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Abstract— Travelling long distances with electric vehicles is
becoming more viable today. Nevertheless, recharging is still
necessary on long trips. As of now, the charging infrastructure
is not yet ubiquitous and can be very heterogeneous in terms
of charging power. Thus, appropriate route planning is needed,
which is still an open research problem. We present an approach
to optimize the total travel time for electric vehicles by selecting
charging stations and routes, respectively, between origin and
destinaton and the charging stations. We also take the possibility
into account that driving below the speed limit helps to save
energy. In particular, we use a multi-criterion shortest-path
search to find the best compromise between the fastest and
most economic route. In our approach, we use a non-linear
charging model that supports CC-CV and CP-CV charging
protocols used for lithium-ion batteries. To achieve acceptable
speed for the multi-criterion shortest-path search, we combine
contraction hierarchies with precomputation of shortest-path
trees. By exploiting the fact that most routes are queried
between the known locations of the charging stations, we
were able to accelerate these queries by about two orders of
magnitude. We compare our proposed adaptive charging and
routing strategy to other strategies often cited in the literature.
Our results clearly show that we are able to achieve a lower
total travel time.

I. INTRODUCTION

Battery capacities of electric vehicles are increasing and
these cars can now drive much longer distances. Nevertheless,
recharging on the trip is often still necessary. As of today,
most charging infrastructure is deployed in bigger cities,
with only few charging stations in the country side and on
motorways. Due to the heterogeneous charging infrastructure
in location and available charging power, the selection of the
charging stations has a big impact on the total travel time
of the trip. Thus, novel Intelligent Transportation Systems
(ITS) are needed to help planning long distance trips ahead
of time.

Route planning for electric vehicles is more challenging
than traditional route planning, especially when taking
recharging into account [1]–[3]. The time it takes to recharge
depends on the consumed energy while driving and the power
of the charging station. To optimize the total travel time, it
might be better to drive a more economic route to save energy
and, therefore, charging time, even if the pure driving time
is longer. Instead of taking a different route, the driver may
also save energy by driving below the speed limit, especially
on roads with a high speed limit [4]. It might even make
sense to take a detour to charge at a faster charging station.
The amount of energy to charge at each charging station
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also influences the total travel time. Particularly, as charging
stations do not charge with a constant power, but charge
considerably slower after the battery has reached about 80 %
[5].

The optimal route and driving speed depends on the power
of the selected charging stations and the amount of energy
charged at each station. Also, the selection of the charging
stations and the amount of energy to charge depend on the
selected route, so these aspects mutually influence each other.
We approach this problem using a multi-criterion shortest-
path search for the fastest and most economic routes. We then
compare different route alternatives and select the best one.
The problem is, that a multi-criterion shortest-path search is
a lot more computationally expensive than a normal (single-
criterion) shortest-path search [6].

In this paper, we present a way to accelerate these multi-
criterion shortest-path searches by exploiting the fact that
most queries are between the known locations of the charging
stations. On that basis, we can create an adaptive strategy that
optimizes charging station selection, routing and charging for
optimal total travel time.

Out main contributions can be summarized as follows:
• We discuss models for energy consumption (III) and

battery charging (IV);
• we present an approach to calculate trips for electric

vehicles with minimal total travel time including charge
stops (V); and

• we performed an experimental study to analyse the
effect of different parameters on the preprocessing and
query performance and compare our adaptive routing
and charging strategy against other strategies (VI).

II. RELATED WORK

The classic route planning is a shortest path problem, where
the best route is to be found from A to B based on some
criterion. Typically, the criterion to optimize for is either
driving distance (shortest route), travel time (fastest route),
energy consumption (economic route), or a combination
thereof. The best known solution is the Dijkstra’s algorithm
[7]. Depending on the size of the graph, the algorithm can
be too slow in practice, but several techniques have been
proposed to speed things up. For example, the A* algorithm
[8] uses a heuristic for a directed search. If the heuristic
is guaranteed not to overestimate the cost, A* will find the
optimal path.

