
How to Train your ITS? Integrating Machine
Learning with Vehicular Network Simulation

Max Schettler∗, Dominik S. Buse∗†, Anatolij Zubow∗, and Falko Dressler∗
∗School of Electrical Engineering and Computer Science, TU Berlin, Germany

†Software Innovation Lab, Paderborn University, Germany
{schettler,buse,zubow,dressler}@ccs-labs.org

Abstract—Machine Learning (ML) is becoming ever more pop-
ular in many application domains, including vehicular network-
ing. It has been shown already that Intelligent Transportation
Systems (ITS) can greatly benefit from this approach, particularly
from Reinforcement Learning (RL). To implement Vehicular Ad-
hoc Network (VANET) environments for RL training, researchers
often start from scratch. Because up until now, there is neither an
established interface to ML toolkits nor a common scenario for
VANET applications. Though such established standards would
be a great benefit to research: Previous results would be easier
to reproduce and different solutions could be compared in equal
situations and using the same metrics. We developed Veins-Gym
to bridge this gap. Veins-Gym combines the popular Veins
vehicular networking simulator with OpenAI Gym. Using an
exemplary VANET application, we show that RL techniques can
be easily applied to ITSs with this framework. This enabled us
to train an agent that outperformed hand-written algorithms.

I. INTRODUCTION

Intelligent Transportation Systems (ITS) have the potential
to take road traffic to the next level. Based on Vehicular Ad-
hoc Network (VANET) technology, they enable new ways to
enhance traffic safety, efficiency, and convenience [1]. VANETs,
due to their distributed nature, are inherently complex and hard
to configure. Especially so, as the individual elements of the
network need to behave correctly so the system as a whole
can work: Entire stacks of protocols have been developed and
eventually standardized. However, each protocol in theses stacks
has many configuration parameters, which play an important
role in the performance of the protocol, and the interplay among
them. As the environment of the network may change rapidly
due to mobility of the network, there is no generally valid
optimal set of parameters.

With the rise of Machine Learning (ML) technology, there
is an alternative to the manual search for protocol configu-
rations [2]. Deep Neural Networks (DNNs) can be trained
to yield configuration by examples. They can be trained
using observations of relevant situations and known desired
outcomes to become able to yield desired outputs for new
observations. The field of Reinforcement Learning (RL) takes
this idea another step further [3]–[5]. It is no longer necessary
to produce possibly large sets of training data with known
desired outcomes before training can start. Instead, only some
reward function is necessary that judges how good a particular
behavior is, given a particular state of the environment. Then,
an autonomous agent will explore its environment to gather

observations, produce behavior based on prior training (or
simply guessing), and adapt according to said reward function.

In the RL community, the concept of a gym has gained much
traction after being proposed by Brockman et al. [6] for the
OpenAI project. A gym provides a standardized interface to an
environment suitable for an RL agent, reducing entry barriers
and necessary boilerplate, and enabling interfacing to other
projects.They have been successfully adapted in domains such
as robotics [3], road traffic control [4], or wireless networks [5].
But, to the best of our knowledge, there is no established gym
for VANET research yet.

VANET research often uses tools such as Veins [7] to
simulate vehicle mobility, wireless transmissions, and protocol
behavior. Veins provides protocols, models, and coupling to
a mobility simulator, which enables simulation of large scale
vehicular networks. Since it is implemented inherently deter-
ministic, it can be used to conduct reproducible experiments.

We aim at bridging the gap between VANET research and
ML. By coupling Veins to OpenAI Gym, we combine these two
domains. This enables researches familiar with either domain to
apply their knowledge in the other scope: VANET researchers
gain an interface compatible with common RL frameworks
that they can use to enhance their protocols. ML researchers
on the other hand may chose to investigate the performance of
a particular learner on a VANET problem. Using the new
Veins-Gym framework, we provide an example of how
learning techniques can be applied in VANET research.

Our key contributions can be summarized as follows:
• We developed Veins-Gym, an integration between Veins

and OpenAI Gym, which allows to easily formulate and
test ML/RL solutions in the domain of ITS, we will shortly
release the framework as Open Source;1

• we apply RL to solve an exemplary VANET problem; and
• we train an agent that solves the problem exceeding the

performance of both naïve and self implemented strategies.

