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Abstract—The network Quality of Service (QoS) metrics such
as the access time, the bandwidth, and the packet loss play an
important role in determining the Quality of Experience (QoE)
of mobile applications. Various factors like the Radio Resource
Control (RRC) states, the Mobile Network Operator (MNO)
specific retransmission configurations, handovers triggered by the
user mobility, the network load, etc. can cause high variability
in these QoS metrics on 4G/LTE, and WiFi networks, which can
be detrimental to the application QoE. Therefore, exposing the
mobile application to realistic network QoS metrics is critical for
a tester attempting to predict its QoE. A viable approach is testing
using synthetic traces. The main challenge in the generation of
realistic synthetic traces is the diversity of environments and the
lack of wide scope of real traces to calibrate the generators.
In this paper, we describe a measurement-driven methodology
based on transfer learning with Long Short Term Memory
(LSTM) neural nets to solve this problem. The methodology
requires a relatively short sample of the targeted environment
to adapt the presented basic model to new environments, thus
simplifying synthetic traces generation. We present this feature
for realistic WiFi and LTE cloud access time models adapted
for diverse target environments with a trace size of just 6000
samples measured over a few tens of minutes. We demonstrate
that synthetic traces generated from these models are capable
of accurately reproducing application QoE metric distributions
including their outlier values.

Index Terms—Mobile, Cloud, Network, Access Time, Transfer
Learning, Long Short Term Memory, Neural Net, Testing

I. INTRODUCTION

The Quality of Experience (QoE) of mobile applications is
highly dependent on factors such as the access network Quality
of Service (QoS), and the user context, among others. It has
been observed that in the widely deployed cellular networks
like 3G, 4G/LTE, and WiFi, various problems in the network
stack can cause significant variability in the network QoS
metrics such as the access time latency, bandwidth, packet
loss, etc. Such high variability can have an adverse impact on
the mobile application QoE [1]–[8]. For example, when using
a cellular network like LTE, Radio Resource Control (RRC)
radio link layer control states which are used by the base
station to coordinate with the device have a significant impact
on application performance and power consumption [1], [2].
On the data plane, Mobile Network Operators (MNOs) often
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employ protocols configurations in the Radio Link Control
(RLC) that can adversely impact the performance of transport
protocols like TCP, thus degrading the application QoE [3].
External user context factors like mobility lead to handover
within the network that can introduce large access time la-
tencies and degrade application throughput [4]. When a large
number of cell users are connected to the network, there can
be RRC failures for new users either blocking their network
access or increasing the connection establishment latency [5].
At certain times of the day, overall higher demand for video-
streaming, web applications can increase the aggregate net-
work traffic volume in the downlink, thereby degrading the
throughput and the access time latency which is detrimental
to application QoE [6]. With the wide-scale roll-out of the
5G networks, some of these problems could fade away. Also,
the situation might ease out if the slices supporting the stable
network QoS and those matching the individual application
requirements will be rolled out. But the scope of availability
of such application-specific slices in the near future is not quite
clear.

Continuous measurement of application QoE and its im-
provement has a strong incentive for the application testers, as
it is essential for the business’s success. The application testers
require a good understanding of the network QoS delivered to
the users in the real world. This can help them to fine-tune
application-specific protocols and parameters to improve their
QoE. For example, in video streaming based applications the
buffer sizes and streaming rates need to fine-tuned based on
the network QoS [9]. We argue that there is a common need
across the various application use-cases to study the impact
of network QoS on the application QoE in a given context
which is limited to specific scope of interest. For instance,
measuring QoE in a variety of scenarios such as users physical
environment viz. indoors, outdoors, in a cafe, or a university,
etc, within a metropolitan region, while the user is mobile;
commuting, driving a vehicle, etc., during certain hours of the
day, on a specific MNO, on a specific mobile device model, or
any other such factors that impact the network QoS and thus
the application QoE. We refer to such narrow scope of QoE
testing as target environment context-driven testing. In this
work, we focus on target environment context-driven testing
under the impact of cloud access time network QoS metric
as it has the strongest influence on the perceived overall QoE
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Fig. 1: Cloud access time modeling: A comparison of our transfer learning based approach with the traditional approach.

for numerous mobile applications. Amazon [10] estimates that
an increase of access time latency by 100 ms can lead to 1%
annual sales loss. A similar study from Google [11] has found
that 500 ms latency per transaction can result in loss of traffic
as high as 20%.

Unfortunately, the current approach for QoE testing is
not suited for carrying out target environment context-driven
testing. It typically makes use of a strongly oversimplified
access time model represented by the mean and standard devi-
ation statistics of the well-known parametric distributions [12].
These statistics are either derived through common knowledge
or from the literature. Such an approach has fundamental
shortcomings. Firstly, the access time statistics obtained from
literature, databases [13] do not include the temporal dynamics
of the access time variations; hence they lack realism. Sec-
ondly, these statistics are often generic, labeled by location
and access network type — WiFi, 3G, and LTE. They lack
context-based labels related to the trace collection environment
such as stationary, mobility, indoors, outdoors, etc. Joorabchi
et al. [14] in their survey-based study of mobile application
developers and testers found the lack of support to accurately
mimic realistic network environments as one of the top chal-
lenges in mobile application development and testing.

According to [15], [16], there are three main approaches
for carrying out more rigorous application testing viz. real,
emulation, and simulation models. The real approach includes
exposing the application on a real mobile device to real
network conditions directly. While this approach seems to
have the highest level of realism, it is hard to cover a large
enough scope of conditions. Furthermore, the real network
conditions cannot be controlled and testing is not repeatable.

An alternative is to build a comprehensive trace archive
that contains cloud access time traces and replay them to
emulate real network conditions [17]. While the trace-based
emulation approach is valuable, such open archives are not
available. Further, it is also likely that any such archive would
have to be continuously updated given the high variability of
target environments and contexts. The simulation modeling
approach includes building a model for generating synthetic
cloud access time traces that mimic a large scope of real-world
conditions in a controllable and statistically repeatable way.
Models have the potential to be representative of the broader
population of users and scenarios if they properly interpolate
and extrapolate the set of measurements used for its creation.
Unfortunately, models might also need frequent re-calibration
if the environment changes.

Building good models is non-trivial. The traditional mod-
eling approach (shown in Figure 1) requires an extensive
long collection of traces for a representative set of target
environments. According to [18], trace collection for network
modeling requires careful consideration of parameter val-
ues for granularity, duration, scale, diversity of measurement
points for traces. Next, the traces need to be processed and
then reduced to parameters of a time-varying model [15].
Thereafter, the parameters of the model need to be estimated
and the model validated. For a newer target environment, the
entire set of steps need to be repeated again. Thus, building
models is hardly a feasible approach for a tester of a single
application or a small number of applications. Most application
testers are not networking experts and lack of sufficient domain
knowledge makes both data collection and building such
models challenging for them. Therefore, the rigorous network



modeling approach has been of limited interest within the
application testing community in industry [19].

This paper aims to lower the barriers to building realistic
cloud access time models for the generation of synthetic
traces that can be used in target environment context-driven
testing. We develop a transfer learning based approach to
build a model for a target environment (shown in Figure
1). We claim and demonstrate that our approach requires
a relatively short measurement trace of cloud access time
within a target environment to build its realistic model as
compared to traditional approaches to model realistic cloud
access times [20], [21] that require extensively long targeted
environment traces. We build a library of so-called source
models by training a Long Short Term Memory (LSTM)
neural net architecture on an extensive set of traces of cloud
access times collected over WiFi as well as LTE networks
in various contexts. These contexts include scenarios such as
indoor, and outdoor environments, stationary, and mobility in
the train, vehicle, and walking. Then to build the model of a
newer target environment, an appropriate pre-trained model is
selected from the library based on the Dynamic Time Warping
(DTW) similarity measure between the source and the target
traces. The learned features (the net’s weights) of the selected
pre-trained model are then transferred in the lower layers of the
selected pre-trained source model by freezing them, also called
knowledge transfer. Finally, the model is fine-tuned by training
on the higher layers with the target environment trace and then
validated. The main challenges in applying transfer learning to
the trace generation problem are summarized by the following
open questions. (1) Which pre-trained source model to select
as the source for the knowledge transfer? (2) How much
knowledge to transfer? (3) How much target environment trace
will be sufficient for fine-tuning to generate realistic traces?
In this paper, we pursue a systematic investigation to answer
these questions.

The main contributions of our work are as follows:
• Source model generation

- We propose a generic LSTM neural net architecture
for modeling cloud access times that is instantiable across
any target environment.

- We have built an access time trace archive spanning
across target environments that include user mobility (ve-
hicle, train, walk), a stationary user at different locations
(cafe, dormitory, university campus, home, office) on
WiFi and LTE networks.

- Through systematic training and validation, we in-
stantiate the LSTM architecture for each of these envi-
ronment traces in the archive, thus resulting in a library
of 10 pre-trained LSTM source models. This library of
source models can be extended as needs appear.

• Target model development
- Our simplified library of pre-trained source models

covering a spectrum of useful environments can be di-
rectly used for obtaining models of the newer target
environments through fine-tuning on its short sample
trace. This eliminates the need for tedious long trace

collection.
- We suggest how to select the source model for a

given target environment using the similarity measure
like Dynamic Time Warping (DTW) and demonstrate the
usefulness of such selection.

- Using the Symmetrical Mean Absolute Percentage
Error (SMAPE) as the model performance metric, we find
that more knowledge transfer in terms of an increased
number of transferred layers does not necessarily mean
higher accuracy.

- We assess the impact of the amount of target trace on
the accuracy of the fine-tuned model, giving recommen-
dations to this point.

• ContextPerf automation tool
- We automate the process of selecting a pre-trained

source model, fine-tuning the model using the target
environment trace, and generating synthetic traces using
the fine-tuned model by prototyping a tool called Con-
textPerf.

• Real mobile application QoE testing
- We carry out example testing case-studies to estimate

QoE metrics of Instagram and Conversations chat mes-
senger mobile applications. The case-studies compare the
QoE metric distributions obtained by using our synthetic
access time traces with those obtained using the popular
and simple normally distributed access time model.

The paper is organized as follows: Cloud access time impact
on various categories of mobile application QoE is discussed
in Section II. Section III introduces the problem of modeling
cloud access times using LSTMs and transfer learning. Section
IV and Section V present the details of our methodology and
performance analysis of transfer learning to build cloud access
time models. The synthetic traces generated using the model
are integrated with the mobile network emulator in Section
VI. Section VII describes mobile application testing case-
studies to measure QoE of two popular mobile applications
using synthetic traces. The related work is discussed in Section
VIII. Discussion of future work and challenges is presented in
Section IX. Finally, we conclude in Section X.

II. CLOUD ACCESS TIMES AND THE MOBILE
APPLICATION QOE

In this section, we discuss the quantified impact of cloud
access times on the QoE for various categories of mobile
applications. Access time is measured as the time duration
starting from when the first packet is sent by the application
task to the time when it reaches the destination cloud backend
and vice versa from the cloud backend to the application task.
The interaction of an application task with the cloud backend
spans over multiple flows. Therefore, response times become
additive and can accumulate. A slight increase in single access
flow latency can significantly impact the response time of the
application, thus adversely impacting the overall application
QoE.