Another technique are contraction hierarchies introduced
by Geisberger et. al. [9]. In a preprocessing step, shortcuts
are added to the graph that can later speed-up the path finding



query significantly. This is done by contracting the nodes
of the graph one by one. Each node that is contracted, is
effectively removed from the graph. If the node was part of
the shortest path between two of its neighbors, a direct edge
between these neighbors (shortcut) is added to ensure that
the shortest path is maintained. Whether this is the case can
be determined by doing a shortest path search with Dijkstra’s
algorithm from each neighbor to all other neighbors. Each
node is assigned a level based on the order of contraction.
A higher level indicates that the node was contracted later
and its shortcuts might have replaced shortcuts of lower level
nodes. To query the shortest path, a bidirectional search with
Dijkstra’s algorithm is done with both sides only traversing
to nodes that have a higher level until they meet. This way,
the number of nodes that need to be visited to find the
shortest path is reduced significantly. To further speed-up the
query, A* can be used instead of Dijkstra’s algorithm for the
bidirectional search [4].

Route planning for electric cars presents additional chal-
lenges. The constraints of the battery, especially the limited
range, have to be accounted for. This can also include
recuperation, i.e., charging the battery when braking or driving
down a slope. Finding the shortest path that also considers
the battery constraints is a Constrained Shortest Path (CSP)
problem [10]. To find the fastest route that is reachable
with a limited range, a multi-criterion shortest path search
can be performed using the criteria travel time and energy
consumption. This results in all Pareto optimal paths for these
criteria and we can choose the one with the best travel time
that still fits the energy constraint. To calculate all Pareto
optimal paths, a modified version of Dijkstra’s algorithm or A*
can be used; however, due to the increased complexity, this is
even more impractical than for a single criterion. Fortunately,
contractions hierarchies can also be used to speed-up multi
criterion path finding and to solve the CSP in acceptable time
[11].

The preprocessing step for contractions hierarchies for
multi-criterion path finding requires a lot of computational
effort for large country-sized maps. As more and more nodes
are contracted, the remaining uncontracted nodes get more and
more neighbors, which makes contracting the last few nodes
very expensive. It is possible to restrict the preprocessing
to only contract a subset of all nodes. Storandt contracted
only 99.5 % of the nodes to achieve reasonable preprocessing
times [12]. The remaining uncontracted graph is called a core
graph [13]. This can substantially save preprocessing time,
but also causes higher query times.

Apart from the path itself the driving speed can be
considered part of the optimization. Especially on freeways
with very high speed limits or no speed limit at all, e.g., on
the German Autobahn, it might make sense to drive well
below that speed limit, or the maximum speed of the vehicle,
to save energy. This complicates the preprocessing step of the
contractions hierarchies, because the speed affects the drive
time and energy consumption that are part of the decision
of whether a shortcut is required or not. A trivial way to
account for different driving speeds would be to preprocess

each desired speed separately. This seems impractical because
of the high amount of computational effort required for
preprocessing and storing all the preprocessed data. Hartmann
and Funke [14] presented a way to only preprocess once for
a range of speeds and then being able to query it for any
speed within that range.

Another approach by Baum et al. [4] introduces a way to
solve the Electric Vehicle Constrained Shortest Path (EVCSP)
problem, which they define as the path that respects battery
constraints and minimizes overall travel time. It provides
driving speed recommendations and does not need to calculate
all Pareto optimal paths. They speed up the queries with
a combination of contractions hierarchies and A* and can
achieve optimal results below one second for realistic battery
sizes within Europe. In many practical use cases, a fast query
time is more important than having exact results. By using a
heuristic, query times can be improved significantly at the
cost of some inaccuracy [4], [14].