II. RELATED WORK

The concept of a gym for ML training was originally
introduced in [6]. Since then, gyms have been used and
extended for a variety of topics. Traditionally, they considered
domains such as control theory and robotics [8], which make up
the majority of the gym environments in the OpenAI registry.2

1http://www.tkn.tu-berlin.de/software/veins-gym/
2https://gym.openai.com/envs

The flow project [4] gained traction by coupling the SUMO
traffic simulator to a gym environment. It enables research
of road traffic control and aims to provide a benchmarks
for relevant traffic situations that can be handled using RL
agents. Even though it considers connected vehicles, there is
no simulation of wireless communication in these environments.

The ns3-gym [5], on the other hand, provides a framework
to simulate communication network environments using the
ns3 network simulator. It simplifies and codifies the creation
of environments for agents controlling the behavior of network
protocols. However, it lacks the simulation of vehicular mobility
required for VANET research.

Choe et al. [9] tried to tackle this issue by additionally
coupling SUMO to the ns3-gym. The paper focuses on the
optimization of Medium Access Control (MAC) protocols –
specifically such based on IEEE 802.11p – using the resulting
coupled environment. Pressas et al. [10] undertook similar
approaches to enhance vehicular MAC protocols using RL.
They evaluated their own agents using a combination of SUMO
and the OMNeT++ simulation stack. Thus, other ML algorithms
cannot easily be integrated.

In conclusion, ML and particularly Reinforcement Learning
is being actively investigated in the VANET domain. However,
the entry barriers are still high as researches have to reinvent
the wheel and combine RL toolkits and VANET simulators.
A shared gym environment for VANET scenarios using the
well-known Veins simulator could ease these issues.

III. GYMS FOR VANET RESEARCH

We developed Veins-Gym to make the vehicular network
simulator Veins accessible for use with ML/RL frameworks.
Similar to ns3-gym [5], Veins-Gym is a framework that
provides the basic connection between the gym interface and
the simulator. It further simplifies the process of modeling
specific VANET scenarios into environments suitable for RL
agent training.

An OpenAI gym provides an agent with a standardized
interface to the environment, encapsulated in a single Python
class. There are two major points of interaction with the
environment, each implemented as a method of said gym
class. With reset, the environment is (re-)started and put into
an initial valid state. It returns the observations that describe
environment to the agent. In future steps, additionally a reward
value is given that judges the outcome of the last action and
can be used to train the agent. Furthermore, a done flag is
returned that indicates whether the environment is considered
completed and needs to be restarted. The agent can then choose
how to react to these observations and call the action method.
This performs the chosen action in the environment, advances
the simulation, and returns a tuple of observations, reward,
and done-flag describing the updated state. The agent usually
executes the action method in a loop, reacting to the changing
environment, until the scenario is done. Aside from those main
interaction points, methods exist to set the seed for Pseudo-
Random Number Generators (PRNGs) used by the environment,
or to render its state, if applicable.

0 100m

Transmitter

Receiver
Driving
Direction

Figure 1. The two vehicles driving along the serpentine road.

In order to couple Veins with an RL agent, we developed
Veins-Gym in form of a Python class that implements this
interface. It manages the life cycle of an embedded Veins
process and communicates with it. When constructing the
environment, additional simulation parameters are gathered
that can be used to override defaults, which is useful during
development, or for hyper-parameter studies. The concrete
encoding of observations, actions, and reward depend on the
problem modeled by each gym environment. Veins-Gym,
in accordance with the OpenAI gym concept, is agnostic to
the concrete encoding and can thus be used to model various
VANET scenarios and problems. It simply provides a way to
specify these encodings and transport them from the gym class
to the simulation and back.

To define a specific problem, the gym environment needs to
be adapted in two places: the Python gym class and the C++
code of the Veins simulation. Both need to share a compatible
specification of the desired observation, action, and reward
space. In the Veins simulation code, a connector class needs
to be instantiated to represent the agent in the environment.
Whenever the agent has to decide on an action, the observation,
reward, and done information have to be passed to the gym
interface using said connector. In turn, the connector receives
the encoded action chosen by the agent, which is then decoded
and executed by the code in the simulation. In practice, the
change to a given VANET scenario is relatively small and
changes can be quickly implemented.