The severity of the impact depends on the application
category and the action tasks within them. For mobile web-



based applications, Page Load Time (PLT) is one of the most
important QoE metrics. The changes in cloud access times
impact PLTs. According to the study in [22], a 25% reduction
in the access time reduces the PLT by 45%. Another study by
Belshe [23] shows that every 20 ms decrease in access time
leads to a linear decrease in the PLT. When the access times are
higher than 100 ms, bandwidth increase beyond 3 Mbps has
almost no positive impact on the PLT [24]. Users can easily
perceive the lags in web page load when access time suddenly
increases by 100–200 ms. When the access time is above
300 ms, the page loads sluggishly, and when it goes beyond
1 s, users move on (Grigorik et al. [25]). Similar to PLT, user
perceived application latency is an important QoE metric for
social media based mobile applications like Facebook. The
degradation in user perceived latencies can lead to frustrating
experiences for its users. Chen et al. [26] find that access time
is on the critical path for some user actions like photo sharing,
and can contribute up to 65% of the user-perceived latency.
Another important measure of QoE is the user application
retention. A large-scale study by [27] on quantifying impacts
of access times on application retention rate found that the
application retention rate can be sensitive to increase to access
times across all categories of mobile applications. They found
that user retention rate (on a scale of 0–100) dropped from
98.3 to 66.5 when median access time increased from 34 ms
to 79 ms for messenger based applications like Whatsapp
and from 92.7 to 67.8 for a median access time increase
from 37 ms to 70 ms for Twitter. Also, there have been
significant efforts on the application level protocols to reduce
access time latency and improve the QoE. The newly proposed
HTTP/3 [28] standard uses the QUIC transport protocol for
the web. QUIC runs in the application layer on top of UDP,
instead of TCP, therefore no additional handshakes and slow
starts are required, thus reducing the connection overhead.
QUIC also introduces the concept of streams that are delivered
independently such that in most cases packet loss affecting
one stream does not affect others. The literature studies [29]–
[31] show that the PLTs using QUIC are roughly 25%–30%
faster than HTTP/2 and 35%–40% faster than HTTP/1.1 in
environments that have high access time latencies.

Besides the cloud access time distributions, the model
should also be able to capture their time-based variations.
A study by Nikravesh et al. [32] shows that significant
non-uniform variations in access times are possible across
Mobile Network Operators (MNOs), geographic locations and
different times of day, thus making the access times difficult
to model and predict. Certain mobile applications like Voice
over IP (VoIP), and online gaming are very sensitive to the
large variation in cloud access times (jitter). A study of Skype
users by Chen et al. [33] showed that the duration of VoIP
sessions is directly impacted by access time and its jitter. The
median duration of sessions with access times greater than
270 ms were 4 min, while sessions with access times between
80 ms and 270 ms were 5.2 min. However, when access times
dropped below 80 ms the session durations doubled to 11 min.
In their empirical model of user dissatisfaction, the access

time jitter parameter has a weight factor of 53%. A study by
Cisco [34] recommends 30 ms as the acceptable jitter threshold
for VoIP applications.

For online gaming applications, Wang et al. [35] define
Game Mean Opinion Score (GMOS) metric for measuring
their QoE. The GMOS metric has a range from 1.0 to 5.0,
where 4.5–5.0 means an excellent game with no impairments,
3.0–4.0 implies a noticeable impairment, where the user might
quit the game, and 1.0–2.0 means an annoying environment
where the user will definitely quit the game. They found that
the GMOS in general decreases with an increase in access
time. Their measurement-based study of gaming experience
on-campus WiFi network concludes that although generally,
GMOS greater than 4.0 is achievable on WiFi, there are
also frequent periods of network instability when access time
suddenly can increase by 200 ms which leads to a drop in user
experience (GMOS-2.0). Pantel et al. [36] show that backend
access time latencies over 100 ms can create paradoxical sit-
uations in real-time multiplayer racing games. Studies in [37]
for First Person Shooting (FPS) games found that for backend
access times above 100 ms, the hit rate of precision shooting
reduced by more than 50%, thus putting certain players at
disadvantage. In contrast, Real Time Strategy (RTS) games are
more tolerant to backend access times. Sheldonet al. [38] study
the effect of backend access time on players of the RTS game
Warcraft III and conclude that while the latency of several
seconds are noticeable for players, it has little to no effect on
the game outcome.

The above studies of various categories of mobile applica-
tions demonstrate the dependence and the sensitivity of QoE
on the access time distribution and their time-based variations
and the need to model them accurately.

III. CLOUD ACCESS TIME MODELING

In this section, we discuss the background of our work by
presenting the Long Short Term Memory (LSTM) neural net
framework which we have chosen for modeling cloud access
times. Next, we introduce the transfer learning process used
to build target environment specific cloud access time models
from pre-trained LSTM neural net models.

A. The Long Short Term Memory (LSTM) Neural Net Frame-
work

Let a random variable xt represent the time required to
access a real cloud service in a given domain D at time
t. The domain here implies a combination of the end-user
context, a real mobile device, a real access network, and a
real cloud backend service. Given some constant measurement
frequency, the real cloud service access time traces for the
domain D can be represented as a discrete-time series vector
XD = [xD1, xD2, . . . , xDZ ] of length Z measured over a
certain time period. A basic synthetic trace generation problem
can then be expressed as modeling a prediction function F
that uses XD to generate the cloud access time x̂D(Z+1) of
the domain D in the next time step Z + 1.

ŷ = x̂D(Z+1) = F (xD1, xD2, . . . , xDZ) (1)
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Fig. 2: Typical Long Short Term Memory (LSTM) cell unit.

The analytical framework that we apply to the trace gener-
ation problem is “Long Short Term Memory” (LSTM) neural
net [39]. LSTM is a state of the art deep learning model
which can capture the temporal structures within the traces
at different resolutions, including both long-term as well as
short-term. LSTM has been consistently used in the literature
for time series prediction problems [40]–[42] and proven to
be stable and powerful.

We use a typical LSTM cell unit shown in Figure 2 and
described by the equations in 2–7. σ(·) is a sigmoid function
that limits a real valued input between [0 , 1] and tanh(·)
represents the hyperbolic tangent function that limits the real
valued input in the [−1 , 1] range. The � represents element-
wise multiplication, and t is the time step. The LSTM cell
consists of a hidden state ht ∈ RN with N hidden units, an
input modulation gate c̃t ∈ RN , and three gates, the input
gate it ∈ RN , the forget gate ft ∈ RN , and the output gate
ot ∈ RN . The memory cell unit ct ∈ RN accumulates the
state information at time step t and is the sum of the previous
memory cell unit ct−1 modulated by ft and the input gate
it modulated by c̃t which is a function of the current input
xt and previous hidden state ht−1. Gates are a mechanism
to optionally pass the input through them in order to update
the cell state. Whenever a new input arrives, its information
is accumulated in the cell if the input gate it is activated. The
prior cell status ct−1 at step t − 1 is forgotten if the forget
gate ft is activated. Similarly, the output gate ot learns how
much of the memory cell to transfer to the hidden state ht.
Wxj , Whj , and bj where (j = i, f, o, c) are the parameters of
the cell unit that are learned during the training.

it = σ(Wxixt +Whiht−1 + bi) (2)
ft = σ(Wxfxt +Whfht−1 + bf ) (3)
ot = σ(Wxoxt +Whoht−1 + bo) (4)

c̃t = tanh(Wxcxt +Whcht−1 + bc) (5)
ct = ft � ct−1 + it � c̃t (6)

ht = ot � tanh(ct) (7)

The network can make use of multiple LSTM units stacked
on top of each other to make the network deeper. The stacking
of memory units on top of each other causes the hidden

states to be propagated to the deeper layers, thus enabling
the hierarchical processing of time series data. An end-to-end
network path can exhibit temporal dynamics at different time
scales within the trace time series. Thus, stacking the layers on
top of each other may enable the processing of this temporal
hierarchy.

B. Transfer Learning

A domain D consists of an input feature space XD and
a marginal probability distribution P (XD), where XD =
[xD1, xD2, . . . , xDZ ] and XD ∈ XD. Thus, given a do-
main D = {XD, P (XD)}, and the output feature space
YD, the goal of a task TD = {YD, FD(·)} is to learn a
prediction function FD using the training data pairs D =
[(xD1, yD1), (xD2, yD2), . . . , (xDZ , yDZ)], where xDi ∈ XD
and yDi ∈ YD. In the case of time series prediction problems,
both the input and the output space are the same i.e XD = YD.
Therefore, xDi, yDi ∈ XD. Further, since the prediction is
carried out single step at a time, y is obtained by shifting x
by one, i.e. yi = xi+1. Thus, given an input access time x
at the current time step, the prediction function FD is used
to predict the output access time at the next time step. FD
can also be expressed as a conditional probability distribution
function P (y|x).

Figure 3 shows the comparison of the transfer learning
approach with the traditional machine learning approach for
the access time prediction problem. We consider two do-
mains: the source domain DS (an indoor environment such
as a cafe with a stationary mobile device accessing a cloud
backend service on a LTE network) and the target domain
DT (an other indoor environment like an office with a
different stationary mobile device accessing an other cloud
backend over an other LTE network). In the source domain
DS = {XS , P (XS)}, using the measured access times data
pairs DS = [(xS1, yS1), (xS2, yS2), . . . , (xSZ , ySZ)] a source
task TS has learned a prediction function FS . We call this a
pre-trained model (Model S in Figure 3). Now in the target
domain, DT = {XT , P (XT )} a short sample of the access
time is measured. This access time sample is represented by
the vector XT = [xT1, xT2, . . . , xTM ] of length M such
that 0 < M � Z. Given the training data pairs DT =
[(xT1, yT1), . . . , (xTM , yTM )] such that xTi, yTi ∈ XT , trans-
fer learning for access time prediction in DT is defined by a
target task TT = {YT , FT (·)}. In transfer learning, TT learns
a prediction function FT (Model T in Figure 3) using both
the training data pairs DT and also the knowledge in DS and
TS (pre-trained Model S). Further, we consider DS 6= DT ,
since the marginal probability distributions of the source and
the target domains are different i.e P (XS) 6= P (XT ).

IV. SYNTHETIC ACCESS TIME TRACE GENERATION

In this section, we present the methodology for using trans-
fer learning to address the problem of modeling cloud access
times for target environments. First, we explain the details of
context-driven network testing scenarios and cloud access time
data collection, and our archive of cloud access time traces.
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Next, we explain our approach to building the source model
library. The pre-trained model library forms the basis for our
transfer learning to enable rapid model building and trace
generation of target environments. Based on the earlier transfer
learning studies in other domains [43], we hypothesize that
transfer learning performance is highly impacted by the choice
of the pre-trained source model used for learning, the number
of layers to be transferred in the learning, and the amount of
target environment data available for learning. Therefore, we
carefully design experiments to characterize transfer-learning
performance of cloud access time models under the impact of
these factors.

A. Cloud Access Time Trace Collection

Since there are no readily available pre-trained LSTM mod-
els for mobile cloud access times, we build them ourselves. We
use the LSTM neural net architecture framework consisting
of a stack of LSTM cell units as our pre-trained source
models. Furthermore, there are no publicly available datasets
for mobile cloud access time series. The access times and
the network performance has been known to exhibit a high
degree of correlation to the end-users location, environment,
and the situation [8]; the factor we refer to as context in
this paper. Thus, these access time measurements need to be
labeled with appropriate context information that could then
be used to build LSTM models. Inspired by the previous
work Imagenet [44] in the machine learning domain, we build
an archive of cloud access time traces for a selected set of
contexts.
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Fig. 4: Experimental setup for collecting cloud access time
traces on the LTE and WiFi networks for different contexts.
The end-to-end network path for cloud access time measure-
ment is shown with the red dashed line.