Another problem is selecting the charging stations, when
recharging is necessary on a long trip. One solution is to
limit the number of recharging events and choosing the most
economic route that is not more than 10 % longer than the
shortest route [11]. Most publications assume a full recharge
at each charging station [6], [11], [15], only few also consider
partial charging [1], [3].

We go one step further and consider partial charging
using a realistic nonlinear charging model and also provide
driving speed recommendations. Building upon contraction
hierarchies, we introduce a way to significantly reduce the
number of times we have to explore the graph when making
queries to and from charging stations by using precomputed
shortest-path trees.

III. ENERGY MODEL

For electric vehicle routing, the energy consumption is
an important criterion. To estimate the energy consumption
on the road, we use a simplified energy model. The most
important factor in this model is the driving speed. In general,
the energy consumption increases with speed due to increased
friction and air drag. Speed independent energy consump-
tion results from, e.g., lights, radio, and air conditioning.
Additionally, at lower speeds, we assume that there is more
energy consumption due to acceleration and deceleration in
areas with many traffic lights and higher traffic density. We
assume that there is an optimal speed of vopt = 65 km/h.
At this speed, the vehicle has a base energy consumption
Bbase = 0.16 kWh/km. If we drive slower than that, the
energy consumption will increase. The optimal speed has been
chosen to be between inner city speeds which are typically
up to 50–60 km/h and speeds on rural roads and freeways
which are typically more than 70 km/h. The base energy
consumption was chosen as a generic energy consumption
of a typical electric vehicle.

We use the following simplified energy consumption model
to calculate the energy consumption:

B = Bbase +
(v − vopt)

2
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. (1)
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Fig. 1. Energy consumption B depending on driving speeds v

The model is plotted in Figure 1. It neglects some aspects
like differences in elevation or traffic density, however, it is
a sufficient to evaluate our approach.

IV. CHARGING MODEL

Many publications assume charging speed to be constant
[1], [3]. In reality, however, the charging speed of the typical
lithium-ion batteries decreases considerably after the battery’s
State of Charge (SOC) has reached about 80 % [5].

Lithium-ion batteries are typically charged with the CC-CV
(constant current - constant voltage) charging protocol [5],
[16], [17]. The charging consists of two phases, at first the
battery is charged with a constant current while the charge
voltage rises. When the charge voltage reaches 4.2 V, the
second phase begins and the charge voltage is kept constant
to prevent overcharging. At this point the battery has an SOC
of about 80 %. The charge current then steadily decreases
and when it falls below a threshold the charging is complete.
An alternative protocol is CP-CV (constant power - constant
voltage), where the power is kept constant in the first phase
instead of the current.

Our charging model supports both the CC-CV and the
CP-CV charging protocols. For simplification, we assume
that the phases switch exactly at 80 % and that the voltage
increase and current decrease is linear to the SOC [5]. In
our model, pmax is the maximum charging power of the
charging station. soc is the SOC of the battery, and can be
between 0 and 1. At a state of charge of soc = 0%, the
voltage is defined as ulow = 3.8V. The maximum voltage
for soc = 80–100 % is uhigh = 4.2V. The maximum current
is calculated as

imax =
pmax

uhigh
. (2)

For the CC-CV charging protocol, we assume a constant
current and rising voltage until 80 % and after that a constant
voltage and declining current linear to the SOC:

i(soc) =

{
imax for soc < 0.8
1−soc
0.2 · imax for soc ≥ 0.8

, (3)
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Fig. 2. Comparison of CC-CV and CP-CV charging protocols with
measurement data.

u(soc) =

{
ulow + soc

0.8 (uhigh − ulow) for soc < 0.8

uhigh for soc ≥ 0.8
,

(4)
pcc-cv(soc) = u(soc) · i(soc) . (5)

For the CP-CV charging protocol, we can assume constant
power until soc = 80% as

pcp-cv(soc) =

{
pmax for soc < 0.8

u(soc) · i(soc) for soc ≥ 0.8
. (6)

The power is recalculated after each second of charging
and terminates when soc = 99%. We compared our model to
measurement data from charging an electric vehicle [18]. The
source of the data did not specify the charging protocol, but
as can be seen in Figure 2 with CP-CV, our model matches
the measured charging time within ±2 %, while with the CC-
CV protocol it has a relative error of more than 10 % at
the beginning. Therefore, the vehicle was apparently charged
with the CP-CV charging protocol.