IV. A LEARNABLE VANET PROBLEM

In order to evaluate the feasibility of Reinforcement Learning
for VANET problems, we designed an example environment:
Two vehicles drive behind each other along a serpentine road
(cf. Figure 1). The vehicle in the back periodically tries to
transmit messages to the vehicle in front. Both vehicles are
equipped with two different communication methods that have
different properties: Dedicated Short Range Communication
(DSRC), i.e., IEEE 802.11p, and Visible Light Communication
(VLC)-enabled head- and taillights. The agent’s goal is to
select the optimal communication link for each message. As
the road in the scenario contains many sharp turns, the VLC
link will not work at all times. But the DSRC link is considered
expensive due to its large interference domain. So the optimal
link technology depends on the current relative location of the
two vehicles.

A. Problem Definition

The two vehicles drive along an except of the Lysevegen
pass in southern Norway and 7750 m long in our scenario. It

has a total of 28 hairpin turns, providing plenty of challenging
situations for the VLC channel. The transmitter tries to send
a message every 0.1 s for which the agent has to select the
communication link technology. It can select any combination
of the DSRC radio, the VLC headlight, and the VLC taillight,
yielding eight (23) different choices. The agent is rewarded
for successful transmission, reduced by a cost based on the
chosen communication links (cf. Table I). Since the interference
domain of DSRC is much larger, its cost is higher than the
cost of using VLC, i.e., VLC is always preferable.

This environment is implemented using our Veins-Gym
framework described in Section III and the Veins-VLC ex-
tension [11]. The observation is encoded as the x- and y-
coordinate and the orientation (as a normalized vector) of
the receiver relative to the transmitter. We assume that these
information are locally available to the car from its sensors.
The x and y coordinates are scaled of by a factor of 10−3

and then clipped to the interval [−1, 1]. This yields values
suitable for neural networks that vary on a scale similar to the
normalized orientation vector.

The optimal policy maximizes reception probability, while
minimizing transmission cost. The agent should eventually
learn multiple things:

• When the receiver is in a defined region ahead of the
transmitter and oriented towards it, using the headlight
transmits the data successfully;

• communication with the taillight is never successful,
because it faces away from the receiving vehicle that
drives in front of the transmitting vehicle; and

• since the transmitter has exclusive access to the channel,
DSRC is very reliable, albeit at a higher cost.

We implemented and compared five different policies that
are used to select the communication link. Three of them are
hand-written, one based on pre-sampled data, and one based
on a ML model. The action selection patterns of the last four
policies are illustrated in Figure 2. Note that only the RL-
based policy can select between all eight communication link
configurations and considers the orientation of the receiver
vehicle. The other policies simply select between the DSRC
and VLC headlight.

B. Hand-Written Policies

The first two policies serve as a simple baseline, and are
named DSRC only (#1) and VLC Head only (#2), respectively.

Table I
KEY PARAMETERS OF THE SETUP.

VLC Radiation configuration Veins-VLC [11]
Message Interval 0.1 s

Network structure {10, 40, 75, 100}2–4

Maximum training steps 1 000 000
Trained network instances per configuration 3

Optimizer Adagrad

Communication Reward 1
DSRC Cost 0.5

VLC Cost 0.1

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
x (km)

−0.04

−0.02

0.00

0.02

0.04

y (
km

)

Formula (#3)
Convex-Hull (#4)

Multi-Q Action (#5)
DSRC
VLC Head
VLC Head and Tail

Figure 2. Patterns of selected actions for different policies for different receiver
positions. The polygons indicate the region within which VLC is selected.
The shaded area indicates the selected action by the Multi-Q regressor. In this
case, the receiver’s orientation is assumed to be the same as the transmitters.

Both only ever output the same transmission technology,
regardless of the observation: The first always selects DSRC
and the other always selects the VLC headlight. Both will not
yield optimal rewards. But they can display the proportion of
transmission attempts in which the VLC headlight is successful.