1) Measurement Setup and Scenario: Our experimental
setup for collecting cloud access time measurements is shown
in Figure 4. We collect cloud access time measurements
for a combination of a mobile device, cloud backends, and
access networks for various end-user contexts. The different
contexts include the mobile scenarios of users in the outdoor
urban environment with walking, vehicle, and train commutes.
We also considered stationary end-user scenarios at various
urban locations in indoor environments such as home, office,
dormitory, and cafe. It is common for mobile applications to
use backend servers hosted in the public cloud. Therefore,
we use AWS to host the backend, as it is well provisioned
with high availability across different geographical regions
and it is easier to isolate and model the impact of access



TABLE I: Overview of the cloud access time dataset archive showing different contexts, locations (DE - Germany, US -
United States), network types (LTE, WiFi) and mobile network operator (MNO) on which measurements were carried and
their respective RTT counts.

Context Cloud access time dataset

Type Scenario LTE WiFi
Location Count Location Count

Mobile

Train DE (MNO1) 30K - -Vehicle DE (MNO1) 30K

Walking US (MNO2) 30K DE (Campus) 30KDE (MNO3) 30K

Stationary Indoor DE (MNO1) 30K

DE (Home) 30K
DE (Office) 30K
DE (Dorm) 30K
US (Cafe) 30K

Outdoor DE (MNO3) 30K DE (Cafe) 30K

Office DE−eu−central−1b

Home DE−eu−central−1b

Cafe US−us−east−1b

Campus DE−us−east−1b

Dormitory DE−us−east−1b

Cafe DE−us−east−1b

0.01 0.03 0.10 0.30
Access Time (s) 
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Fig. 5: Boxplots of our WiFi and the LTE datasets consisting of 30 000 cloud access time (RTT) samples for different contexts.
The box in the figure is defined by the 25th, 50th, 75th percentiles. And the access times are plotted on base 10 logarithmic
scale.

times. The application backend server is hosted on a Virtual
Machine (VM) in three different geographical regions of AWS
data-center — United States (Virginia), Europe (Frankfurt),
and Asia Pacific (Mumbai). The access network connects the
mobile device to the cloud backend. For our measurements,
we consider WiFi networks and LTE cellular networks from
different Mobile Network Operators (MNOs).

The scope of our data collection is in no way extensive.
The context environments were selected based on common
mobile application network testing scenarios. On the other
end, the access networks are limited to LTE and WiFi. These
data collection could be extended as needed for a given
class of access networks, end-user locations and contexts, and
the cloud backends geographically distributed over various
regions. In fact, we plan to expand their scope to include 5G
as a part of our future work.

For each cloud access time measurement, we fix the context,
connect the device to a selected network, and select an
application backend. In the case of WiFi, we have collected
measurements in total on six different networks including
public and private WiFi networks. In order to collect mea-
surements on cellular networks, we have used LTE from three
different Mobile Network Operators (MNOs) in two countries
— United States (US) and Germany (DE).

2) Cloud Access Time Measurement: We define the cloud
access times as the network Round Trip Time (RTT) between

the mobile device and the cloud backend. The network RTTs
are measured for each context mentioned in Table I. The
RTTs are measured using our prototyped ContextPing Android
application. ContextPing uses the ported standard native UNIX
ping utility tool based on ICMP. It enables the configuration
of the cloud application backend to which the access time
should be measured, the frequency with which ICMP packets
are sent, and the total time duration of the measurement.
Each of our RTT time series measurement dataset lasts for
a time duration of 15 000 s (4 h and 10 min) and consists
of 30 000 ICMP packets generated with a time interval of
500 ms. All our cloud access time datasets were collected
using a Samsung A70 mobile phone that ran ContextPing on
the Android 9.0 Operating System. An overview of our trace
collection is shown in Table I. The boxplots for the WiFi and
the LTE cloud access time datasets are shown in Figure 5a
and b, respectively. In the remainder of the paper, we refer to
each of these 30 000 RTT measurement samples as a single
dataset.

B. Building Source Model Library

1) Performance Metric: There are several performance
metrics such as Root Mean Squared Error (RMSE), Mean
Absolute Error (MAE), Mean Absolute Percentage Er-
ror (MAPE), Symmetric Mean Absolute Percentage Error
(SMAPE), etc. that are used for evaluating the accuracy of
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Fig. 6: Our LSTM based source model architecture.

trace models that generate time series data (see [45]). Both
RMSE and MAE are unit dependent measures. MAPE is the
most widespread metric for evaluating time series prediction
accuracy. However, it places a heavier penalty on predicted
values that exceed the real value [46]. Further, it biases the
estimate if the real values are small or zero. Symmetric
Mean Absolute Percentage Error (SMAPE) introduced by
Makridakis et al. [47] is more balanced in handling smaller
real values. Although the name suggests otherwise, SMAPE
is asymmetric by nature while MAPE is symmetric (see [48]).
SMAPE has been widely used in time series prediction
problems like demand prediction during extreme events at
Uber [49], predicting electricity load during peaks [50] etc.
Therefore, we use a scaled version of the SMAPE performance
metric proposed in [45] for our pre-trained source model
evaluation. It is defined as follows:

SMAPE =
100%

N

N∑
i=1

∣∣y′i − yi∣∣
|yi|+

∣∣y′i∣∣ (8)

where y′i is the model predicted value of the ith data-point in
the time series and yi is the real value.

2) Building Source Models: Source Model Architecture
— Our goal is to find a specific instance of the source
model architecture for each of the selected contexts. We use
the general architecture shown in Figure 6. The input layer is
connected to L stacked layers of LSTM cell units followed by
the dense layer and the output layer. The number of stacked
layers of LSTM cell units (L) can vary for each source dataset.
N is the number of hidden units in each of the LSTM units.
Overfitting can be a serious problem in training LSTM based
architectures, therefore a dropout function is commonly used
to avoid overfitting. A dropout function randomly drops hidden
units during the training, and thus allows different units to
learn and prevents co-adaptation among them. It is known to
improve neural net performance [51]. Therefore, in the final
LSTM layer L, a dropout function is applied. A dense layer is
an activation function that maps the multi-dimensional input
received after the dropout in the last LSTM layer to the output
which is the predicted value of access time. An activation
function should be able to output values that are far from

the mean and median values with higher probabilities, and
thus preserve the long tail nature of access time RTTs. An
activation function like Exponential Linear Unit (ELU) [52]
satisfies this requirement. The ELU function is defined as x if
x > 0 and α · (exp(x)−1) if x < 0. Thus, ELU is an identity
function for positive inputs. And for the negative inputs, the
output is smoothed towards the hyperparameter α. Thus, α
controls the value to which an ELU saturates for negative
inputs. However, ELU is deterministic by nature and exhibits a
fixed input-output relationship, thus limiting its generalization
ability. In order to obtain better generalization, we add a
stochastic perturbation σε to ELU, where σ is the range
of stochastic perturbation and ε is randomly sampled from
N (0,1). This stochastic activation function was proposed by
Lee et al. [53] and is called Probabilistic Activation (ProbAct).
In our ProbAct activation function, an ELU function is used
with α = 1.0, σ = 1.0. The input layer takes as input a single
data-point xi of the cloud access time series and the output
layer outputs the predicted value yi which is the next time step
in the time series. For training, the input layer is a tensor of
dimension B , where B is the batch size parameter that would
be used in training this architecture and is explained later.

Training and Testing Data Splits — We split each of the
cloud time series datasets, i.e., [x1, . . . ., xZ ] into two subsets
preserving the ordering of the time series. The training set,
STraining , consists of x1, . . . .xP (where P < Z) and is used
for training the architecture. The testing set, STesting, consists
of [xP+1, . . . ., xZ ] and is used for testing. This split is made
in an 80:20 ratio such that 80% samples (24 000 RTT pings)
in the time series are in STraining set and the remaining 20%
(6000 RTT pings) in the STesting set.

Preprocessing — Data cleaning and processing is a precur-
sor step to training a model. In this step, we standardize the
STraining and STesting datasets separately. Standardization is
defined as subtracting the mean value and dividing by the
standard deviation of the dataset from each data point in the
dataset. Standardization makes the dataset scale-invariant, thus
enabling the model to generate cloud access time traces across
multiple data scales.

Next, we transform the STraining and STesting datasets into
labeled datasets such that it is suitable for training LSTM
architecture in a supervised manner. This means for every data-
point (input feature) in the input STraining time series, we
have an output data-point (output feature). Since our LSTM
architecture predicts one step at a time, the output ground truth
time series is obtained by shifting the input time series by a
factor of one. Each data-point yi in the output time series is the
xi+1 data-point in the input time series. Thus, the STraining
and STesting datasets are transformed into tensors of P×2×1
and (Z − P )× 2× 1 dimensions, respectively.

Training — The goal of the training is to identify suitable
weights that minimize a loss function using the transformed
labeled STraining dataset. We use the Mean Squared Error
(MSE) between the estimated and the actual data-points in
the output time series of the labeled STraining dataset as the
loss function for our training.



For training, we use the gradient descent based optimiza-
tion algorithm based on adaptive learning rates called Adam
proposed by Kingma et al. [54]. The Adam optimizer is
described in Algorithm 1 and can be explained as follows.
f(θ) is the stochastic objective function whose expected value
E[f(θ)] is to be minimized with respect to parameters θ.
f1(θ) · . . . · fT (θ) denote the value of the function over each
time-step 1, 2, . . . , T . And gt = ∇θft(θ) denotes the gradient,
i.e. the vector of partial derivatives of ft with respect to θ at
time-step t. The algorithm evaluates the exponential moving
averages of the gradient (mt) and the squared gradient (vt)
at each time step t. The hyper-parameters β1, β2 ∈ [0, 1)
control the rate of exponential decay of moving averages.
These moving averages are the estimated 1st moment (the
mean) and the 2nd raw moment (the uncentered variance) of
the gradient. Since the moving averages are initialized to zeros,
their estimates are biased towards zero. This is particularly
noticeable during the initial time-steps and when the decay
rates are small. Therefore, a bias correction factor is applied
to obtain m̂t, v̂t. The bias corrected estimates are then used
to take a time-step ∆t in parameter space which is equal to
α · m̂t/(

√
v̂t + ε). As the learning rate α is responsible for

selecting the magnitude of these parameter space steps, it can
be adapted in such a way so that the optima is reached in few
iterations.

Algorithm 1: Adam Optimization as proposed in [54].
Symbol g2t indicates the elementwise square gt � gt.
Learning rate is denoted as α and set to 0.00001.
Hyper-Parameters are set to β1 = 0.9, β2 = 0.999,
and ε = 10−7

Input: f(θ) with parameters θ
11 Init: θ0,m0 = 0, v0 = 0, t = 0
2 while θt not converged do
3 t← t+ 1
4 gt = ∇θft(θt−1)
5 mt ← β1mt−1 + (1− β1)gt
6 vt ← β2vt−1 + (1− β2)g2t
7 m̂t ← mt / (1− βt1)
8 v̂t ← vt / (1− βt2)
9 θt ← θt−1 − α · m̂t/(

√
v̂t + ε)

10 end
11 return θt

Further, we train in batches of size B since the entire
STraining data may not fit in the memory in a single run.
We use different batch sizes (B) in training from 4 to 32 in
increments of power of 2. The batched data is fed without
shuffling to the LSTM architecture, thus preserving the order
of data-points. We also ensure that each LSTM cell retains
its state while training across the batches as we have a single
time series input that spans multiple batches. In order to get the
optimizer to converge, we train the architecture over multiple
cycles through the entire training dataset. Each such cycle is
referred to as the epoch. We vary the number of epochs from

100 to 700 in increments of 100.