V. CHARGING STATION ROUTING

In our charging station routing algorithm, we try to find a
route for an electric vehicle by minimizing the total trip time
including stops at charging stations. We define the total trip
time as the sum of drive time and charge time. The charge
time at the charging stations depends on the charge power and
the amount of energy that needs to be charged. Therefore, it
might be faster overall to choose an economical route over a
fast route, if it saves time at the charging station. Apart from
the route itself, the driving speed also has a huge influence
on the time and energy consumption. Especially on freeways,
e.g., the German Autobahn with very high speed limits or
no speed limit at all, it might make sense to drive below the
speed limit, or the maximum speed of the vehicle, to save
energy.

Taking all this into account, our approach consists of two
parts. The first part is a multi-criterion shortest path search,
that is also able to query routes with different maximum
driving speeds. The result is a set of Pareto-optimal routes
from fastest to most energy efficient with a maximum driving
speed suggestion for each.

The second part is the routing and charging strategy that
uses the multi-criterion shortest path search to find routes
between the charging stations and the origin and destination.
With this, it can select the optimal charging stations for
recharging and the routes between them to minimize the total
travel time.

A. Multi-Criterion Shortest Path Finding

Multi-criterion shortest path finding can be done with
a modified version of Dijkstra’s algorithm. To accelerate
query times, we use contractions hierarchies. The contractions
hierarchies are generated for a maximum driving speed
and a query will only result in the Pareto set of routes
with this maximum speed. To also generate results for
another maximum speed, we can recalculate the edge weights
including shortcuts for the new maximum speed before the
query. This only works for maximum speeds below the
maximum speed that the contraction hierarchy was generated
for. We assume that higher maximum speeds will mostly lead
to additional routes and, therefore, to additional shortcuts
in the contraction hierarchy compared to lower maximum
speeds. This is not always the case as we will discuss in
Section VI. To get a combined result from a Pareto set of
routes together with speed suggestions, we have to iteratively
query different maximum speeds and combine them into one
Pareto set.

The contraction hierarchies greatly improve the query
times, but for long distances of >200 km, on a complex
graph the query times might still be in the order of seconds
or even minutes. Considering that we might have to make
many queries between charging stations, this could lead to
unacceptable overall computation times.

B. Shortest-Path Tree Precomputing

Much of the computation time of queries is spend on
exploring the graph and creating Pareto sets of labels at

each visited node. We can take advantage of the fact that all
queries are between the charging stations and the origin
and destination. In an additional preprocessing step, we
explore the graph from each charging station and thereby
create shortest-path trees. We can limit the exploration to
an energy consumption equal to the battery capacity of the
vehicle. Because we use contraction hierarchies, the number of
explored nodes is not excessively high and we can precompute
the shortest-path trees for all charging stations. Due to the
fact that the street network is a directed graph, we have
to precompute two shortest-path trees for each charging
station: One exploring the graph forwards, and one exploring
backwards.

For each query, we take the forward shortest-path tree of
the origin node and the backward shortest-path tree of the
destination node. We find the nodes that are covered by both
trees, i.e., nodes that have Pareto sets of labels in both trees.
For each of these nodes, we create the sumset of both Pareto
sets and remove all non-Pareto optimal elements. The result
is the set of costs of the Pareto optimal shortest-paths from
origin to destination that contain this node. By creating the
Pareto set of all these sumsets, we get the set of costs of all
Pareto optimal shortest-paths.

