
Robust and Efficient Software Management in
Sensor Networks

Wolfgang Schröder-Preikschat, Rüdiger Kapitza, Jürgen Kleinöder, Meik Felser, Katja Karmeier,
Thomas Halva Labella, and Falko Dressler

Dept. of Computer Sciences, University of Erlangen-Nuremberg, Germany
Email: {wosch,kapitza,kleinoeder,felser,karmeier,labella,dressler}@informatik.uni-erlangen.de

Abstract— Software deployment and updating of deployed code
is a critical topic in the area of wireless sensor networks (WSN).
Reasons are unreliable network connectivity, resource limitations
of devices, and energy restrictions in general. Consequently, soft-
ware deployment has to be performed with great care otherwise
resources might be wasted or nodes become unavailable due to
failed updates. The overall objective for software management
in sensor networks is to enable a robust and efficient way to
build deployable software images that take into account allthe
needs from application requirements to node-specific resource
restrictions. In this article, we outline the current state-of-the-
art for software management in WSN and (network-based)
sensor network (re-)programming. We provide insights intothree
different approaches enabling a more comprehensive manage-
ment of WSN while challenging the robustness and efficiency
of software configurations and reprogramming. Additionally, we
outline research challenges in the area of software management
and sensor network operation.

I. I NTRODUCTION

With the proliferation of wireless sensor networks
(WSN) [1], [2] and sensor/actuator networks (SANET) [3],
new application domains appear that make efficient use of such
networks, for example in the field of habitat monitoring [4]
and precision agriculture [5]. Many challenges, such as energy
efficiency, security, and self-organization, have been identified
in this area [3], [6] including also software management in
WSN [7]. An overview to software management techniques in
WSN is given by Han and co-authors [8]. They depict a model
consisting of three fundamental components: the execution
environment at the sensor node, the software distribution
protocol in the network, and the optimization of transmitted
updates. We concentrate on software management techniques
for WSN that are dynamic in terms of availability, mobility,
and current application demands. Due to the heterogeneity
of employed hardware platforms and the low resources in
terms of processing power, available memory, and networking
capacities (sensor nodes are usually able to run a single task
only) [9], new approaches for efficient software engineering
are needed. An overview to the issues that are specific for
sensor nodes is provided by Culler et al. [10]. In this work,
the necessity for network-oriented software architectures is
described. Questions such as how to configure, reconfigure,
program, and reprogram networked embedded systems such as
sensor nodes are discussed by Handziski and co-workers [11].
Software management for networked embedded systems such

as sensor networks has been intensively studied in the last few
years [12], [13].

In general, two approaches for software updates in sensor
networks have been discussed in the literature: multihop
network-based node reprogramming and robot-assisted soft-
ware management. Work on the first technique was done
mainly based on network-centric reprogramming. For exam-
ple, the Deluge system [14] was developed for reprogramming
Mica2 motes. Deluge propagates software update over the
ad hoc network and can switch between several images to
run on the sensor nodes. An role assignment system was
developed at the ETH Zurich [15] to switch between multiple
tasks depending on the current requirements. The flexible
exchange of software components in TinyOS was investigated
at the University of Stuttgart. The developed toolkit Flex-
Cup [16] introduces software engineering methods for sensor
node programming. Incremental network (re-)programming
was studied by Jeong and Culler [17]. The primary focus of
this work was on the delivery of software images over an ad
hoc network.

The presented previous work mainly addressed the
(re-)programming of homogeneous networks regarding soft-
ware but—more important—also hardware aspects and con-
centrates on some aspects of the deployment and update
process of sensor software. We believe that future sensor
networks will face diverse application demands that require
the deployment of heterogeneous sensor nodes. Such require-
ments occur for example in an habitat monitoring scenario
where animals wear very small sensors that collected data
that is forwarded to bigger infrastructure sensors formingthe
real network. Besides application dictated requirements,the
use of heterogeneous hardware offers flexibility to reduce
costs, enlarge the lifetime, and in general provides extended
opportunities. Lastly we believe that heterogeneity mightbe
a by-product of durable sensor networks where nodes are
supplemented and failed nodes are replaced. Of course one
can assume that the same type of sensor nodes might be still
available but as the development constantly moves on this
would waste benefits of the next generation sensors that might
be smaller, cheaper, and have a longer life-time.