TABLE II: Hyperparameters of the architecture and training

Type Hyperparameter Space

Architecture

Number of stacked
1, 2, 3, 4layers of LSTM

cell units (L)
Hidden units (N) 8, 16, 32, 64, 128, 256, 512

Dropout 0.5
Dense layer ProbAct [53] with ELU α=1.0

activation function perturbation σ=1.0 ε=N (0,1)

Training
Batch Size (B) 4, 8, 16, 32

Epochs 100 - 700
Learning Rate α=0.00001

Hyperparameters Tuning & Testing — The hyperparam-
eters (highlighted in Table II) of the architecture include the
number of layers of stacked LSTM cell units (L). We vary the
number of stacked layers of the LSTM units in the architecture
from 1 to 4. The number of hidden units (N) in each LSTM
cell unit of the stacked layers are varied from 8, 16, 32, 64,
128, 256, 512. The dropout function value is set to 0.5 which
has been shown by Srivastava et al. [51] as being close to
the optimal for a wide range of networks and training tasks.
After carrying out the hyperparameter tuning, we select the
parameterization with the minimum MSE loss on the STesting
set as the pre-trained source model. Thus, in the end, we have
a separate source model for each dataset in the archive. Each
of these source models can have different numbers of stacked
layers and also differ in the values of other hyperparameters.

Implementation — The source model architecture is imple-
mented in Python using the open-source deep-learning library
Keras [55] and uses the Tensorflow backend. Our source model
training is executed in the AI Platform service from the Google
Cloud Platform (GCP). We run our experiments on a GCP
predefined scale tier cluster consisting of a n1-standard-4
instance type and includes a single worker instance. We found
this tier to be suitable for training the source models after
initial experimentation. The total cumulative duration for the
model training, including the hyperparameter tuning, across
all source datasets, takes around three days.

C. Transfer Learning for Target Environment Model Genera-
tion

In the following, we describe the experiments designed to
evaluate the robustness of transfer learning for various targeted
context environments on WiFi, and LTE networks.

1) Selection of Pre-trained Models for Fine-tuning: Earlier
studies [43] have shown that within a specific architecture,
using transfer learning with fine-tuning of arbitrarily chosen
source model can not only improve but also worsen the model
accuracy compared to when the model is trained from scratch.
This phenomenon is known as a positive and negative transfer,
respectively. Therefore, we need to select the source models
for fine-tuning in an informed manner. The source model
selection criteria should also make it easy for application
testers to quickly select the optimal source model for the
target environment of interest. The authors in [56] show that



selecting a source model whose dataset characteristics are
similar to the target dataset characteristics can increase the
likelihood of positive transfer learning. Therefore, we use a
similarity distance measure for time series called Dynamic
Time Warping (DTW) proposed in [57] for selecting the source
model. DTW is an elastic measure that optimally aligns the
time series in the temporal domain. Thus, it also works when
the two time series have different lengths and have been
sampled with different frequencies.

2) Transfer Learning Organization: The Target Domain
(DT ) experiment consists of using transfer learning to fine-
tune a model from pre-trained Source Domain (DS) with the
access time sample of DT . We split the DT trace sample into
two sets, TTraining and TTesting, which are respectively used
for training and testing the DT model. As earlier, we also
standardize the target datasets separately. Next, we select a
pre-trained DS model and freeze the weights in the initial
LSTM layers of the architecture (starting from LSTM layer
one) and then fine-tune on the remaining LSTM layers. We
hypothesize that when stacking the LSTM layers to build a DT

model, the weights in the initial layers are more representative
of the learning of the generic features present in time series
data. Thus, these features learned on the DS can be used in
the DT . On the other hand, the final layers in the architecture
are closely related to the predictive component of the model.
We transfer the weights of the initial layers in DS by freezing
them and fine-tune the model using the target TTraining set on
the final layers. Thus, we transfer the learnings carried out in
the DS model into fine-tuning the DT model. The DT model

is tested using TTesting. We study the impact of the following
factors on the transfer learning performance.

Impact of the source and target dataset similarity —
To study the impact of source and target dataset similarity
on the transfer learning performance, we carry out transfer
learning between each pair of the dataset in our archive. We
use the source models trained in the earlier step for transfer
learning. The DTW distance measure characterizes the dataset
similarity.

Impact of the number of transferred layers — In transfer
learning to obtain a target model, fine-tuning is carried out
only on a subset of layers from the pre-trained source model
while retaining the weights of the remaining subset of layers
by freezing them. We also study the impact of the number of
transferred layers on the transfer learning performance.

Impact of the amount of target data — To evaluate the
impact of the amount of target environment data available for
fine-tuning the model, we vary the size of the target dataset
used in fine-tuning.

3) Performance Metric for Transfer Learning: For a target
environment, we introduce the notion of a specialized model.
A specialized model is obtained by training from scratch on
the target environment data as if no pre-trained source model
existed. A specialized model can be obtained by using the
training process defined in Section IV-B2. The specialized
models provide the baseline performance for transfer learning.
As a performance metric, we consider the percentage
improvement in the SMAPE of the fine-tuned model
compared to a specialized model. It is computed as follows:

(
SMAPEspecialized−model − SMAPEfine−tuned−model

)
SMAPEspecialized−model

× 100 (9)

A positive value of SMAPE improvement percentage indi-
cates that a fine-tuned model is better than training the spe-
cialized model. On the other hand, a negative value indicates
that the fine-tuned model is worse than the specialized model.

4) Analysis Methodology: In the following, we briefly de-
scribe how we analyze the transfer learning experiment results.
To study the impact of source and target dataset similarity
on transfer learning, we carry out transfer learning across
all pairs of datasets in our archive by transferring the initial
LSTM layers of the pre-trained source model architecture. This
gives us a set of fine-tuned models. Then, for each target
environment, we also train a specialized model. Finally, we
also compute the DTW for each dataset pair and study if
there exists a correlation between the DTW distance measure
and the transfer learning performance using the SMAPE
improvement metric.

For studying the impact of the number of transferred layers
on the transfer learning performance, we select the pre-trained
source model based on minimum DTW distance. The initial

LSTM layers in the architecture are known to represent the
generic features of the access time series data that are not
specific to a particular dataset and in general applicable across
different datasets [58]. Therefore, for this study, we carry out
transfer learning by varying the number of transferred layers
from 1 to 3 beginning from the first LSTM layer to the last
LSTM layer in the architecture. For each transferred layer, we
carry out ten runs of out-of-sample validation typically used
in time series modeling.

To study the impact of the size of target environment data
used in fine-tuning on the transfer learning performance, we
split the target data into different ratios consisting of 20:80,
40:60, 60:40, and 80:20 for training and testing, respectively.
We then use the training subset to fine-tune the pre-trained
source model. The pre-trained source model for each target
environment is selected based on the minimum DTW simi-
larity measure. In each of the fine-tuning, we set the number
of transferred layers to one, and carry out ten runs of out-of-
sample validation.



64
x6

4x
64

8x
8

8x
8 64

x6
4x

64

16
x1

6

25
6x

25
6

25
6x

25
6

25
6x

25
6

51
2x

51
2

25
6x

25
6x

25
6

16
x1

6x
16

x1
6 8x
8

0

10

20

30

LT
E−

1

LT
E−

2

LT
E−

3

LT
E−

4

LT
E−

5

LT
E−

6

W
iF

i−
1

W
iF

i−
2

W
iF

i−
3

W
iF

i−
4

W
iF

i−
5

W
iF

i−
6

Datasets

SM
AP

E 
Pr

e−
tra

in
ed

 M
od

el
s

LTE
WiFi

Fig. 7: Bar plots illustrating SMAPE of the source model architecture evaluated on the test data of each WiFi and LTE dataset
in the archive.

V. RESULTS AND ANALYSIS

In the following, we present our results across the six WiFi
and the six LTE datasets in the archive obtained using the
described methodology.

A. Pre-trained Source Model

In this section, we describe the results of training the source
models. Figure 7 shows the results of each of the six WiFi
and LTE datasets, respectively. For each case, we report the
SMAPE performance metric on the 20% testing dataset. The
diversity in the SMAPE performance metric within the WiFi
and the LTE datasets is visible in the figure. The SMAPE of
LSTM architecture for the WiFi datasets are in the range of
5% to 8.1% while that for LTE datasets vary between 2.3%
to 15.4%. All source models except the one for LTE have
SMAPE below 10%, thus showing a good prediction power
for the model.

The text on the top of the bar indicates the source model
architecture selected for each dataset. For example, 8 × 8 × 8
implies a stack of three-layered LSTM architecture with 8
hidden units in each of the layers. The dropout layer and the
dense layer in the architecture are not included in the notation
for the sake of simplicity. We can see in Figure 7 that the
best-fit source model of every dataset has a different number
of stacked LSTM layers. In the case of WiFi datasets, the
number of stacked LSTM layers vary from 2 to 3, while for
the LTE datasets, the number of LSTM layers vary from 2 to 4.
Likewise, the number of hidden units in each of these LSTM
architectures are also different. We also analyzed each of the
datasets and their LSTM architectures representing them and
found that datasets with longer tails have comparatively deeper
LSTM architectures. In our experiments, we observed that the
MSE loss function of the training stops improving after 700
epochs and that using a batch size of 16 in the training leads to
minimal loss value. We use these architectures as pre-trained
source models in our transfer learning experiments.

B. Transfer Learning

To understand the underlying factors impacting the perfor-
mance of transfer learning, we first focus on characterizing
the influence of pre-trained source model selection. Next, we
study factors such as the number of transferred layers and the
size of the target data used in the model fine-tuning.

1) Pre-trained Source Model Selection for Fine-tuning: We
carry out transfer learning across each pair of the datasets in
the archive (introduced in Section IV-A) by fine-tuning the
source model while treating other datasets as the target data.
Thus, we fine-tune 30 models for the WiFi and LTE each.
In the fine-tuning, the single first layer from the pre-trained
source model is transferred, while the higher layers are fine-
tuned.

Figure 8a and b illustrate the heatmap of SMAPE im-
provement obtained from fine-tuning a source model against
just training the specialized model from scratch for WiFi and
LTE datasets respectively. The values along the diagonal from
bottom left to top right can be ignored as they represent
the same datasets. The values inside the heatmap tile depict
the percentage of SMAPE improvement in the target model
obtained from fine-tuning the source model. Positive values
indicate that the SMAPE accuracy of the target model after
fine-tuning using transfer learning is better than that of the
specialized model trained from scratch, while the negative
values imply that the fine-tuned target model is worse than
the specialized model.

In the case of WiFi-based target models, we observe
SMAPE improvements in only 46% of the cases out of 30,
while for the LTE-based target models, this value drops to
33%. The positive SMAPE improvements for the WiFi models
range from 0.1% to 10.7% and are marginal in the majority of
the cases. In comparison, the LTE models exhibit a much wider
range of SMAPE improvement from 0.1% to 34.6%. From the
negative SMAPE improvement results, we can confirm that
as expected using transfer learning is not always beneficial.
The positive SMAPE improvement results show that selecting
certain source models can provide marginal to high accuracy
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Fig. 8: Positive and negative transfer learning between the source (S) and target (T) datasets. Heatmap illustrates percentage
of SMAPE improvement in the target model (obtained with fine-tuning a source model) compared to training the specialized
model from scratch.
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Fig. 9: Scatter plot shows SMAPE improvement in the target model against the normalized DTW measure between the
source (S) and target (T) datasets. The Pearson correlation coefficient between the normalized DTW measure and the SMAPE
improvement for the WiFi dataset is −0.46 and for the LTE dataset it is −0.61, thus showing moderate to strong negative
correlation.

gains. However, randomly selecting a source model based only
on the network technology type, i.e., WiFi and LTE, may
not offer any particular learning benefits. These results are
in agreement with Wang et al. [56] and show that negative
transfer results can be caused by a divergence in the joint
distribution of the source and target datasets.