An example of such a query with shortest-path trees for
two criteria is depicted in Figure 3. To be able to reconstruct
the actual paths, each label contains the predecessor node
additionally to the cost. When creating the sumsets for the
common nodes, the predecessor nodes from both labels have
to be stored. The combined Pareto set of all sumsets then also
stores the node of the sumset. Each element of the resulting
set then contains sufficient information to reconstruct its path.

For the queries in our charging station routing algorithm,
we first have to create the shortest-path trees for the origin
and destination. All queries can then be done without having
to explore the graph again. To save time, we do not have to
reconstruct all paths; we can select a path based on the costs
and only reconstruct the selected one.

C. Routing and Charging Strategy

Our approach aims at selecting the charging stations and
finding a route between the charging stations as well as a
suggested maximum driving speed Vmax that minimizes the
total travel time. To select the charging stations, we create a
graph that connects the start, the destination, and all charging
stations. On this graph, we query the shortest path from
start to destination with an A* search. To calculate the edge
weights of the graph, we query the Pareto optimal set of
routes with the multi-criterion shortest path search and select
the route that has the smallest combined charge and drive
time.

The charge time depends on the charge amount and the
power of the charging station according to the charging model
(cf. Section IV). Many publications assume a full charge at
every charge stop. We propose an adaptive charging strategy
where the charge amount depends on the charge power of
the current charging station and the following one. We, of
course, always charge at least the energy required to be able
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Fig. 3. Example query with precomputed shortest-path trees

to reach the next charging station. If the current charging
station has a higher charge power than the following one, we
continue to charge until the charging power drops below the
maximum charge power of the next charging station.

When selecting the route from the Pareto set that minimizes
the charge time and drive time, we also take the current charge
time and the charge time at the following charging station
into account. Because we cannot know the charge amount
at the following charging station yet, we simply assume a
full charge. By including the charge time at the following
station, we make sure that the route is selected based on how
much time it will take to charge the energy required for this
route. We propagate the SOC of the vehicles battery while
exploring the graph.

As the calculation of all Pareto optimal routes is computa-
tionally expensive, even with shortest-path tree precomputing,
we have to minimize the number of queries. The calculation
of single-criteria shortest paths is multple orders of magnitude
faster. Thus, when we explore a node, we set the edge weight
to its neighbors only to an estimated value using the fastest

and most energy efficient cost that are calculated by two
single-criteria shortest path searches as a heuristic. Before
the edge is actually travelled, the heuristic edge weights are
replaced with the accurate values calculated with a multi-
criteria shortest path search. When replacing the edge weight,
the edge may no longer be at the top of the open list. In this
case, we have to repeat the process until the edge at the top of
the open list has an accurate (non-heuristic) edge weight. To
further reduce the number of unnecessarily explored nodes,
instead of using the linear distance as a heuristic value for
A*, we query the single criteria shortest path.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

All experiments were run on a quad-core Intel Xeon E3-
1275 CPU at 3.4 GHz and 32 GB of memory. We implemented
our algorithm in C and compiled with GCC 7.3.0 with the
highest optimization setting (-O3).

For our experiments, we extracted a road network from
OpenStreetMap.1 Because the preprocessing of contraction
hierarchies for multi criterion routing requires a lot of
computational effort, we ran most experiments on the road
network of the German state North-Rhine Westphalia (NRW)
with a total of 4,417,600 nodes. Many of these nodes only
have decorative purposes to model the shape of the road, only
786,935 nodes have more than two edges. Some experiments
were also conducted on the road network of entire Germany
(DE) with 26,130,892 nodes of which 4,295,175 have more
than two edges.

B. Core Graph

Contracting all nodes of a large country-sized map to
generate contraction hierarchies for multi criterion routing can
be quite time consuming. To achieve reasonable preprocessing
time, we can stop contracting nodes after a certain amount
has been reached, leaving an uncontracted core graph. This
can save preprocessing time, but also causes higher query
times.