Therefore, this paper advocates for a more comprehensive
development and management process of sensor software that
addresses software and hardware heterogeneity at the levelof
application, middleware and operating system. This includes



the introduction of software engineering and management
technologies such as feature models and product lines that
help to handle application but also hardware diversity. Starting
from this point it is possible to determine very fine grained
software changes and use this as a basis for code generation
and code deployment. As software in general evolves over time
due to ongoing development its code footprint usually rises.
Even so the use of the software management technologies
alleviates this process, there might be constellations where
the software that has to be deployed will not fit on some
or all of the targeted sensors. In these cases we propose an
assistance concept that determines off-line that the software
exceeds the available storage. So instead to simply deploy
new functionality it is decided which parts of the software
can be deployed on different nodes that either provide the code
on demand or simply provide the demanded functionality as
service.

The main contributions of this paper can be summarized
as follows. Besides a motivation for software and hardware
heterogeneity in future sensor networks, we discuss three
approaches that enable a more comprehensive management
of WSN challenging the robustness and efficiency of software
configurations and reprogramming. In particular, we discuss
feature models, profile-based reconfiguration, and assistance
operations. These specific methodologies will enable WSN to
become more reliable for the application even if single systems
might fail or do not provide sufficient resources. Additionally,
we provide a list of future research challenges in the area of
software management and sensor network operation.

The remainder of this paper is structured as follows. Sec-
tion II gives a brief introduction to feature models and its
applicability to handle software and hardware heterogeneity
of sensor software. Section III outlines how software changes
lead to find grained code generation and deployment. Section
IV discusses concepts to handle cases when software exceeds
the storage of a target node. Section V poses open question
regarding software management of sensor networks. Finally,
Section VI concludes the paper.

II. FEATURE MODELS AND FEATURE TREES

Feature modeling is understood as “the activity of modeling
the common and the variable properties of concepts and their
interdependencies and organizing them into a coherent model
referred to as afeature model.” [18] Goal is to come up with
directives for and a first structure of a design of a system
that meets the requirements and constraints specified by the
features.

Common is a graphical representation of the feature model
in terms of a feature diagram. The diagram is of tree-like
structure (see figure 1), with the nodes referring to specific
feature categories. Four feature categories are defined:manda-
tory, optional, alternative, andor. A feature diagram describes
the options and constraints that shall exist within a system. It
models the variable and fixed properties of a family of software
and hardware assets which implement that system.

C

f1

f3 f4

f2

f5 f6

Fig. 1. Feature diagram:f1 andf2 are or-features of conceptC, f3 andf4

are alternative features off1, andf2 implies a mandatory featuref5 and an
optional featuref6.

The diagram shown in figure 1 describes a specific concept
C, e.g. the process management subsystem of an operating
system. If conceptC gets to be included in the final system
configuration, then any non-empty subset of features from the
set{f1, f2} of or-features is also included. Thefeature setwith
respect toC at this level of abstraction is{f1, f2, {f1, f2}}.
If feature f1 is present, one feature from the set{f3, f4} of
alternative features must be included. Thus, the feature set
of f1 consists of eitherf3 or f4. If feature f2 is selected,
mandatory featuref5 must and optional featuref6 may be
included in the final configuration.

This technique allows for a compact and precise speci-
fication of interdependencies of functional as well as non-
functional properties of fairly complex systems. Basing ona
tool which aids the construction process of a feature model
and supports the mapping of features to implementations,
automated generation of highly specialized software systems
becomes possible [19].

Prerequisite for robust and efficient maintenance of sensor-
node software is a methodology that allows one to keeping
track about the various software “snippets” on the various
nodes. At the very beginning, a (more or less) static description
of the software and/or node variants is required in order to
identify which of the software components goes to which
nodes. Such a description is manifested in the structure of
the feature diagram for a given application scenario.

Once setup properly, the feature diagram lists software
components (a) common to every node of the sensor network,
(b) common to a subset of nodes, or (c) destined for a very
specific node, only. That is to say, all the common and variable
(software) properties of a sensor network are summarized by
means of a single, concise, and unambiguous description.
Based on this initial knowledge about the (options of the)
logical distribution of the software components across the
sensor network, the software deployment process is directed
accordingly: a set of explicitly or implicitly selected features
refers to those software components that need to be uploaded
to the various sensor nodes. Note that this approach gives



structure only to the decision process onwhat to upload, and
not onhow to proceed with all the subsequent communication
activities in an efficient way.