Based on the study in [57], we use the Dynamic Time
Warping (DTW) distance measure for establishing similarity
between the underlying source and target datasets. Figure 9a
(WiFi) and b (LTE) show the scatter plots of the SMAPE
performance improvement for the transfer learning between
each pair of the dataset and the normalized DTW distance
measure between their underlying source and target datasets.
The scatter plots show that SMAPE improvement percentage
indeed decreases with a decrease in the similarity between the
source and target datasets. The Pearson correlation coefficient
between the normalized DTW and the SMAPE improvement
is −0.46 and −0.61 for the WiFi and the LTE, respectively. The

percentage of positive transfer cases jump from 46% to 83%
for the WiFi and 33% to 66% for the LTE when the minimum
DTW measure is used to select the pre-trained source model.
From the above results, we conclude that a similarity measure
like DTW is quite reliable, and using it can significantly
improve the likelihood of positive transfer.

2) Transfer Learning Scope: In this study, we select the
pre-trained source model using the minimum DTW measure
between the source dataset and the target dataset. In each fine-
tuning, we transfer a certain number of layers beginning from
the first layer and then fine-tune only on the remaining higher
layers. We vary the number of transferred layer parameter
based on the number of layers defined in the source model.
For example, across all our source models of WiFi and LTE
datasets, only one source model consists of four LSTM layers
(LTE dataset 5). In this case, we perform fine-tuning by
varying the number of transferred layer parameter from 1 to
3. Likewise, in the case of source models having three LSTM
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Fig. 10: A comparison of the average SMAPE of the target model obtained by fine-tuning a source model and a specialized
model trained from scratch for different target data sizes. The SMAPE is measured on the test dataset across 10 out-of-sample
validation runs. The error bars show a 95% confidence interval. The source model for transfer learning is selected based on
the minimum DTW measure between the source and the target dataset. And a single first LSTM layer was transferred.

layers, we vary the parameter from 1 to 2, and in the case
of two-layered LSTM architectures, we set it to 1. We repeat
each fine-tuning across 10 out-of-sample validation runs of the
target dataset.

Table III shows the average SMAPE values based on the
number of transferred layers for each WiFi and LTE dataset
in the archive. In the case of a source model with three layers,
the average SMAPE of the fine-tuned model increases as more
than one layer is transferred. For a source model with four
layers (16 × 16 × 16 × 16), the SMAPE of fine-tuned model
reduces until the transfer of two layers but increases thereafter.

Thus, increasing the transferred layers does not provide gains.
This can be well explained by the phenomenon confirmed in
the transfer learning studies in other domains [58]. The first
layer in the LSTM architectures learns the generic features
of the training dataset that are also applicable across other
datasets while the higher layers learn features that are more
training task dataset-specific. Thus, when the higher layers
are transferred in the fine-tuning, it inhibits the architecture
from learning the new target task dataset-specific features, thus
negatively impacting the predictive power of the target model.



TABLE III: Impact of the number of transferred layers used
in fine-tuning a pre-trained source model on the target model
performance. The Not Applicable (NA) indicates that the spe-
cific architecture is shallower than the number of transferred
layers.

Type Target Pre-trained Source
Average SMAPE

by number of
Dataset Model transferred layers

1 2 3

WiFi

1 8× 8 5.5 NA NA
2 256× 256 5.1 NA NA
3 64× 64× 64 5.7 10.0 NA
4 8× 8 5.8 NA NA
5 256× 256 6.1 NA NA
6 64× 64× 64 5.7 8.1 NA

LTE

1 256× 256 6.8 NA NA
2 256× 256 4.7 NA NA
3 256× 256× 256 3.3 4.1 NA
4 16× 16× 16× 16 2.7 2.5 4.7
5 8× 8 4.4 NA NA
6 256× 256 12.1 NA NA

3) Target Training Data Size: Knowing how much target
environment data to collect to be able to generate realistic
synthetic traces is critical. To answer this question, we vary
the target environment data size used for fine-tuning the source
model using transfer learning. In this analysis, for each target
dataset, we select a source model using the minimum DTW
measure. Based on our previous analysis of the impact of the
number of transferred layers on the target model performance,
we transfer a single layer which is the first LSTM layer of the
source model and fine-tune it with the varying target data sizes.

Figure 10aa (WiFi) and Figure 10bb (LTE) illustrate the
comparison of average SMAPE between a target model ob-
tained by fine-tuning a source model, and for specialized
models trained from scratch at different target data sizes. The
error bars in the figures represent the 95% confidence interval
across 10 out-of-sample validation runs. 20% target data size
consists of 6000 RTT samples, while on the other end 80%
consists of 24 000 RTT samples.

The SMAPE values of both the models across all datasets
and training data sizes range from 28.7% to 5.1% for WiFi and
28.4% to 2.7% for LTE. In Figure 10aa and Figure 10bb, one
can see that the SMAPE of both models increase as the data
size decreases. This behavior is persistent across both the WiFi
and the LTE. Also, fine-tuning has the highest performance
improvement when the target data size is the smallest (20%)
for both the WiFi and the LTE. The SMAPE improvements
for fine-tuning case ranges from 51.9% to 3.9% in WiFi, and
47% to 25% in LTE for 20% data size. As the data size begins
to increase, these gains diminish. For the largest data size of
80%, the gains are marginal (from 26% to 0% for WiFi and
35% to 2% for LTE); in the few datasets, there is no gain at all.
The results very well intuitively show that obtaining a good
specialized model requires a proper size of target environment
data samples while fine-tuning is well done with short samples.

Another interesting aspect of the results is that for some
datasets, the improvements in SMAPE between fine-tuned (for

20% data size) and specialized (for 40% data size) models are
also marginal. It shows that training a specialized model from
scratch using more data may not always bring in proportional
performance improvements. Further, it also highlights that by
selecting a transfer learning approach, one can obtain a speed
up by reducing down the target environment data collection
time.

The results could be used as a general guideline to estimate
the minimum size of the target environment data needed to
build target models of a similar context with a certain accuracy.
For example, an application tester interested in building a
cloud access time model for a vehicular LTE network connec-
tivity in an urban environment can refer to our LTE Dataset
1 and Dataset 2 in the results. From the results, one can infer
with a certain degree of confidence that a target environment
data size of 6000 RTT samples, when fine-tuned with one of
the source models, can generate a target model whose average
SMAPE can vary in the range of 4.7% to 12.5%.

Further, we quantify the speed improvement resulting from
the usage of transfer learning as compared to training a
specialized model. We compute the speed-up factor of transfer-
learning as the ratio of time required to train a specialized
model from scratch and the time required to fine-tune the
source model. The speed-up factor is measured across 700
epochs. A single first layer of the source model is transferred
for fine-tuning. The training jobs run on n1-standard-4 vir-
tual machine (VM) type on GCP with 4 virtual CPUs and
15 GB of memory. The vCPU is implemented as a single
hardware hyper-thread on the Intel Xeon Scalable Processor
(Skylake)1 [59].

Table IV shows the comparison of the speedup factor of
fine-tuning and the corresponding average SMAPE improve-
ment percentage for all positive transfer cases across different
target data sizes. The speed-up factor for a single transferred
layer is similar across different data sizes and ranges from 1.1
to 1.8 for the WiFi and LTE, while the SMAPE improvement
percentage varies from 1.3% to 51.9%. These results show
that transfer learning not only reduces the data collection
time but also speeds up the model building time without
adversely impacting the target model accuracy. We conclude
that carrying out transfer learning in an informed manner based
on the dataset similarity rarely hurts.

VI. USAGE OF TRANSFER LEARNING IN AN EMULATION

In this section, our primary goal is to automate the process
of selecting an appropriate source model, fine-tuning the
source model on the target dataset, and generating synthetic
access times traces using this transfer learned model. Further,
we aim to integrate the synthetically generated traces within
a network trace-based emulator so that it can be used in
real mobile application testing. In the following, we describe
our implementation efforts in this direction in the form of
a tool called ContextPerf. In the following, we present the

1Intel Xeon Scalable Processor (Skylake) has a 2 GHz base frequency,
2.7 GHz All-core turbo frequency, and 3.5 GHz Single-core max turbo
frequency.
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TABLE IV: Fine-tuning speedup on a n1-standard-4 virtual
machine (VM) type on GCP.

Target Fine-Tuning SMAPE
Dataset Speedup Improvement (%)

20 40 60 80 20 40 60 80

W
iF

i

1 1.2 1.2 1.1 1.2 51.9 48.4 32.9 26.6
2 1.2 1.2 1.5 1.2 25.8 17.1 12.9 15.1
3 1.3 1.3 1.3 1.3 24.4 24.7 2.7 5.5
4 1.1 1.1 1.1 1.3 22.1 15.7 11.5 3.3
5 1.1 1.3 1.3 1.4 11.5 1.9 1.3 1.6
6 1.3 1.3 1.2 1.3 13.2 7.6 7.3 5.7

LT
E

1 1.2 1.5 1.8 1.4 34.0 25.4 29.5 11.8
2 1.1 1.4 1.6 1.2 27.1 24.4 29.3 21.4
3 1.1 1.1 1.3 1.2 52.8 45.1 30.1 39.2
4 1.8 1.6 1.6 1.5 47.0 39.1 19.3 14.8
5 1.3 1.2 1.2 1.1 33.0 15.3 7.0 2.8
6 1.4 1.3 1.5 1.2 25.1 16.1 17.4 20.1

internals of the network emulator, and its integration with
ContextPerf generated traces. Finally, we evaluate the end
network emulation accuracy independently with real access
time traces.

A. Implementation

ContextPerf is a tool written in Python that provides end-
to-end automation for the generation of synthetic cloud access
times traces. It takes as input a measurement sample trace
file of a target environment. It standardizes the measurement

sample and selects a pre-trained source model from a model
archive hosted in the cloud storage bucket. The pre-trained
source model is selected based on the minimum DTW distance
to the target dataset. Next, based on the input fine-tuning
hyperparameters, it creates a transfer learning job in the AI
platform service of GCP. Upon the fine-tuning job completion,
the model and the synthetic traces generated from it are made
available as files in the bucket. The synthetic trace files can
then be used with any network emulator for emulating cloud
access times.

We integrate these synthetic traces with the mobile network
emulator developed by Akamai [17], [60]. The experimental
setup for mobile application testing is shown in Figure 11. It
includes the following three components: the mobile emulator
that runs the application binary under test, the network emu-
lator which emulates the cloud access times using ContextPerf
generated synthetic traces, and the application cloud backend
server. We deploy each of these components on a separate
Virtual Machine (VM) in the cloud. Going forward, we limit
our discussion to the network emulator component, its internal
architecture, and integration with ContextPerf generated trace
files.

As shown in Figure 11, the network emulator is hosted
on a t2.medium VM in the AWS public cloud. The emulator
requires a VM with two virtual network interfaces. One virtual
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Fig. 12: (a) Cumulative Distribution Function (CDF) comparing the RTT distribution of the real RTT trace fed to the network
emulator and the RTT of the emulated network path for a single emulation run of 10 min. (b) Bar-plot of the Normalized
Root Mean Squared Error (NRMSE) between the real RTT and the emulated network path RTT normalized using the standard
deviation of the real RTT trace for 25th, 50th, 75th, and 90th percentiles. NRMSE is calculated across 30 emulations.

network interface belongs to the subnet of the mobile emulator
(the application client) and the other belongs to the subnet of
the application backend server. The network emulator then
uses iptables [61] rules with masquerading to forward traffic
received on the client subnet to the server subnet and vice
versa. On the client and the server VMs, the underlying routing
tables are modified to route the network traffic through the
network emulator VM.

The network emulator is based on the Linux Traffic Control
(TC) [62]. TC is a set of utility tools that enables configuration
and management of the kernel packet scheduler, and thus
offers control over the packet traffic flow transmitted and
received through the queueing system (qdisc) associated with
the network interface. Using TC, one can introduce packet
delays, change the rate at which packets are transmitted and
received, as well as drop and re-order the packets. Thus, one
can emulate the delay, bandwidth, packet loss, and re-ordering
characteristics of any network path. The network emulator is
available as a bash script with an in-built set of fixed network
profiles.