We first evaluated how the amount of contracted nodes
affects the preprocessing and query times. Thus, we generated
400 random origin-destination (OD) pairs with distances of 50,
100, 150 and 200 km. As can be seen in Figure 4, contracting
all nodes may take several hours, while contracting 99.90 %
takes less than five minutes. However, the average query
time is then several times higher. Contracting 99.97 % of the
nodes seems to be a good compromise for practical purposes.
Preprocessing to 99.98 % takes significantly more time with
little benefit for the average query time.

C. Variable Speed

The preprocessing time also depends on the maximum
driving speed Vmax, which the contraction hierarchy is build
for. A higher Vmax makes the preprocessing more expensive,

1Downloaded from download.geofabrik.de on 2018-04-23. All OSM ways
with "highway" tag except for path, steps, elevator, corridor, platform,
bridleway, footway, cycleway, pedestrian, proposed, construction, raceway,
emergency_bay, rest_area or track.
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TABLE I
PREPROCESSING TIMES FOR DIFFERENT Vmax VALUES

Vmax Visited nodes Preprocessing time Shortcuts

90 18,347,029,512 01:28:00 6,271,106
110 59,798,528,416 06:31:24 6,385,736
130 129,126,913,941 16:36:56 6,532,007

as it will usually increase the number of possible Pareto paths
and therefore the number of shortcuts. In Table I, we compare
the preprocessing times for different Vmax values. All times
are for 100 % contracted nodes.

It can be seen that it is infeasible to preprocess contraction
hierarchies for every possible Vmax value. As outlined
in Section V-A, we can query routes using a contraction
hierarchy that was preprocessed for a higher Vmax. We
evaluated how this affects the quality of the results by
comparing the routes queried from a contraction hierarchy
with a higher Vmax with known correct results. In Table II,
we show that we got correct results for at least about 80 % of
all queries. When comparing the Pareto routes of the incorrect
results with the known correct results, we found that at least
95 % of the routes were correct.

D. Heuristics

Contraction Hierarchies can offer a substantial performance
improvement, but the query times can still be too high for
some practical use cases. The query time correlates to the
number of Pareto optimal routes. For the distance of about

TABLE II
RESULT QUALITY WHEN CALCULATING RESULTS WITH A CONTRACTION

HIERARCHY (CH) WITH DIFFERENT Vmax VALUE

CH Vmax Query Vmax Exact result Correct routes

130 110 86.25 98.74
130 90 79.25 95.68
110 90 80.50 97.47

TABLE III
AVERAGE NUMBER OF ROUTES AND QUERY TIMES FOR DIFFERENT

HEURISTIC VALUES AND OD-PAIR DISTANCES

ε 50 km 100 km 150 km 200 km

0.0 130 2.9 s 286 10.7 s 708 34.4 s 1157 80.4 s
0.1 43 1.4 s 54 4.6 s 66 10.2 s 67 16.7 s
0.5 19 0.8 s 21 2.4 s 23 4.8 s 21 7.3 s
1.0 13 0.6 s 15 1.7 s 15 3.3 s 14 4.8 s
5.0 6 0.3 s 7 0.7 s 7 1.2 s 6 1.5 s

10.0 4 0.2 s 5 0.5 s 5 0.8 s 4 0.9 s

200 km in NRW, most queries in our random test set result
in more than 1000 routes, many of which are very similar to
each other. In practical use cases, knowing all optimal routes
is often not necessary. We can eliminate very similar routes
by setting up a constraint that each route must at least have
an improvement of ε over the other routes.

In Table III, we can see that the value of ε has a big
influence on the number of routes and the query time. A
value of ε = 0.1% means that each route must have at least
0.1 % less energy consumption than the other routes in the
Pareto set.

