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Abstract—Vehicular Micro Clouds (VMCs) are an emerging
development in the domain of vehicular networks posed to provide
local services to users without the need for external infrastructure.
This can significantly improve the user experience, in particular
due to the low latencies that such systems can achieve. Due to the
distributed nature of such a VMC, effective local coordination
is important while using minimal communication resources. To
this end, it is important to know, how long vehicles will be
participating in, and contributing to a VMC. In this work, we
investigate, how previous, heuristic-based approaches can be
improved by incorporating local, learning-based techniques. Our
analysis indicates a potential improvement of the accuracy of the
prediction, and resulted in an improved simulation environment
within which the learning-based approach can be deployed.

I. INTRODUCTION

Vehicular Micro Clouds (VMCs) are a tool for providing
services to users by leveraging local vehicles’ resources. An
effective implementation of a VMC uses local communication
methods, like Vehicular-to-Vehicle (V2V) communication for
exchanging both payload and control information [1], [2]. Due
to this localized coordination and vehicles’ inherent mobility,
managing a VMC includes incorporating joining vehicles,
as well as addressing vehicles’ departures. Otherwise, data
stored at vehicles departing the VMC can be lost. Only by
continuously shifting data from these vehicles to new members,
a consistent state can be maintained within the system [3].

To this end, a VMC protocol needs to accomplish this goal,
while using as little resources as possible, as the shared channel
is limiting the communication capacity. As such, the protocol
aims to determine a schedule of data transmissions by individual
vehicles that will result in maximized data lifetime with as
few transmissions as possible. An optimal schedule would take
into account various factors:

• current data availability within the system, i.e., each data
item’s amount of replication, including on which vehicles
they are stored;

• positions and planned trajectories/routes of the VMC’s
members; and

• the state of the communication channel.
Based on this global view, important data can be derived,

such as the likelihood of successful transmissions for individual
vehicles and the expected (remaining) time VMC-members
will remain part of the system. However, determining such
an optimal schedule is infeasible: The amount of factors that

influence the decision are large, the optimization goal is multi-
dimensional, and the VMC is a distributed system.

As an alternative, our current protocol attempts to circumvent
these complexities by avoiding costly explicit coordination
among vehicles, and computing choices for data transmissions
locally. To this end, each vehicle determines which data item to
disseminate for the VMC based on the dwell time heuristic, i.e.,
each vehicle’s remaining time within the VMC [3]. This design
decision is based on the observation that this dwell time is a
governing factor for deciding on optimal resource use: Selecting
transmitted data in a way that the vehicle within the VMC
that will be its member for the longest time will maximize the
contribution of this transmission to overall data life time, as it
reduces the amount of future required retransmissions for this
data item. While this approach is not optimal due to its focus
on a single metric, e.g., it does not take into consideration
whether other data items could be more urgent to transmit due
lower replication count, it can be computed locally, avoiding
expensive coordination.

This metric cannot be known exactly in advance since it
depends on when exactly a vehicle leaves the VMC. For this
reason, Pannu et al. [3] derived an heuristic based on the
distribution of the dwell times observed in a traffic simulation,
which was then sampled to retrieve realistic values for use in
the protocol. While already showing good performance, we
think it can be further improved using a machine learning
based approach. In this paper, we present a solution to replace
the stochastic approach in [3] with a more accurate machine
learning (ML)-based solution. Such a learning-based approach
can be much more flexible: Instead of relying on offline-data,
the route of the vehicle, current traffic patterns, and the time-of-
day can be taken into account. In addition, this approach can be
used as a proof-of-concept, how a VMC can supply aggregated
resources for ML algorithms that optimize the VMC itself, or
even other applications and services.

Our main contributions can be summarized as follows:

• we conducted a learnability analysis based on data sampled
from a VMC simulation to confirm the potential benefits
of the new approach, and

• we implement a VMC simulation that includes the adapted
protocol, incorporating online learning to show the overall
benefits on the protocol.



II. RELATED WORK

The concept of vehicular clouds has been proposed to
combine cloud computing with Vehicular Ad-Hoc Networks
(VANETs) [4]–[6]. Different architectures have been proposed
in the various aspects that are relevant to this new approach,
such as the provided services, or networking challenges [7].
The common denominator of the designs is the utilization of
vehicles’ resources for providing applications [8].