The emulator uses time-driven emulation that updates the
delay parameter of the qdisc after every fixed time interval.
This value is set to the time interval used to generate the
synthetic traces. We set it to 500 ms. The emulator internally
adjusts this time interval to account for the time required to
change the qdisc using the TC utility (4 ms).

We modified the source code of the emulator to change
the delay parameter as per the synthetic traces generated
by ContextPerf. Since ContextPerf generates RTT synthetic
traces, we divide them to set the uplink and the downlink
network path delay. We configure the network emulator to use
symmetric delays for the uplink and downlink paths.

We carried out the following modifications and extensions
to the core functionality of the network emulator. We added
a configuration API support that enables the external feeding
of the trace files as input to the emulator. It supports setting
the time interval for changing the emulation parameters and
customizing the ratio of the uplink to the downlink delay. We

daemonized the network emulator component by implement-
ing it as a systemd service on the VM. The network emulator
service is then packaged as a VM image and made available
as a Terraform [63] module using the AWS provider.

B. Evaluating Baseline Emulation Accuracy

Next, we evaluate the baseline network emulator accuracy
for the setup in Figure 11 in an isolated manner independent
from the ContextPerf. Our goal is to find out how accurately
the network emulator emulates the network path using the
cloud access time traces fed to it. We analyze the RTT
characteristics of the emulated network path between the
mobile emulator client and the application backend server in
Figure 11.

In the experiment, we feed a real RTT trace to the network
emulator and then measure the RTT on the emulated network
path. The RTT trace fed to the emulator consists of ICMP
ping every 500 ms for a total of 600 pings lasting 5 min. It
is measured between a real Android phone and a VM in the
AWS cloud. We repeat the experiment for 30 different RTT
traces measured over five Wifi and two LTE access networks.

Figure 12a shows the Cumulative Distribution Function
(CDF) comparison of a real RTT trace fed as input to the
network emulator and RTTs of the emulated path (Figure 11).
Each emulation run lasts 600 s (10 min). As can be seen from
the CDF in Figure 12a, the 25th, 50th, 75th percentile values of
the real input trace RTTs and those of the emulated path are the
same while the 90th percentile RTT values are within 3.3 ms
of each other. We can see that the emulation also reproduces
the long-tail nature of the RTTs. We also plot the Normalized
Root Mean Squared Error (NRMSE) between the real and
emulated path RTTs normalized using the standard deviation
of the real RTT. The NRMSE is calculated for the 25th, 50th,
75th, and 90th percentile values across 30 different emulation
runs, each lasting 10 min. An NRMSE value in the range 0 to
1 is a good value where the emulation error is less than one
standard deviation of the real RTT trace fed to the network
emulator. As can be seen from Figure 12b all the NRMSE’s



are less than 1 ms with the one for the 90th percentile being
the highest, 0.62 ms. From the above results, we conclude that
the network emulator can accurately emulate the cloud access
times between the mobile and the cloud backend including its
long tail nature.

VII. CASE STUDIES

In this section, we demonstrate the accuracy of our method-
ology compared to the popularly used normal distribution
access time models [64]–[66]. For this purpose, we evaluate
QoE metrics of real mobile applications using the developed
emulation environment under our fine-tuned models and nor-
mal distribution models.

A. Instagram

In the first case study, we focus on Instagram [67], a popular
social media mobile application extensively used for sharing
photos and videos. We consider a hypothetical scenario in
which an Instagram tester is interested in profiling the impact
of cloud access time on the application level latency for the
common user action of sharing a photo from the user’s device.
The study is to be carried out for the LTE network of a
specific MNO using a stationary device in an indoor home
environment. The photo is uploaded on the cloud backend and
shown to users in their feed. For this action, the application
photo sharing latency is the Above The Fold Time(AFT)
latency and measured as the time from when the share button
is pressed by the user to the time when the posted photo’s last
pixel appears on the user’s feed. In order to measure the AFT
latency, we capture video of the mobile screen labeled with
the time clock while performing the action and calculate the
time delta using the method proposed by Brutlag et al. [68].

The measurement setup for the performance evaluation is
the same as in Figure 11. We have two types of emulators,
the Android mobile emulator, and the network emulator. The
Android mobile emulator is deployed in our context simulation
testbed [69], [70] for mobile application testing based on AWS.
It has Instagram application installed on it. The mobile and
network emulators are deployed on separate VM instances
within the testbed (t2.medium type with 2 virtual CPU cores,
and 4.0 GB RAM).

Now following our methodology, we collect 2500 RTT
samples to the Instagram backend over the LTE network
of this specific MNO using a stationary mobile device in
an indoor home environment. The 2500 RTT samples are
shorter than the minimum data size of 6000 and approximately
an order of magnitude smaller than the largest data size of
24 000 considered in our study(see Figure 10bb). We use
the ContextPing application running on a real Android mobile
phone to collect RTT data. A configuration of sending an
ICMP ping for every 500 ms is used for RTT data collection.
The measurement lasts for a time duration of approximately
21 min. The task of collecting such RTT samples in the real
scenarios could be crowd-sourced.

The target environment model is built by feeding the RTT
samples to ContexPerf. ContexPerf pre-processes the target

environment data of 2500 RTT samples by standardizing
them, and splitting them in 80:20 ratio for fine-tuning and
testing, respectively. It selects a source model based on the
minimum DTW measure between the source and the target
environment dataset and then fine-tunes it by transferring a
single layer from the source models. The SMAPE of the
built target model is 14.3%. The median value of the target
environment dataset is used as input to the target model to
generate synthetic RTT traces from it, one step at a time
for 2500 samples. These synthetic traces are then fed to the
network emulator. For the performance evaluation, we also
set the bandwidth and packet loss of the network in the
emulation that is measured separately (also 2500 samples)
using Iperf [71]. As Iperf requires access to the cloud backend,
we carried out the bandwidth and packet loss measurements
separately to our dummy server in AWS which was hosted
in the same region as the Instagram cloud backend. For a
baseline comparison, we also carry out emulation with access
time traces generated from the normal distribution model. The
mean and the standard deviation parameters are obtained by
fitting a normal distribution to the target environment RTT
data.

TABLE V: Statistical characteristics of access time traces of
the LTE network — Real vs. Normal distribution vs. Synthetic

Statistic Real LTE Normal Distribution Synthetic
(ms) (ms) (ms)

0.01th Percentile 36.8 33.7 35.3
50th Percentile 43.0 43.5 43.9

99.99th Percentile 58.1 52.8 60.1
Mean 43.4 43.5 44.5

Standard Deviation 4.2 4.1 5.2

A comparison of the statistical characteristics of the ac-
cess time traces generated from our approach, the normal
distribution, and the real LTE network is shown in Table V.
From the results, one can see that both the synthetic traces
obtained from our approach and the normal distribution traces
have a similar statistical mean, median as that on the real
LTE network. However, the synthetic traces perform better at
extreme percentiles.

Next, we analyze the impact of these access time traces
on the Instagram application AFT photo sharing latency. We
wrote a simple script using Appium [72] to automate photo
sharing action on Instagram. In each photo-sharing action
experiment, a photo from the library is selected and shared
on the profile. The screen of the emulator is recorded in the
background using the Android screencapture tool. We repeat
the experiment for 50 runs with 2 min intervals.

In order to study the impact of access time on the AFT
latency, we first ran the experiments under the emulation of
different fixed access times. The results (Figure 13a) show that
the AFT latencies increase with an increase in the underlying
access times. For the access time of 200 ms, the AFT latency
can get as high as 10 s, thus leading to a significant degradation
in QoE. These results indicate that access time is part of the
critical path. Our findings concur with the analysis of the post
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Fig. 13: Boxplot of Instagram AFT application photo sharing latency (seconds) measured with (a) different fixed emulated
access times (b) emulation using the synthetic and normally distributed access time traces, and on an equivalent real LTE
network.

sharing action of the Facebook mobile application made by
Chen et al. [26].

Next, we repeat the above experiment by varying the
underlying network emulation, first using our synthetic traces,
and then with normally distributed traces. Finally, we also run
the experiment on the real LTE network in the same home
environment. Figure 13b shows the comparison of Instagram
application AFT latencies measured under the three scenarios.
The box in the figure is defined by the 25th, 50th, 75th
percentiles.

In Figure 13b, one can see the variation in the measured
AFT latencies across the two models and the real LTE net-
work. The AFT latency on the real network varies from 4.3 s
to 5.9 s with mean and median values being 5.2 s and 5.3 s,
respectively. In the case of an emulated network with normally
distributed access times, the AFT latencies are symmetrically
distributed around the mean and the median. Both the mean
and median values are 4.6 s. In comparison to the real LTE
network, the mean and the median is lower by 13%. The
maximum is 5.6 s which is lower by 8%, and the minimum is
3.8 s which is lower by 15.5%. In the case of application AFT
latencies measured under the network emulation using our
generated synthetic traces, both the mean and median values
are 5.29 s which translates into an error of 2.0% and 0.4%
compared to the real LTE network. The maximum value (6.1
s) is lower by 3.3%, while the minimum value (4.5 s) is lower
by 3.6%. These error values indicate that compared to the
popular normal distribution, the synthetic traces obtained using
our fine-tuned model accurately estimate the AFT latencies
across different quantiles.

B. Conversations

Our second case study is an Android chat messenger mobile
application. Conversations [73] is a mobile application that
uses an Extensible Messaging and Presence Protocol (XMPP)
for message communication. XMPP is an XML-based com-
munication protocol for message-oriented middleware used
by many popular chat messenger applications. Conversations
application client supports sending and receiving images,
voice messages, and files with OpenPGP end-to-end message

encryption. We use an XMPP based Ejabberd [74] server as
our backend for the Conversations application.

We suppose that an application tester is interested in analyz-
ing the QoE metric called message delivery receipt latency for
the Conversations application in various target environments.
Message delivery receipt latency is measured as the time
duration beginning from when the sender sends a message to
the time when the sender receives an acknowledgment receipt
for the successful delivery of that message to the recipient and
displayed to the sender on the device. The delivery latencies
are to be measured for a combination of different access
network technologies and end-user context environment in
Table VI.

The measurement setup for the performance evaluation is
similar to the one used in Figure 11. The Ejabberd backend
server is hosted in AWS in the EU-Ireland region. We use two
separate Android emulators for a sender and a receiver with
Conversations applications installed on them. Both Android
emulators run on a separate VM instance (t2.medium) in
our AWS based testbed. Further, to avoid the network traffic
interference from the two mobile emulators, we use separate
VM instances for the network emulators (also a t2.medium).
Thus, in total, we have the following five components running
on five VMs in our experimental setup: the two mobile
emulators, and their two network emulator instances, and a
Ejabberd backend server.

TABLE VI: Scenarios for measuring message delivery receipt
latency for Conversations application

Scenario Sender Environment Receiver Environment
1 LTE Mobility Vehicle (Berlin) WiFi Home (Berlin)
2 WiFi Home (Mumbai) WiFi Home (Berlin)

We collect a short sample data of access times of each
target environment to build its model with fine-tuning. The
appropriate sample data size necessary for fine-tuning is
determined by referring to the results of our earlier studies
for a similar target environment (Section V-B3, Figure 10aa
and Figure 10bb). From the results, a fine-tuned model with
a data size of 6000 RTT samples has a SMAPE in the range
of 8.0% to 21.7% for WiFi networks(Home and Office —
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Fig. 14: Boxplot of Conversations application message delivery receipt latency (seconds) measured for different scenarios in
Table VI with emulation using the synthetic and normally distributed access time traces, and on equivalent real networks.

