales and task
arrival rates. The proposed TSOA yields the optimal offloading
configuration and ratios in the planning state as well as the
offloading target for the blocked tasks in the operating state. Our
evaluation exhibits that TSOA provides advantages over other
intuitive schemes. In the future, we will consider additional
factors, such as diverse tasks and vehicle instance types.

ACKNOWLEDGMENT

This work was supported in part by the National Science
and Technology Council of Taiwan under grant numbers 111-
2221-E-A49-093-MY3, 111-2218-E-A49-023, and 111-3114-
E-A49-001 as well as by the Federal Ministry of Education
and Research (BMBF, Germany) within the 6G Research and
Innovation Cluster 6G-RIC under Grant 16KISK020K.

REFERENCES

[1] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A Survey
on Mobile Edge Computing: The Communication Perspective,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
Oct. 2017.

[2] K. Li, Y. Cui, W. Li, T. Lv, X. Yuan, S. Li, W. Ni, M. Simsek, and
F. Dressler, “When Internet of Things meets Metaverse: Convergence of
Physical and Cyber Worlds,” IEEE Internet of Things Journal, vol. 10,
no. 5, pp. 4148–4173, Mar. 2023.

[3] C. Sommer and F. Dressler, Vehicular Networking. Cambridge University
Press, 2014.

[4] W. Zhan, C. Luo, J. Wang, G. Min, and H. Duan, “Deep Reinforcement
Learning-Based Computation Offloading in Vehicular Edge Computing,”
in IEEE GLOBECOM 2019. Waikoloa, HI: IEEE, Dec. 2019.

[5] Z. Y. Rawashdeh and S. M. Mahmud, “Admission Control for Roadside
Units Based on Virtual Air-Time Transmissions,” in IEEE GLOBECOM
2011. Houston, TX: IEEE, Dec. 2011.

 0

 100

 200

 300

 400

 500

 600

 700

 800
C,

 a
ve

ra
ge

 sy
st

em

 co
st

TSOA
Distributed
Centralized

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

W
, a

ve
ra

ge
 re

sp
on

se
 ti

m
e

 in
 q

ue
ue

 0

 0.1

 0.2

 0.3

 0.4

B,
 a

ve
ra

ge
 sy

st
em

 b

loc
kin

g
ra

tio

 0

 100

 200

 300

 400

 500

 600

 700

 800

S,
 a

ve
ra

ge
 sy

st
em

 se

rv
ice

 ra
te

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700 725 750 775

P,
 a

ve
ra

ge
 s

ys
te

m

 p
er

fo
rm

an
ce

λ, task arrival rate

Figure 4. Impact of offloading schemes with diverse arrival rate

[6] F. Dressler, C. F. Chiasserini, F. H. P. Fitzek, H. Karl, R. Lo Cigno,
A. Capone, C. E. Casetti, F. Malandrino, V. Mancuso, F. Klingler, and
G. A. Rizzo, “V-Edge: Virtual Edge Computing as an Enabler for Novel
Microservices and Cooperative Computing,” IEEE Network, vol. 36,
no. 3, pp. 24–31, May 2022.

[7] X. Hou, Y. Li, M. Chen, D. Wu, D. Jin, and S. Chen, “Vehicular
Fog Computing: A Viewpoint of Vehicles as the Infrastructures,” IEEE
Transactions on Vehicular Technology, vol. 65, no. 6, pp. 3860–3873,
Jun. 2016.

[8] F. Dressler, G. S. Pannu, F. Hagenauer, M. Gerla, T. Higuchi, and
O. Altintas, “Virtual Edge Computing Using Vehicular Micro Clouds,”
in IEEE ICNC 2019. Honolulu, HI: IEEE, Feb. 2019.

[9] G. Qiao, S. Leng, K. Zhang, and Y. He, “Collaborative Task Offloading
in Vehicular Edge Multi-Access Networks,” IEEE Communications
Magazine, vol. 56, no. 8, pp. 48 – 54, Aug. 2018.

[10] T. Higuchi, R. V. Rabsatt, M. Gerla, O. Altintas, and F. Dressler,
“Cooperative Downloading in Vehicular Heterogeneous Networks at
the Edge,” in IEEE GLOBECOM 2019, MobileEdgeCom Workshop.
Waikoloa, HI: IEEE, Dec. 2019.

[11] F. Hagenauer, C. Sommer, T. Higuchi, O. Altintas, and F. Dressler,
“Vehicular Micro Cloud in Action: On Gateway Selection and Gateway
Handovers,” Elsevier Ad Hoc Networks, vol. 78, pp. 73–83, Sep. 2018.

[12] F. Malandrino, C. E. Casetti, C. F. Chiasserini, C. Sommer, and F. Dressler,
“Content Downloading in Vehicular Networks: Bringing Parked Cars Into
the Picture,” in IEEE PIMRC 2012. Sydney, Australia: IEEE, Sep. 2012,
pp. 1534–1539.

[13] ——, “The Role of Parked Cars in Content Downloading for Vehicular

Networks,” IEEE Transactions on Vehicular Technology, vol. 63, no. 9,
pp. 4606–4617, Nov. 2014.

[14] B.-J. Qiu, C.-Y. Hsieh, J.-C. Chen, and F. Dressler, “DCOA: Double-
Check Offloading Algorithm to Road-Side Unit and Vehicular Micro-
Cloud in 5G Networks,” in IEEE GLOBECOM 2020. Taipei, Taiwan:
IEEE, Dec. 2020.

[15] T. Higuchi, F. Dressler, and O. Altintas, “How to Keep a Vehicular Micro
Cloud Intact,” in IEEE VTC 2018-Spring. Porto, Portugal: IEEE, Jun.
2018.

[16] E. Krijestorac, A. Memedi, T. Higuchi, S. Ucar, O. Altintas, and
D. Čabrić, “Hybrid Vehicular and Cloud Distributed Computing: A
Case for Cooperative Perception,” in IEEE GLOBECOM 2020. Taipei,
Taiwan: IEEE, Dec. 2020.

[17] Z. Wang, Z. Zhong, D. Zhao, and M. Ni, “Vehicle-Based Cloudlet
Relaying for Mobile Computation Offloading,” IEEE Transactions on
Vehicular Technology, vol. 67, no. 11, pp. 11 181–11 191, Nov. 2018.

[18] W. Xu, H. Wu, J. Chen, W. Shi, H. Zhou, N. Cheng, and X. S. Shen,
“ViFi: Vehicle-to-Vehicle Assisted Traffic Offloading via Roadside WiFi
Networks,” in IEEE GLOBECOM 2018. Abu Dhabi, United Arab
Emirates: IEEE, Dec. 2018.

[19] C. Celes, A. Boukerche, and A. A. F. Loureiro, “Revealing and Modeling
Vehicular Micro Clouds Characteristics in a Large-Scale Mobility Trace,”
in IEEE ICC 2021. Virtual Conference: IEEE, Jun. 2021.

[20] Y. Ren, T. Phung-Duc, J.-C. Chen, and Z.-W. Yu, “Dynamic Auto Scaling
Algorithm (DASA) for 5G Mobile Networks,” in IEEE GLOBECOM
2016. Washington, D.C.: IEEE, Dec. 2016.

[21] The network simulator - ns-2, available: http://www.isi.edu/nsnam/ns/.