The Formula (#3) policy represents a simple hand-crafted
heuristic. The chosen action is defined as

link =

{
VLC, if −π

11.5 < α < π
7 ∧ |d| < 80m

DSRC, else
, (1)

where α is the angle between the forward axis of the follower
vehicle and d is the distance between transmitter and receiver
vehicle. If the observation lies within these bounds, the VLC
headlight is used, otherwise DSRC. The resulting pattern is
shown as a solid blue line in Figure 2. The different angles
for the left and right side represent the asymmetric radiation
pattern of the headlight.

C. Data-Driven Policies

The Convex-Hull (#4) policy is based on 1000 pre-sampled
observations of successful transmissions using the VLC head-
light. A convex hull is computed from the coordinates of the
pre-sampled observations. The policy then chooses the VLC
headlight if a new observation falls into that convex hull and
the DSRC link otherwise. An example convex hull is shown
as a red dashed line in Figure 2. It does not require manual
parameterization and should be able to better match the non-
symmetrical transmission pattern of the headlight.

The Multi-Q-Regressor (#5) policy is a RL-based policy that
uses eight DNNRegressor estimators from the Tensorflow
ML framework. Each regressor uses a DNN to predict the
expected reward (q-value) for one action for a given observation.
The policy then selects the action with the highest predicted
reward. We trained and compared different configurations of
the neural networks, with a different amount of layers and
nodes within each layer (cf. Table I).

In contrast to the other policies, the Multi-Q-Regressor policy
faced additional challenges. In our very specific scenario, it
has to make a more complex decision and needs to learn

0.0 0.2 0.4 0.6 0.8 1.0
VLC Ratio

0.6

0.8

1.0
PD

R

better

DSRC only (#1)
VLC Head only (#2)
Formula (#3)
Convex-Hull (#4)
Multi-Q-Regressor (#5)

Figure 3. The performance of the strategies. The PDR is plotted against
the ratio of packets sent via VLC which models the resource use. Error bars
indicate standard deviation of the two metrics.

to avoid the decoy option of the VLC taillight as an un-
beneficial combinations. It also has to learn that using multiple
transmission links at once is generally inferior to just using
one in our scenario.

V. EVALUATION

We evaluated the policies described above in our
Veins-Gym as described in Sections III and IV to determine
transmission reliability and resource efficiency. Transmission
reliability is expressed as Packet Delivery Ratio (PDR). As
VLC is considered cheaper (cf. Section IV-A), we express
transmission resource efficiency as the ratio of transmissions
via VLC. Each policy is used decide the transmission link in
10 independent episodes of the environment.

We trained the Multi-Q-Regressor using the default Adagrad
optimizer to control the gradient descent and learning rate
adaption. We used pre-collected trajectories (records of obser-
vations, taken actions, and resulting rewards) to train the neural
networks offline, though they could also be trained on-policy
while exploring the environment. From the total of 36 trained
networks, we picked the one with the highest average reward
for comparison with the other policies. Figure 2 shows the
action selected by the policy as shaded areas. This best network
was configured with 4 dense hidden layers of 75 nodes each.

Figure 3 shows the performance of the five policies in the
two described metrics. Both trivial policies perform as expected,
DSRC only has near perfect reliability (99.9%) using the more
limited resource of the DSRC channel. VLC Head only is more
efficient, however it achieves only about 60% PDR within an
episode on average. The formula policy is more efficient than
DSRC only, using VLC for 38% of the transmissions, while
achieving a similar reliability (99.6%). Formula makes a more
conservative estimation for when VLC-based transmissions
will be successful (cf. Figure 2).

The data-derived Convex-Hull policy on the other hand
chooses to use VLC more aggressively. Accordingly, it is
much more efficient (62% VLC use), but sacrifices reliability,
yielding only a 97.3% PDR.

The best performing instance of the RL-based Multi-Q-
Regressor combines both of these advantages: it employs VLC
similarly often (58%), and still achieves a PDR of 99.5%.

In addition to this performance, the policy has learned to
avoid sub-optimal actions (i.e., using multiple communication
methods) in 99.4% of the transmissions (cf. Figure 2).