Dataset 3, 4, 5, and 6) and 4.7% to 12.5% for the LTE mobility
vehicle scenario (Dataset 1 and 2). On the other end, a fine-
tuned model with 24 000 RTT samples leads to a SMAPE
in the range 3.0% to 12.7% for WiFi networks and 2.2% to
7.2% for the LTE networks. Based on these results, we decide
to collect 2500 RTT samples for scenarios in Table VI. This
sample size is shorter than the minimum sample size of 6000
used in our study. The measurements for the sender and the
receiver environments in each scenario are carried out at the
same time.

The target environment models are built by feeding the RTT
samples to ContexPerf. The SMAPE of the obtained fine-tuned
target models are 17.2% (LTE mobility vehicle — Berlin),
26.7% (WiFi Home — Berlin), and 24.5% (WiFi Home —
Mumbai), 20.6% (WiFi Home — Berlin). The median value
of the target environment dataset is used as input to the
respective target model to generate its synthetic RTT trace
for 2500 samples. The synthetic traces are fed to the network
emulators together with the real measured bandwidth and
packet loss traces. As in the earlier case study, the traces
generated from the normal distribution model are used for
baseline comparison.

The experiment to measure the message delivery receipt
latency of Conversations application consists of sending a
fixed-size 2 kB message from the sender application. The
source code of the application is instrumented to log the
timestamps of the message sent and acknowledgment receipt
delivery events. The difference in the timestamps is calculated
to obtain the message delivery receipt latency. For each
of the emulation scenarios, the experiment is repeated for
50 runs. To compare the emulated message delivery receipt
latencies of Conversations application with the real world,
the experiment is repeated for 50 runs on the real access
networks in the end-user context scenarios (Table VI). In
order to minimize the impact of time and diurnal patterns on
the network performance, these experiments were carried out
sequentially immediately after the RTT samples of the target
environment were collected as explained above.

Figure 14a and b show the box plots of the message delivery
receipt latencies for the Conversations application in the two
scenarios. The box in the figure is defined by the 25th and the

75th percentiles while the middle line represents the median
50th percentile. It is evident from both the figures that the
delivery receipt latency distribution on the real network is
positively skewed. For scenario 1 (Figure 14a) that consists of
a message sender on an LTE network in a mobile vehicle, and a
stationary receiver on a WiFi home network, both in the Berlin
metropolitan, the mean message delivery receipt latencies are
0.28 s (real network), 0.27 s (synthetic trace), and 0.23 s
(normal) while the median latencies are 0.20 s, 0.20 s, and 0.21
s, respectively. It can be seen that the mean and the median
delivery receipt latencies of the Conversations estimated by
the normal distributed access times traces and our synthetic
access time traces are quite similar. And in comparison to
real networks, both models accurately estimate the mean and
median latencies. On the other end, the estimated maximum
delivery latencies are 1.34 s (real network), 1.33 s (synthetic
trace), and 0.42 s (normal), and the minimum latencies are 0.15
s, 0.18 s, and 0.05 s, respectively. The accuracy gap between
the two models widens at extreme percentiles. A normally
distributed access time model produces symmetric delivery
receipt latencies. Furthermore, in scenario 1, it significantly
underestimates the maximum and the minimum receipt deliv-
ery latencies by 72.2% and 84.4%, respectively. In scenario
2, similar behavior is observed with values underestimated
by 61% and 24.4%, respectively. In contrast, our synthetic
traces overestimate latencies by 20% and 21.3% (scenario 1)
and 0.5% and −13.2% (scenario 2). The results show that the
emulated network environment using synthetic traces obtained
from fine-tuned models can accurately reproduce message
delivery receipt latencies including the outlier values observed
on the real networks.

C. Summary

Our case studies quantify the impact of access time model
selection on the QoE metrics of two different categories of
mobile applications viz. social media and chat messenger.
Our results show that in both the applications, choosing
the popularly used simple normal distribution access time
model can provide an accurate estimation of the mean and
median QoE metrics. However, the normal distribution model
fares poorly at the extreme percentiles, providing conservative
estimates of the QoE metrics. This can be attributed to the



fact that the underlying access times obtained from a normal
distribution model are symmetric along the mean access time
value. In the light of earlier studies by Amazon [10] and
Google [11], these differences are quite significant. Using the
popular normal distribution model for access time emulation
can lead a tester to obtain overall better QoE metric estimates
(message delivery receipt latency, AFT latency) and thereby
falsely interpret it as superior application performance. Our
case-studies also successfully demonstrate the superiority of
synthetic access time traces obtained from target environment-
specific fine-tuned models in mobile application testing, and
the ease with which they can be realistically generated with a
relatively short amount of measurement sample data.

VIII. RELATED WORK

Cloud Access Time Models — Modeling cloud access
times as end-to-end delays have been extensively studied in
the literature [20], [21], [75]–[80]. A time series of end-to-
end delay is a sequence of data points measured at certain
time intervals. Therefore, the modeling problem has been
formulated as a prediction problem to estimate the next data
points in the time series. We refer the readers to Yang et
al. [81] for a detailed overview of various delay prediction
techniques and discuss some of them briefly in the following.
The widely used analytical models for end-to-end delay in-
clude Hidden Markov Models (HMM) [80] and Autoregressive
(AR) models [77]. From the empirical perspective, Rao [82]
presents an approach for delay prediction based on regression.
On using the machine learning approach, Belhaj et al. [83] and
Parlos et al. [20] have used Recurrent Neural Networks (RNN)
for modeling the delay dynamics. Trevisan et al. [84] apply
Kernel Density Estimation (KDE) to model mobile network
characteristics. Yang et al. [21] propose a multiple model
approach that predicts delay using the combination of esti-
mates from various models treated as a bank of filters. Bui et
al. [76] use wavelet transforms in combination with a recurrent
multilayer perceptron neural net for long-horizon end-to-end
delay prediction. There have been several measurement-based
studies that have tried to characterize the end-to-end delay over
different types of access networks. For instance, Manweiler et
al. [85] and Huang et al. [85] have characterized the latency
over 3G networks and found them to be normally distributed.
All the above prediction techniques are largely data-driven,
and using them for other targeted environments requires a long
and laborious data collection. For instance, Belhaj et al. [83]
and Parlos et al. [20], Yang, et al. [21] collect data in the order
of magnitude of hours lasting an entire day. [84] ran a large-
scale data collection campaign to obtain cloud access time
data. This is not feasible for a tester of a single application or
few applications. Unlike these studies, in our work, we focus
on the problem of using a relatively shorter sample of the
targeted environment in the order of magnitude of minutes to
fine-tune a selected pre-trained source model.

Network Emulation Tools — Network emulation tools are
also being used in analyzing the QoE of mobile applications.
Network emulation has been well-studied in the literature.

Linux Traffic Control (TC) [62] is a set of utilities that
enable controlling the packet traffic flow through the queueing
system associated with the network interface. NetEm utility in
TC has been extensively used for emulating various network
conditions. Another similar tool is the network link emulator
Dummynet [86] and Wide Area Network (WAN) emulator
NIST Net [87]. These tools provide simple traffic shaping
policies that can emulate fixed latencies as well as latencies
belonging to well-known parametrized distributions like the
normal distribution. The standard parametrized distributions
like normal distribution are not capable of accurately emulat-
ing the time-based variability of the access times. In our work,
we rely on TC for trace-driven emulation with ContextPerf
generated synthetic access time traces. As opposed to using
these tools directly for network emulation in QoE measure-
ment, using our approach provides access network technology-
specific and target environment-specific cloud access time
emulation that preserves time-based variation. Furthermore,
several other network emulation tools have been built based
on traffic shaping algorithms viz. Augmented Traffic Control
(ATC) [88] from Facebook, Network Link Conditioner [89]
for MacOS, Google Chrome Devtools [90], Android Emula-
tor [91] network emulator, etc. A feature improvement in these
tools has been the addition of a network profile collection
containing selected network access time traces. The traces are
organized in various categories viz. Poor, Good, Lossy based
on their mean and standard deviation statistics. As discussed
earlier in Section I, such tools have trace profiles within
a defined scope which offer limited access time variation
dynamics. In contrast, the traces obtained from our access
time modeling approach are more representative of a wider
population of target environments.

Mobile Application QoE Measurement Tools — In this
scope, there has been extensive research in building mobile
application QoE measurement tools. Chen et al. [26] present
a tool called QoE Doctor that uses UI automation techniques
to generate user sessions to measure mobile application QoE.
It also supports cross-layer analysis of mobile applications
across application, transport, network, and cellular radio link
layers. Another QoE analysis tool WebLAR [92] measures
the web QoS metrics such as TCP connection time, and
Time To First Byte (TTBF) and web QoE metrics like Above
The Fold (AFT) latencies and Page Load Times (PLT). Web-
PageTest [93] is another such service to measure the QoE
of web applications on mobile devices. For video streaming
applications like Youtube, Jimenez et al. [94] uses the net-
work packet-level data to model the QoE of video sessions.
YoMoApp by Wamser et al. [95] measures the Youtube video
session QoE based on the player state/events, buffering, and
video quality level data. All these tools focus on certain
categories of applications. In order to measure the impact of
network performance on the QoE metrics, these tools either re-
quire exposing the application to the real network conditions or
use some network emulation tool, as discussed earlier. As we
demonstrated in Section VII, traces generated with ContextPerf
can be effectively used to measure the QoE metrics across



different categories of mobile applications. On the contrary,
our approach complements these QoE measurement tools; it
can be integrated with them to offer improved support for
cloud access time emulation.

IX. FUTURE RESEARCH DIRECTION

In this section, we discuss overarching issues related to our
work and future research direction.

Applicability to other network QoS metrics — While
our work focuses on cloud access times, it is not the only
network QoS metric that influences the application perfor-
mance and its QoE. Certain categories of applications are
also highly influenced by network bandwidth and packet loss.
For example, video streaming applications like Youtube, audio
streaming-based services like Spotify, etc. The applicability of
our methodology to build bandwidth and packet loss models
need to be studied and analyzed.

Widen the scope of target environments — In this work,
we used a limited set of end-user contexts for building fine-
tuned models. We want to evaluate ContextPerf’s capability
under a broader range of scenarios. We are working on expand-
ing our scope to a wider range of target environments including
the effects of control plane latencies, MNOs, geographical
regions, and times of the day, etc.

Applicability to next generation 5G networks and use-
cases — The next generation 5G cellular networks aim to of-
fer improved network QoS with 1000 times greater throughput
improvement, 100 billion connections at a massive scale that
include Machine To Machine (M2M) communication, and a
close to zero latency (<1 ms) [96], [97]. With the introduction
of the Enhanced Mobile Broadband (eMBB), Massive Ma-
chine Type Communications (mMTC), and Ultra Reliable and
Low Latency Communications (uRLLC) services in 5G, there
would be application use-cases in heterogeneous domains such
as factory automation, connected vehicles, robotics, virtual
reality, health care, smart city, etc. These application use-cases
would have their own specific network QoS requirements.
5G stresses greater flexibility for the core network through
software virtualization, thus enabling easier instantiation of the
core services and simplifying radio-resource allocation without
compromising on the network stability. It will also enable
the different services verticals through resource sharing using
network slicing [98], [99]. The impact of such network slicing
decisions on the network QoS and and the application QoE
within the vertical would need to be studied. Understanding
the QoE of the use-cases will be a key enabler of future 5G
business cases. We envision an increasingly common need
for target environment context driven testing in each of these
service verticals where our methodology could be applied. We
aim to build transfer learned 5G network QoS models, study
their accuracy, and apply them to measure QoE.