III. PROFILE-MATCHING FOR CODE GENERATION

The basic ideas of profile-based reconfiguration are sum-
marized in the following. We rely on a (set of) server system
for the decision-making process, code generation, and node
reprogramming. A global goal is assumed to describe the
application requirements. Such a goal could state the need
to have specific applications available in different parts of the
sensor network. This example refers to the often discussed
coverage problem in sensor networks [20], [21]. Often, mobile
systems are employed to handle this issue [22], [23]. Com-
pared to these approaches, we support the need of multiple
concurrent applications at the same time and include the issue
of reprogramming. Nevertheless, we do not discuss details of
the decision process that is adequately investigated by other
groups [20], [24], [25].

Our developed profiling (or profile-matching) concept con-
sists of two parts:

1) A definition of profiles that characterize a software
service, e.g. software modules, and such profiles that
characterize environments, i.e. platforms on which ser-
vices can be offered, e.g. sensor nodes.

2) A definition of profile-matching rules defining how these
platforms can be reconfigured with these services. The
word reconfiguration stands here in general for any new
software configuration (in the sense of loading new
software).

In the following, we use the following notations:NP for
node profile,AP for application profile,MP for module profile,
and xP* means at least one profile of typex. The primary
goal of profile matching is to create all possible combinations
of executable source code. Again, we use a straightforward
terminology for the definitions.(NP, AP*, MP*) means that on
the node described byNP the applications described byAP*
with the modules described byMP* can be installed. Each
module or application can be realized using different source
files.

For code generation and reprogramming, we rely on an
external server responsible for control and management. In
our example, we focus on code management for Mica2 motes
running TinyOS1. The server system performs the dynamic
source code selection and generation. Figure 2 shows the
activity diagram for creating a code binary. One static input
corresponds to the code templates for the generation of the
wiring, the node profiles, and the configuration, another to the
source code of the modules (nesC files). The dynamic inputs
are the current configuration and the matching profiles. The
goal is to create a binary that runs on the node described by
NP and contains all applications and modules described by
AP* andMP*.

1seehttp://www.tinyos.net/

make binary

compile

application

profiles

node

profile

matching profiles : 
(NP, AP*, MP*)

<<centralBuffer>>

wiring, node profile,

configured modules : .nc

node address

compose

mapping :
(node address, binary)

binary

XY nesC - fileXY profile

generate wiring, node
profile and configurable

modules

<<centralBuffer>>

source code : .nc

modul

profiles

select
src

<<centralBuffer>>

code templates
split

M

T

M TC

C

configuration

<<centralBuffer>>

source code : .nc

[needed]

Fig. 2. Activity diagram for code generation.

<split> extracts the information of the profiles and
provides it for further processing.<select src> selects
the source code, which is described by theAPs and MPs
(please remark the unique mapping) and puts it into a
temporary buffer.<generate wiring, node profile
and configurable modules> generates the dynamic
nesC files depending on the current configuration and the
different combinations ofAPs andMPs, and puts them into
another temporary puffer. Code templates can be used to
provide generic functionalities or static segments that are node-
specific and must be prepared appropriately before compiling.
<compile> compiles all the nesC files.<compose> maps
the resulting binary with the corresponding node address.

An example is depicted in figure 3. Necessary code frag-
ments, i.e. software modules that do not need further adap-
tation, are compiled to the final sensor application. A spe-
cial fragment is the base system. Similar to a middleware
solution, it provides necessary standard functionality such
as the algorithms for profile exchange and network-based
node reprogramming. Additionally, code templates can be
used representing code that must be adapted according to the
local needs. For example, sensor calibration can take placeby
adapting reference values in such code templates.

In the system that we developed in our lab [26], code
fragments for TinyOS programs are written in nesC. Spe-
cific profiles as discussed previously are connected to these
fragments in order to describe functionality and utilization. In
order to generate a binary that runs on the nodes described by
its node profile, corresponding nesC modules are extracted



B

B base system

code

fragments

code

templates

B

B

Fig. 3. Code selection and complication.

from the software repository on the dedicated server and
provided to the compiler. The structure of TinyOS programs
requires some additional handling in combination with the
selection of source files. First, the wiring between the modules
must be defined. Based on the available descriptions, templates
can be used for an unambiguous wiring. Secondly, some parts
of the nesC code have to be adapted to different hardware
configurations. We also allow to generate nesC code on
demand using code templates. Such templates are filled with
variables and algorithms depending on the current context,
i.e. the environmental conditions. This procedure can be used
to calibrate sensor readings. A template and a configuration
defined by a profile will be substituted to a configurable
software module that is adapted to a particular hardware
configuration. In a final step, the node profile is transformedto
a nesC file that can be compiled to a new binary. This binary
reflects the application profile and corresponds to the actual
hardware capabilities.