VI. CONCLUSION

Research on VANETs can benefit for ML or RL techniques
to determine optimal parameterization of protocols, or even
behavior of the protocol itself. To ease the design and
comparison of solutions to such problems, we designed and
implemented Veins-Gym, an OpenAI gym for the Veins
simulator. We presented an exemplary problem for selection
of the optimal communication technology in a heterogeneous
communication scenario, and presented different hand-crafted,
learning-based, and hybrid approaches. Our learning based
policy outperforms the other approaches, achieving very reliable
communication while selecting the most efficient communica-
tion link. Our results indicate the potentials of using ML for
ITS problems. In future work we aim to use these techniques
and extend them by, e.g., multi-agent learning, to determine
high performance solutions to current VANET challenges. To
aid other researchers, we will release the Veins-Gym as Open
Source.

ACKNOWLEDGMENTS

This work has been supported in part by the German
Research Foundation (DFG) under grant no. DR 639/18-1.
We also acknowledge the advice by Maarten Bieshaar on RL.

REFERENCES

[1] C. Sommer and F. Dressler, Vehicular Networking. Cambridge University
Press, 2014.

[2] L. Liang, H. Ye, and G. Y. Li, “Toward Intelligent Vehicular Networks:
A Machine Learning Framework,” IEEE Internet of Things Journal,
vol. 6, no. 1, pp. 124–135, Feb. 2019.

[3] A. R. Mahmood, D. Korenkevych, G. Vasan, W. Ma, and J. Bergstra,
“Benchmarking Reinforcement Learning Algorithms on Real-World
Robots,” in Conference CoRL 2018, A. Billard, A. Dragan, J. Peters,
and J. Morimoto, Eds., ser. CoRL, vol. 87, Zürich, Switzerland: PMLR,
Oct. 2018, pp. 561–591.

[4] E. Vinitsky, A. Kreidieh, L. L. Flem, N. Kheterpal, K. Jang, C. Wu, F. Wu,
R. Liaw, E. Liang, and A. M. Bayen, “Benchmarks for reinforcement
learning in mixed-autonomy traffic,” in Conference CoRL 2018, A.
Billard, A. Dragan, J. Peters, and J. Morimoto, Eds., ser. CoRL, vol. 87,
Zürich, Switzerland: PMLR, Oct. 2018, pp. 399–409.

[5] P. Gawłowicz and A. Zubow, “ns-3 meets OpenAI Gym: The Playground
for Machine Learning in Networking Research,” in ACM MSWiM 2019,
Miami Beach, FL: ACM, Nov. 2019.

[6] G. Brockman, V. Cheung, L. Petterson, J. Schneider, J. Schulman, J. Tang,
and W. Zaremba, “OpenAI Gym,” arXiv, cs.LG 1606.01540, Jun. 2016.

[7] C. Sommer, R. German, and F. Dressler, “Bidirectionally Coupled
Network and Road Traffic Simulation for Improved IVC Analysis,”
TMC, vol. 10, no. 1, pp. 3–15, Jan. 2011.

[8] I. Zamora, N. Gonzalez Lopez, V. Mayoral Vilches, and A. Hernan-
dez Cordero, “Extending the OpenAI Gym for robotics: a toolkit
for reinforcement learning using ROS and Gazebo,” arXiv, cs.RO
1608.05742, Feb. 2017.

[9] C. Choe, J. Choi, J. Ahn, D. Park, and S. Ahn, “Multiple Channel Access
using Deep Reinforcement Learning for Congested Vehicular Networks,”
in IEEE VTC 2020-Spring, Virtual Conference: IEEE, May 2020.

[10] A. Pressas, Z. Sheng, F. H. Ali, and D. Tian, “A Q-Learning Approach
With Collective Contention Estimation for Bandwidth-Efficient and Fair
Access Control in IEEE 802.11p Vehicular Networks,” TVT, vol. 68,
no. 9, pp. 9136–9150, Sep. 2019.

[11] A. Memedi, C. Tebruegge, J. Jahneke, and F. Dressler, “Impact of Vehicle
Type and Headlight Characteristics on Vehicular VLC Performance,” in
IEEE VNC 2018, Taipei, Taiwan: IEEE, Dec. 2018.