Mobile Edge Computing (MEC) has been proposed in
the scope of 5G to provide such services to the end users.
Various MEC applications haven been put forwarded, which
can be grouped into consumer-facing, third-party, and network
services [9]. Even a standardized architecture for MECs has
been put forward already by ETSI [10]. Similarly, originating
from fog computing [11], virtualized MEC aims to use
these local resources, at the networks edge, for providing
services [12]. Combined, both concepts can provide VMC of
different scales [13]. Comparably small, localized vehicular
clouds can provide localized services such as data collection [1],
[4], while larger, e.g., city-wide, clouds can be utilized for
connectivity to longer-distance services.

Often data is specific to certain locations, which makes data
replication and allocation an important problem to solve in
this domain. Similar problems have been investigated already,
e.g., to improve fault-tolerance in mobile ad hoc networks [14].
In VANETs, Lee et al. [15] exploited the vehicles’ mobility
to distribute data, aiding in its replication. Complementing
this, pre-fetching of data has been used to improve data
availability [16], [17].

Recently, advanced approaches have been proposed that are
based on a more detailed understanding of vehicle mobility.
In [18], the vehicle mobility is analyzed to determine a set of
vehicles for data storage, where the vehicles’ mobility has a
low cross-correlation, reducing the likelihood of a data-item
being lost. A more localized strategy has been chosen in [3],
aiming to determine the locally optimal candidate for data
storage based on the remaining membership time in a VMC.

Another recent trend is the use of learning-based to more
efficiently solve challenges in VANETs. Using machine learning
explicitly for vehicular clouds as been investigated by Liang
et al. [19]. A general framework for using ML in VANETs was
provided in [20]. The presented CarML approach describes a
distributed ML platform built on top of an vehicular clouds.
Generalizing to cooperative driving, Uhlemann [21] studied
opportunities and challenges of using ML in this field.

From a tooling perspective, Schettler et al. [22] developed
Veins-Gym, a framework based on the popular OpenAI Gyms
for enabling the use of ML solutions within the VANET
Veins.1 To showcase its potential, an agent was trained using
this tool to select the optimal communication method in a
heterogeneous communication application. A similar approach
was used previously for integrating data-driven approaches with
the Sumo [23] and ns-3 [24] simulators. These tools enable the
creation of standardized environments, which can serve as a

1https://veins.car2x.org/

benchmarks of common problems in their respective domains,
i.e., traffic management, and (vehicular) networking. Beyond
the perspective of simplifying development of flexible solutions,
this approach also aids in the reproducibility of reasearch as
the environments are well-defined and can be defined in a
self-contained manner.

Inspired by these works, we aim to improve dwell time
prediction using learning techniques to more accurately, flexibly,
and robustly predict these membership times to improve the
VMC’s performance.

III. VEHICULAR MICRO CLOUD: A PRIMER

The concept of MEC proposes utilizing resources at the
network’s edge, i.e., at, or close to, the base stations to allow
for reduced latency and improved flexibility reacting to users’
demands [25]. Utilizing these resources can reduce load on the
backbone network, reduce centralization and, thus, improve
resilience, and improve user experience. Similarly, the VMC
architecture explores exploiting resources present in vehicles,
as these, are and will be increasingly equipped with resources
for applications such as autonomous driving [1], [13]. Such
resources may be compute power, storage capabilities, and,
critically, connectivity. In this architecture, the network’s edge
is extended to the vehicles which provide service among
themselves, and other users. While parking vehicles can be
used, commonly they will be moving, which adds significant
complexity to managing and maintaining the VMC.

VMCs can be utilized in different situations where both a
demand exists, and a sufficient amount of resources is available.
Both these criteria correlate with the presence of vehicles,
which in a VMC act as both servers and clients. Conversely,
such situations may be busy intersections in city centers, or
vehicles moving at similar velocities on a highway. In any case,
as vehicles are moving individually, they need to be integrated
into, or removed from a VMC as they approach or leave the
vicinity without compromising its consistency.