E. Shortest-Path Tree Precomputing

As discussed, by precomputing the shortest-path trees of all
charging stations, we can potentially save a lot of query time
in our charging station routing algorithm. The shortest-path
trees exploration is limited to an energy consumption based on
the battery size. The battery size therefore has a big influence
in the precomputing time and required disk space for all
shortest-path trees. As can be seen from our results presented
in Table IV for the NRW map (781 charging stations), the
precomputation takes 30 min for a 20 kWh battery and results
in a size of 2.5 GB. Using a 40 kWh battery, the process takes
more than 10 h and nearly triples the size. The step from
40 kWh to 60 kWh batteries is less dramatic, because the
NRW map is so small, that it limits the exploration by the
size of the map itself. The map of Germany (4552 charging
stations) is bigger and is therefore not limiting the exploration
as much. The precomputation for a 40 kWh battery took 5 d
and 200 GB of disk space. We did not precompute for a
60 kWh battery, because it takes an impractical amount of
time and disk space.

Using a heuristic of ε = 1.0%, we could reduce the
precomputing time for 40 kWh batteries to about 3 h and
9 GB of disk space. We were also able to precompute for
60 kWh batteries in 6.5 h with 18 GB of disk space.

To compare the query times between precomputed shortest-
path trees and plain contraction hierarchies, we queried routes
for OD-pairs with different distances, where both origin
and destination are charging stations. We used precomputed
shortest-path trees for 60 kWh batteries, with and without
a heuristic value of ε = 1.0%. For the map of Germany
without heuristics, we used 40 kWh, because we could not
precompute for larger values. For that reason, we also did
not query 400 km distances, because they are typically not
doable with a 40 kWh battery.



TABLE IV
SHORTEST-PATH TREE PRECOMPUTING TIMES AND SIZES

Map Battery ε Time Size Size per CS

NRW

20 kWh 0.0 % 00:30:39 2.5 GB 3.2 MB
20 kWh 1.0 % 00:20:08 0.3 GB 0.4 MB
40 kWh 0.0 % 10:11:11 7.0 GB 8.8 MB
40 kWh 1.0 % 00:30:46 0.5 GB 0.7 MB
60 kWh 0.0 % 11:47:51 7.9 GB 9.8 MB
60 kWh 1.0 % 00:31:53 0.6 GB 0.7 MB

DE

20 kWh 0.0 % 08:09:18 20.0 GB 4.0 MB
20 kWh 1.0 % 00:45:07 2.2 GB 0.5 MB
40 kWh 0.0 % 116:57:34 200.0 GB 45.0 MB
40 kWh 1.0 % 03:07:42 8.7 GB 1.9 MB
60 kWh 0.0 % not feasible
60 kWh 1.0 % 06:30:59 17.9 GB 4.0 MB

TABLE V
QUERY TIMES OF PRECOMPUTED SHORTEST-PATH TREES COMPARED

WITH PLAIN CONTRACTION HIERARCHIES (CH); R: RECONSTRUCTING

ALL PATHS, H: PRECOMPUTATION WITH A HEURISTIC

Map Type Average query times

NRW

50 km 100 km 150 km 200 km
Plain CH 2.861 s 10.716 s 34.420 s 80.354 s
SPT 0.051 s 0.072 s 0.086 s 0.114 s
SPT (R) 0.098 s 0.225 s 0.536 s 1.352 s
SPT (H) 0.007 s 0.007 s 0.006 s 0.005 s
SPT (R, H) 0.015 s 0.025 s 0.037 s 0.056 s

DE

100 km 200 km 300 km 400 km
Plain CH 6.097 s 60.671 s 290.586 s 961.239 s
SPT 0.450 s 0.492 s 0.693 s -
SPT (R) 0.486 s 1.665 s 4.286 s -
SPT (H) 0.037 s 0.039 s 0.033 s 0.030 s
SPT (R, H) 0.054 s 0.125 s 0.219 s 0.291 s

Reconstructing all paths of the resulting Pareto set can
take a significant amount of time and is not necessary for
our algorithm. To compare the query time difference, we
have tested it with and without reconstructing all paths. As
can be seen in Table V, the query times for precomputed
shortest-path trees are about two orders of magnitude smaller
than for plain contraction hierarchies. Reconstructing all paths
increases the query time especially for long distances. Using
precomputed shortest-path trees with a heuristic, the query
time is an additional order of magnitude smaller, at the cost
of some accuracy.