IV. A SSISTANCE

Software updates independent of their granularity as well
as the technique to apply them are performed in a push-
based manner as new information denoted by software or
policies is deployed onto nodes trigged by external entities like
developers or researchers. In some scenarios not all demanded
functions can be stored on a node at the same time. This
might be the case, if the required function set is very large
or more likely a consequence of software evolution. In the
later case further development of software obviously leadsto
an extended functions set that usually requires more storage.
Sensor networks are thought to be deployed in less developed
environments like rain forests, glaciers, or other inaccessible
or unpredictable environments as motivated by several habitat
monitoring applications. Additionally, such networks will have
an operation time of at least several hours up to years that
will rise in the near future. Therefore, we believe software
evolution will become a key factor.

To address this development and to ensure future extensi-
bility and adaptiveness of sensor software, we anticipate—
without the extensive application of hardware—pull-based
extension mechanisms have to be provided. A possible solution
offers an assistance concept that dynamically utilizes functions
provided by neighboring nodes. The basic idea behind such a
mechanism is the observation that some functions are seldom
needed and therefore do not have to be permanently located at

each demanding node. Instead, these functions can be located
at different nodes that are contacted during runtime.

An assistance-concept has to be provided with very low
overhead and in general, it should be, at least during imple-
mentation time, transparent to the developer. So the develop-
ment process remains unchanged. Instead, at deployment time
it has to be determined if the target system can handle the
whole application and system software at its full function set.
If this is not the case, a semiautomatic approach composed
by code analysis and developer knowledge has to identify
possible candidates for relocation. The code analysis thereby
identifies code fractions that are self-contained in a sense
that only some other parts of the code access these fractions.
Then, the developer has to decide whether a candidate can
be relocated, as she should know whether there are timing
constraints, or if the function is often accessed so an ex-
ternalization is not suitable. In a second step, the selected
candidates are removed from the binary and replaced by very
small code sequences acting as stubs. Of course this is only
one way to implement the identification process that targets
late stages of development and deployment. Other ways to
tackle this problem might be the introduction of annotations
at development time to mark possible relocation candidatesor
other approaches targeting earlier stage of development like
custom programming constructs.

Once a function is relocated to some other node and it is
invoked at its original target location a stub is executed and
the assistance-concept takes over execution. In general, we
anticipate two kinds of assistance: remote execution and on-
demand update. In the first case, similar to a traditional remote
invocation system, parameters are serialized and transferred
to a neighboring node. In most cases, these functions are
assumed to be stateless so an arbitrary node has to be found
offering the required functionality. If the function is state-full,
additional actions have to be taken. This includes not only the
transfer of call parameters but also of extended context infor-
mation. In case of on-demand updates, the removed function
is redeployed at runtime so that not a service providing node
is required but a node that offers a suitable implementation.
Depending on the function and its dependencies, it is inte-
grated by one of the deployment approaches that have earlier
been outlined. Of course this might require to replace some of
the currently hosted code. In general, a resource management
concept at the level of code layout and deployment is required
that takes not only only single nodes into account but also
multiple neighboring nodes forming bigger entities. Both kinds
of assistance require nodes that provide the dynamic lookup
and selection of code or functionality as it can not be expected
that suitable nodes are known at deployment time.

Taking this approach one step further, it might be reasonable
to widen the scope not only to the management of storage
but also other resources like memory or energy. For example,
nodes that have less remaining battery power or are known
to have greater energy consumption can explicitly outsource
functions to other nodes. Candidates for such an approach
might be nodes that due to topological reasons take special



roles in scope of the routing process and therefore have greater
energy demand.

V. RESEARCHCHALLENGES

As outlined in this paper, we assume that sensor networks
will face heterogeneity in terms of software and employed
hardware. This leads to extended complexity concerning soft-
ware development, deployment, and, finally, management.
Together with other limitations and requirements, we identified
the following research challenges for software managementin
sensor networks:

• Code maintenance. How do we have to store code parti-
cles and code fragments? How can we identify features
of application and system code?