This has important impacts on VMCs as storing data is
a relevant application not only for users, but also to for
internal coordination of the VMC itself. Therefore, a sufficient
replication of data items needs to be maintained. To this end,
protocols have been proposed which exploit knowledge about
vehicles’ movement, as this allows for inferring likelihoods of
vehicles leaving the VMC [3], [26]. Vehicles transmit data items
based on cooperative perception, which allows transmitters to
consider not only data relevant for vehicles’ current VMC, but
also future ones they will likely join considering their projected
route. To optimize transmissions utility for the local micro cloud
vehicles are preferred if they are expected to remain in the
current VMC for long, additionally taking into account channel
utilization to avoid react avoid degrading performance of the
shared channel.

IV. DWELL TIME ANALYSIS AS A LEARNING PROBLEM

A. What is dwell time?

Dwell time in the context of VMC is the time vehicles, i.e.,
the VMC’s constituents, spend in its area. As the vehicles’
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Figure 1. eCDFs of the dwell times for different intersections in Luxembourg.

mobility is a crucial reason for complexity in VANETs which
protocols have to account for. Assessing the degree of mobility
ahead of time can allow for performance improvements [3].

Predicting and communicating the exact trajectories of
vehicles, however, is a prohibitively complex and expensive
task. Alternatively, in the context of VMCs, the dwell time,
i.e., the time a vehicle spends in a VMC, can be used, as
it is a strong indicator of its mobility. Still, like the exact
trajectory, the dwell time is influenced by many factors, like
driver behavior (both of the vehicle itself, as well as other
vehicles’), traffic lights, the desired route, or even the weather.
For example, in most countries, vehicles will spend more
time on an intersection when doing a left turn, compared
to those doing a right turn, as they have to cross oncoming
traffic. Consequently, dwell times can vary drastically between
vehicles for intersections intersection. In Figure 1, we plot the
dwell times for different intersections in Luxembourg using the
LuST simulation scenario [27]. In particular, most intersections
exhibit a non-trivial distribution for the first 60–80 %, with a
long tail for the remaining vehicles.

Prediction of dwell times allows vehicles to utilize this
knowledge for optimizing VMC or other VANET protocols.
This is enabled by the fact that most of the aforementioned
factors can be exchanged between vehicles using Vehicle-to-X
(V2X) communication.

B. A Supervised Learning Model

To predict the vehicles’ dwell times we formulate a su-
pervised learning problem. The predictors will utilize only
information that is locally available to a vehicle participating
in a VMC. The following features are considered:

• Entry and exit location for the VMC, as a categorical
label for the corresponding road.2

• The vehicle’s current speed.
• The current time, in seconds of the day.
• The vehicle type as a categorical label.

2We assume the vehicle’s intent to be known, such that not only the location
of entry, but also that of exit from the VMC is known.

Table I
KEY PARAMETERS OF THE SETUP.

Artificial Neural Network (ANN)
Network structure 644

Numerical preprocessing Normalization
Categorical preprocessing One-hot encoding

Optimizer Adam[28]
Training epochs 100

Learning rate 0.01
Loss Mean absolute error

Random forest
Number of trees 300

Maximum tree depth 16
Minimum examples 5

We used two different learning models in this work, a
Random Forest [29] (labelled as Tree in the figures) , as well
as an ANN. The Random Forest was chosen for its resilience
to overfitting and strong ability for generalization. The ANN
was included, as its evaluation is generally efficient, and since
it is more suitable for federated learning, which we consider
employing for a continuation of this work. A detailed list of
parameters used for both models can be found in Table I. In
addition, the ANN uses a one-hot encoding for the categorical
inputs (location, VMC, and vehicle type identifiers), as well
as normalization for the numerical inputs.

During training, the validation dataset is used to evaluate
the models’ performance The test dataset, on the other hand, is
utilized to ensure the training data is not overfitted. This was
particularly important due to the comparatively large amount
of epochs which we used since the prediction performance still
improved even in later epochs of the training process. This is
likely a consequence of the relatively complex ANN which we
employed to avoid limiting on the model’s performance, The
training and model parameters were yielded by manual tuning,
which we chose for simplicity over a formal hyper parameter
optimization.