F. Charging Station Routing

For all experiments involving charging station routing,
we use the whole map of Germany. We have generated a
contraction hierarchy with 99.97 % contracted nodes. The
preprocessing took 8 h and 16 min. We generated 30 random
OD-pairs with distances of 300, 400 and 500 km. We consider
all charging stations from the list provided by German
Bundesnetzagentur.2 It contains 4638 charging stations all

2https://www.bundesnetzagentur.de/DE/
Sachgebiete/ElektrizitaetundGas/Unternehmen_
Institutionen/HandelundVertrieb/Ladesaeulenkarte/
Ladesaeulenkarte_node.html (visited on 07/09/2018).
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Fig. 5. Comparison of adaptive charging and routing strategy to other
strategies.

over Germany with charging powers ranging from 3.7–
350 kW. For the tests, we assume an electric vehicle with a
40 kWh battery.

We compared our adaptive routing and charging strategy
(cf. Section V-C) to strategies often found in the literature. We
further compared the charging strategy to always completely
charging the battery at every stop, always charging to 80 %
and charging just enough to get to the next stop. The routing
strategies compared were always choosing the most energy
efficient route and always choosing the fastest route that is
still reachable with the battery capacity.

The results are plotted in Figure 5. As can be seen, our
adaptive charging and routing strategy outperforms all other
strategies. The charging strategy to always make a full charge
at each stop (ALWAYSFULL), is about 11 % slower. It leads



to a lot more charge time because the charge power drops
significantly after 80 % and it is probably charged more
than necessary to get to the destination. The drive time also
increases slightly, because it is now more beneficial for the
routing algorithm to drive detours to faster charging stations.
The same effect can be seen for the strategy to always charge
to 80 % (ALWAYS80), albeit to a lesser extent.

The difference to only charging the minimum amount to
get to the next charging station (ALWAYSMIN), is negligibly
small. However, our adaptive algorithm is advantageous by
utilizing charge power differences, i.e., charging more at
the first fast charging station to save time at the second
slower charging station. Apparently, in the used setting, these
differences are rather small as many free fast charging stations
are available.

The routing strategy to always choose the most economic
route (ALWAYSECO) has the biggest disadvantage of about
26 % more total travel time compared to our adaptive routing
strategy. Economic routes often take slower roads and,
therefore, have a significantly longer drive times. Even though
a lot of energy and, therefore, charge time could be saved,
this does not make-up the lost time on the road. Always
choosing the fastest route (ALWAYSFASTEST) is not much
worse compared to our adaptive routing strategy. Apparently,
enough free fast charging stations exist, to make this a valid
approach. Again, when current availability is considered, this
would change substantially.

VII. CONCLUSION

We presented an approach to optimize the total travel
time for electric vehicles by selecting charging stations and
the routes between the charging stations and the origin
and destination. The greatest challenge was to accelerate
the multi-criterion shortest-path search to be usable on
large country-sized maps. We achieved this by combining
contraction hierarchies with precomputing shortest-path trees.
By exploiting the fact that most routes are queried between
the known locations of the charging stations, we were able
to accelerate these queries by about two orders of magnitude.
For country sized maps, the query times are still too high for
interactive applications. We compared our adaptive charging
and routing strategies to several others often found in literature.
Our results clearly show that our adaptive charging strategy
has many advantages compared to the other solutions.

Future work includes developing concepts to improve the
query times for charging station routing. We also want to take
waiting times at the charging stations into account. Aside
from selecting charging stations with less expected waiting
time, we could select a slower, more energy efficient route
when we know that we have to wait at the charging station
anyway, or take a faster route if it means arriving before
others, comparing selfish and cooperative strategies.
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