ContextPerf automation tool release — We plan to make
the ContextPerf tool available to the mobile application
development and the testing community to enable testers to
evaluate their mobile applications QoE for a wide range of
target environments. In this direction, we are working on

developing and deploying ContextPerf in the cloud and offer
it in form of a Network Testing as a Service (NTaaS). We are
targeting wider testing scenarios where testers can run cloud
access time tests as a part of their periodic application release
cycle.

Real world in-context trace collection — While our work
improves on shortening the real-world cloud-access time traces
needed to build target environment-specific models, we do
recognize that sometimes access time traces might be difficult
to collect. This problem can be solved to a certain extent
by providing the testers with a mobile application like Con-
textPing that handles network trace collection parameterization
related to granularity, scale, duration, etc. while the labeling
of context data is handled by the tester. Crowdsourcing offers
a promising approach to scale up trace collection. However,
the collection of network trace data labeled with precise target
environment context information without any user intervention
comes with its own set of challenges. We leave it as a part of
future work.

Applicability to other platforms – Emulators and real
mobile devices — Currently, we implemented the access
time emulation by integrating it in Traffic Control (TC) utility
available on Linux. This limits ContextPerf’s ability to run
seamlessly on mobile application developer and tester work-
station as a part of their development workflow. Our design
enables us to integrate it with other mobile emulator platforms
like Android Emulator, and iOS. Furthermore, the applicability
of our cloud access time emulation using a real mobile device
and its trade-offs with the mobile emulator needs to be studied
and verified. We also consider it a part of future work.

X. CONCLUSIONS

In this paper, we addressed the problem of generating
realistic synthetic cloud access time traces for various contexts.
We developed a methodology to model cloud access times
with a Long Short Term Memory (LSTM) neural net using
a transfer learning framework. The methodology requires a
relatively short sample of cloud access time trace from a target
environment to fine-tune an existing source model. To this
effect, we prototyped an automation tool called ContextPerf,
which streamlines the process of building a fine-tuned model
and generating synthetic traces of context-based cloud access
times from it. In real mobile application testing case-studies,
we have compared the impact of different types of cloud access
modeling on the application QoE. We observe that usage of
the popular normal distribution access time model, as well as,
of our fine-tuned model result in an accurate estimation of
the mean and median QoE metrics (AFT application latency,
and message delivery receipt latency). The normal distribution
access time models, however, perform poorly with respect to
the estimation of extreme percentiles of QoE. For example, in
the case of the popular Instagram application, the maximum
value of the AFT application latency for photo sharing action,
estimated by the normal distribution model has an error of 8%,
while our fine-tuned models estimate it with an error of 3.3%.
Likewise, for the chat messenger application Conversations,



the maximum value of the QoE metric message delivery
receipt latency has an estimation error of 72.2%, while our
fine-tuned models estimate it with an error of only 20%. The
two concrete case studies demonstrate that using our fine-tuned
models result in a better assessment of QoE quantiles.
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[56] Z. Wang, Z. Dai, B. Póczos, J. G. Carbonell, Characterizing and
avoiding negative transfer, in: IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-
20, 2019, Computer Vision Foundation / IEEE, 2019, pp. 11293–11302.
doi:10.1109/CVPR.2019.01155.

[57] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, P. Muller, Trans-
fer learning for time series classification, CoRR abs/1811.01533.
arXiv:1811.01533.

[58] J. Yosinski, J. Clune, Y. Bengio, H. Lipson, How transferable are
features in deep neural networks?, in: Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, K. Q. Weinberger (Eds.), Advances in Neural
Information Processing Systems 27: Annual Conference on Neural
Information Processing Systems 2014, December 8-13 2014, Montreal,
Quebec, Canada, 2014, pp. 3320–3328.

[59] Google Cloud Machine Types, https://cloud.google.com/compute/docs/
machine-types, [Online; accessed 25-Spetember-2020].

[60] U. Goel, M. Steiner, M. P. Wittie, S. Ludin, M. Flack, cell-emulation-
util, https://github.com/akamai/cell-emulation-util, [Online; accessed 25-
Spetember-2020].

[61] Herve Eychenne, iptables(8) - Linux man page, https://linux.die.net/
man/8/iptables, [Online; accessed 25-Spetember-2020].

[62] Bert Hubert, tc(8) - Linux man page, https://linux.die.net/man/8/tc,
[Online; accessed 25-Spetember-2020].

[63] Terraform, https://www.terraform.io/, [Online; accessed 25-Spetember-
2020].

[64] J. Manweiler, S. Agarwal, M. Zhang, R. R. Choudhury, P. Bahl,
Switchboard: a matchmaking system for multiplayer mobile games, in:
Proceedings of the 9th International Conference on Mobile Systems,
Applications, and Services (MobiSys 2011), Bethesda, MD, USA, June
28 - July 01, 2011, 2011, pp. 71–84. doi:10.1145/1999995.2000003.

[65] J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang, P. Bahl, Anatomizing
application performance differences on smartphones, in: Proceedings
of the 8th International Conference on Mobile Systems, Applications,
and Services, MobiSys ’10, Association for Computing Machinery, New
York, NY, USA, 2010, p. 165–178. doi:10.1145/1814433.1814452.

[66] R. Mittal, A. Kansal, R. Chandra, Empowering developers to estimate
app energy consumption, in: Proceedings of the 18th Annual Interna-
tional Conference on Mobile Computing and Networking, Mobicom ’12,
Association for Computing Machinery, New York, NY, USA, 2012, p.
317–328. doi:10.1145/2348543.2348583.

[67] Instagram, https : / / www . instagram . com/, [Online; accessed 25-
Spetember-2020].

[68] Above the fold time: Measuring web page performance visually,
http : / / cdn . oreillystatic . com / en / assets / 1 / event / 62 / Above % 20the %
20Fold%20Time %20Measuring%20Web%20Page%20Performance%
20Visually%20Presentation.pdf, [Online; accessed 25-Spetember-2020].

[69] M. R. Rege, V. Handziski, A. Wolisz, Realistic context generation
for mobile app testing and performance evaluation, in: 2017 IEEE
International Conference on Pervasive Computing and Communications,
PerCom 2017, Kona, Big Island, HI, USA, March 13-17, 2017, 2017,
pp. 297–308.

[70] M. R. Rege, V. Handziski, A. Wolisz, Crowdmeter: An emulation
platform for performance evaluation of crowd-sensing applications, in:
Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous
Computing Adjunct Publication, UbiComp ’13 Adjunct, Association
for Computing Machinery, New York, NY, USA, 2013, p. 1111–1122.
doi:10.1145/2494091.2499578.

[71] iperf3: A tcp, udp, and sctp network bandwidth measurement tool, https:
//github.com/esnet/iperf, [Online; accessed 25-September-2020].

[72] Appium - Automation for Apps, http://appium.io/, [Online; accessed
25-September-2020].

[73] Conversations: the very last word in instant messaging, https://github.
com/siacs/Conversations, [Online; accessed 25-September-2020].

[74] Ejabberd: Robust, Scalable and Extensible Realtime Server using XMPP,
MQTT and SIP, https : / /www.ejabberd . im/, [Online; accessed 25-
Spetember-2020].

[75] Zhihao Guo, B. Malakooti, Delay prediction for intelligent routing in
wireless networks using neural networks, in: 2006 IEEE International



Conference on Networking, Sensing and Control, 2006, pp. 625–630.
doi:10.1109/ICNSC.2006.1673218.

[76] V. Bui, W. Zhu, A. Pescape, A. Botta, Long horizon end-to-end delay
forecasts: A multi-step-ahead hybrid approach, in: 2007 12th IEEE
Symposium on Computers and Communications, 2007, pp. 825–832.
doi:10.1109/ISCC.2007.4381513.

[77] H. Ohsaki, M. Murata, H. Miyahara, Modeling end-to-end packet delay
dynamics of the internet using system identification, in: J. M. de Souza,
N. L. da Fonseca, E. A. de Souza e Silva (Eds.), Teletraffic Engineering
in the Internet Era, Vol. 4 of Teletraffic Science and Engineering,
Elsevier, 2001, pp. 1027 – 1038. doi:https://doi.org/10.1016/S1388-
3437(01)80189-X.

[78] V. Paxson, End-to-end internet packet dynamics, SIGCOMM Comput.
Commun. Rev. 27 (4) (1997) 139–152. doi:10.1145/263109.263155.

[79] P. Sanaga, J. Duerig, R. Ricci, J. Lepreau, Modeling and emulation
of internet paths, in: Proceedings of the 6th USENIX Symposium on
Networked Systems Design and Implementation, NSDI’09, USENIX
Association, Berkeley, CA, USA, 2009, pp. 199–212.

[80] M. Mouchet, S. Vaton, T. Chonavel, Statistical characterization of
round-trip times with nonparametric hidden markov models, in: 2019
IFIP/IEEE Symposium on Integrated Network and Service Management
(IM), 2019, pp. 43–48.

[81] Ming Yang, X. R. Li, Huimin Chen, N. S. V. Rao, Predicting internet
end-to-end delay: an overview, in: Thirty-Sixth Southeastern Symposium
on System Theory, 2004. Proceedings of the, 2004, pp. 210–214.
doi:10.1109/SSST.2004.1295650.

[82] N. S. V. Rao, Overlay networks of in situ instruments for proba-
bilistic guarantees on message delays in wide-area networks, IEEE
Journal on Selected Areas in Communications 22 (1) (2004) 79–90.
doi:10.1109/JSAC.2003.818797.

[83] S. Belhaj, M. Tagina, Modeling and prediction of the internet end-
to-end delay using recurrent neural networks, Journal of Networks 4.
doi:10.4304/jnw.4.6.528-535.

[84] M. Trevisan, A. Safari Khatouni, D. Giordano, Errant: Realistic emula-
tion of radio access networks, Computer Networks 176 (2020) 107289.
doi:https://doi.org/10.1016/j.comnet.2020.107289.

[85] J. Manweiler, S. Agarwal, M. Zhang, R. Roy Choudhury, P. Bahl,
Switchboard: A matchmaking system for multiplayer mobile games,
in: Proceedings of the 9th International Conference on Mobile

[95] F. Wamser, M. Seufert, P. Casas, R. Irmer, P. Tran-Gia, R. Schatz,
Yomoapp: A tool for analyzing qoe of youtube http adaptive
streaming in mobile networks, in: 2015 European Conference
on Networks and Communications (EuCNC), 2015, pp. 239–243.
doi:10.1109/EuCNC.2015.7194076.

Systems, Applications, and Services, MobiSys ’11, Association for
Computing Machinery, New York, NY, USA, 2011, p. 71–84.
doi:10.1145/1999995.2000003.

[86] L. Rizzo, Dummynet: A simple approach to the evaluation of network
protocols, SIGCOMM Comput. Commun. Rev. 27 (1) (1997) 31–41.
doi:10.1145/251007.251012.

[87] M. Carson, D. Santay, Nist net: A linux-based network emulation
tool, SIGCOMM Comput. Commun. Rev. 33 (3) (2003) 111–126.
doi:10.1145/956993.957007.

[88] Augmented Traffic Control, https : / / github . com / facebookarchive /
augmented-traffic-control, [Online; accessed 25-Spetember-2020].

[89] Network Link Conditioner, https : / / nshipster . com /
network-link-conditioner/, [Online; accessed 25-Spetember-2020].

[90] Simulate Mobile Devices with Device Mode in Chrome Devtools,
https://developers.google.com/web/tools/chrome-devtools/device-mode,
[Online; accessed 25-Spetember-2020].

[91] Android Emulator, http://developer.android.com/tools/help/emulator.
html, [Online; accessed 25-Spetember-2020].

[92] A. S. Asrese, E. A. Walelgne, V. Bajpai, A. Lutu, Ö. Alay, J. Ott,
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