V. EVALUATION

A. Simulation Model

The simulations generating the ground truth used for this
study are based on SUMO 1.10.3 To investigate different types
of intersections, both a generated Manhattan grid, as well as
the Luxembourg scenario [27] was considered (see Figure 2).
As the latter is a very large scenario we limited the region
of interest to a set of intersections in the city center. For the
Manhattan grid, each intersection constitutes its own VMC.
This definition is not sensible for the Luxembourg scenario,
as there are minor intersections on small roads that don’t see
the traffic volume required to maintain a functioning VMC.
For this reason we limited the VMCs to large intersections
only, which mostly correlates to the presence of traffic lights.
In total, there are 13 and 49 VMCs in the Luxembourg and
the Manhattan scenario, respectively.

3https://www.eclipse.org/sumo/
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Figure 2. The scenarios considered. The utilized section of the Luxembourg
scenario (Figure 2a) is part of the city center and has high traffic levels. In
the artificial Manhattan grid (Figure 2b) intersections are managed by traffic
lights and connected by three lanes in each direction, with a distance of 200 m
between each other.

For both scenarios 1000 s (about 16 min) of vehicle traces
were recorded. For the Luxembourg scenario three different
times of day (08:00, 11:15, and 12:30) are considered to
account for different traffic patterns during the day, in particular
including the morning rush hour. In addition, each simulation
configuration was repeated eleven times, of which the first ten
runs were used for training and validation, while the last run
was used for testing them. In the Luxembourg simulation there
are 1416, 585, and 980 unique vehicles for the 8:00, 11:15,
and 12:30 time windows, respectively, while in the Manhattan
grid, there are 1006 vehicles.

We compute the ground truth in a post processing step.
Based on the traces of vehicles moving through the simulation
we can assign the VMC for each timestep, and derive the entry-
and exit points, as well as durations of each VMC visit.

B. Accuracy

As a first metric we look into the accuracy of the proposed
predictors, as well as the heuristic proposed in [3] and
the ground-truth. We define accuracy as the MAE between
predictions and the ground-truth. In particular we chose this
metric over alternatives such as the mean square root error
(MSRE) to avoid exaggerating the impact of outliers. Figure 3
shows the MAE for the Luxembourg scenario. As can be seen
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Figure 3. The accuracy of the different predictors for the Luxembourg, 8:00
scenario.
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Figure 4. The eCDF of the ground-truth compared to predictions by the best
fit Johnson SU distribution.

the Johnson SU has an average error of 25.9 s, which is on
the same scale as the ground-truth measurements.

When comparing the distribution of ground-truth data and
Johnson SU generated dwell times (see Figure 4) in the
Luxembourg scenario we observe, however, that the distribution
cannot capture the complexity of the ground truth data, resulting
in a skewed error. In particular, the heuristic underestimates
the amount of the typically short dwell times (i.e., smaller
than about 25 s, in the area to the first read line in the
figure). In addition, the ground truth distributions have a
significantly less pronounced tail (right of the second red
line), leading to an overestimation of large dwell time. Even
so, the parameters used for the Johnson SU distribution are
optimal, other parameterizations can reproduce some aspects
of the ground truth data better, albeit only when accepting an
even worse overall performance. Moreover, the Johnson SU

distribution generalizes badly for other scenarios, as is evident
when comparing to dwell times experienced in the Manhattan
scenario (see Figure 4), where typical values are larger, and
the distribution’s tail is larger.

In contrast, both the Tree and the ANN have a significantly
lower MAE of 6 s and 9.5 s respectively. This is because of
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Figure 6. The fraction of time during which the use of each predictor leads
to the correct candidate choice, i.e., choses the same candidate that is chosen
with access to the ground truth.

their better ability to adapt to the information that is available
to them, which allows them to detect the differences in dwell
time distributions for individual intersections. While the overall
error is quite low for these predictors, their predictions do not
match the distribution of the ground truth. Figure 5 shows
the distribution of each predictors’ values. It can be seen that
neither the heuristic, nor the learning-based approaches capture
the bi-modality of the observed data.

C. Error Distributions

While the overall error allows to better understand the
predictors overall performance, the error’s distributions are
relevant to determine how well predictions generalize to
unknown situations (see Figure 7). To this end, we look at
the relative instead of absolute errors, as this allows to better
understand the magnitude of the errors: A prediction that is
wrong by 10 s, has different implications when the ground truth
is 30 s compared to 150 s. In addition, we train the models on
only one scenario, Luxembourg, 8:00, to observe how well it
generalizes towards other times, and scenarios.

For the scenario the models are trained on the ANN predictor
appears to perform best, with the Tree-based predictor showing
a larger spread of errors depending on the intersection. However,
the Tree’s average error is still smaller (see Figure 3), as the
predictions are better for more frequented VMCs. In contrast,
the Johnson SU distribution’s relative error larger in almost all
cases most intersections, with most errors being of a similar
magnitude to the ground truth value (i.e., the relative error
being less than 1). Beyond this, a signifiant fraction of the
predictions are of by at least the ground truth value, greatly
overestimating the dwell time.

Beyond this, we observe that the ANN predictor fails to
generalize in all other scenarios: errors are not shown in the
plots as all errors exceed reasonable values. This is due to
the small range of time values (1000 s) in the training time
window, as the predictor overfitted to the time value. Moreover
the performance for both the Johnson SU heuristic, and the
Tree predictor in the Manhattan scenario is lacking. While the
relative errors are relatively small, this is merely due to the
typical dwell times being larger in this scenario (see Figure 4).
This an expected result for the heuristic, as it doesn’t operate
on the available data at all. For the Tree-based predictor we
attribute this to the categorical nature of the spatial data the
predictors can utilize, since they cannot infer intersection shape
merely based on road labels.

For different times of day in the same scenario (Luxembourg
11:15, and 12:30, respectively), however, we notice a similar
performance of both the Tree-based predictor and the heuristic.
In these cases, the input includes sufficient information (in con-
trast to the Manhattan scenario), and the prediction generalizes
well enough, with the mean relative error being less than 30 %
larger (0.54 compared to 0.65 and 0.69, respectively).

D. Discussion

While the results discussed previously indicate a significantly
reduced error compared to the heuristic, the change in protocol
efficiency based on the improved predictor may differ. For
example, it is easy to think of a prediction with an arbitrarily
high MAE (e.g., an multiple of the ground-truth), which still
results in the exact same candidate selection. Moreover, VMC
management protocol is not known to be optimal, so there may
exist a set of predictions yielding a selection that outperforms
the original algorithm.

To better understand the relation between the completely
data-centric metrics, such as the MAE, and the implications for
the protocol performance we compared the candidate selection
resulting from the different predictors. To this end, we simulated
the state of an arbitrary VMC for a dedicated simulation run,
including dwell time predictions by all approaches described
above. Based on this input we can determine which candidate
would be selected by the protocol when utilizing a given
predictor at all times during the simulation.

The results of this simulation indeed indicate a mismatch
between prediction performance and the resulting protocol
efficiency. Figure 6 shows the fraction of time during the
simulation during which the utilized predictor resulted in the
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same selection as having access to the ground-truth. Naturally,
this ratio is 1 for the ground-truth itself. The learning-based
predictors still result in the correct selection more than half of
the time, while this value drops down to 31 % when using the
heuristic. While the predictors’ rankings in this metric match
those observed previously, the relative distances have changed
significantly.

While this simulation is short of a full integration into a
VMC simulation and disregards certain aspects, such as the
imperfect knowledge of individual nodes due to the distributed
nature of the overall system, this comparison can serve as a
first data point for how the true relation behaves.

VI. CONCLUSION

In this paper, we investigated the feasibility of a learning-
based approach to dwell time prediction. We have conducted a
detailed analysis of the data available to a supervised learning
approach and outlined the potential improvements over current,
heuristic-based approaches. The regressors that were created
in the process of this study show significant improvements in
accuracy for predicting dwell times. In particular, the MAE
for predictions was reduced by more than 60 %.

Additionally, a detailed investigation demonstrated the poten-
tial for data-driven prediction to be more flexible when applied
to unknown scenarios, while also showing pitfalls that can
result in adverse performance. This underlines the importance
of feature engineering when utilizing ML solutions to exhaust
this potential.

Moreover, a high-level simulation of the protocol utilizing the
improved prediction was conducted. The results indicate that,
while the improvements also impact these metrics, as evident
in the 76 % increased time of correct candidate selection, this
relation to the error is very non-linear. This showcases the need
for integrated analysis of not only the learning algorithm in
isolation, but rather in combination with the intended system.
In future work we intend to continue work in this avenue,
further increasing the simulated level of detail, and with a
deeper integration between VMCs and ML solutions.
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