• Generation of executables. How do we map code to het-
erogeneous hardware? How can we include node specific
parameters, e.g. for calibration issues?

• Reprogramming. How can we transport (parts of the)
executables to the dedicated sensor nodes? How can we
ensure reliable reprogramming?

• Assistance functions. How do we define helper systems
for fault tolerance? How can we spread functionality over
multiple sensor nodes?

As mentioned before, sensor network applications and
wireless sensor networks themselves must deal with several
constraints while achieving their goals. These constraints arise
inherently due to the nature of either wireless networks or
mobile ad hoc networks:

• Mobility of nodes. Commonly it is believed that sensor
networks being stationary, nowadays, mobility is a mayor
concern.

• Size of the network. Size has much larger impact com-
pared to infrastructure networks.

• Density of deployment, ranging from very high to quite
sparse, application domain dependent.

• Energy constraints, are much more stringent than in fixed
or cellular networks, in certain cases the recharging of the
energy source is impossible.

Considering these constraints, the research challenges as
stated before can be mapped to particular requirements that
are usually present in the context of WSN. Table I summarizes
this mapping.

Several approaches exist to address the discussed hetero-
geneities as well as the typical limitations and restrictions in
sensor networks. The first category concentrates on software
engineering techniques and comprises the following recom-
mendation:

• Software for sensor networks should be implemented us-
ing software engineering techniques for modularization,
thereby leading to better manageability but of course
also extensibility. Possible candidates are as proposed
feature models but also the application of aspect-oriented
programming (AOP) techniques seems to be promising.

• Rigorous adaptation of software engineering techniques
to the demands of the sensor network domain. This

includes, for example, extended tool support to map
feature changes to small and specialized deployment units
or more general to support the selection of a deployment
method and strategy.

Modularly implemented WSN software builds a useful foun-
dation for the efficient and resource aware deployment as code
changes and updates can be clearly identified. However the
deployment of custom and maybe node specific software onto
heterogeneous hardware has certain extended requirements:

• Software deployment has to be efficient in terms of
network utilization, storage, and processing requirements
as sensor networks are in most cases resource restricted.
Heterogeneity amplifies this challenge and existing de-
ployment techniques have to be verified for their usability,
this may lead to completely new approaches primarily
targeting heterogeneity.

• Reliability is a crucial point for the deployment of soft-
ware as failed updates may cause unresponsive nodes,
that at the extreme can destabilize a whole network.
Here, heterogeneity introduces even more pitfalls, so
mechanism have to be considered that ensure a save and
robust deployment process.

Last but not least, many (if not the majority of) use cases are
faced with the situation where application demands exceed the
resources provided by individual sensors. A graceful handling
of such situations demands for extended technologies that have
to be tightly coupled with the proposed software engineering
technologies and deployment mechanisms:

• The provision of these techniques like remote execution
or on-demand installation itself poses a challenge if
performed in a resource and efficient manner.

• Remote execution as a basic technology becomes useless
if required services are not provided by neighboring
nodes or at least sensors that can be reached within
a short distance. Ensuring such properties demands for
node spanning resource management, supported by off-
line planning as part of the deployment process.

A big challenge is to get all these approaches integrated
to provide users with aworkbenchsupporting development,
evolution, and maintenance of forthcoming WSN.

VI. CONCLUSION

In this paper, we discussed the need to robust and efficient
software management solutions for use in wireless sensor
networks. Above all, the motivation for new approaches and
solutions arises due to emerging hardware and software het-
erogeneities. Such differences are caused by the need to use
one WSN installation for multiple purposes depending, for
example, on the current time or environmental conditions.
Limitations of sensor nodes in terms of resource restrictions
(memory, storage, processing) do not allow to install all
possible software modules to all available sensor nodes. Thus,
heterogeneity is even further increased.

We identified several research challenges in the domain of
sensor network software management and node reprogram-
ming. We also proposed three different approaches that can



code
maintenance

generation of
executables

reprogramming assistance

reliability Yes - Yes Yes
security - - Yes Yes
network utilization Yes - Yes Yes
system resource utilization Yes Yes - Yes
reprogramming performance Yes Yes Yes -
fault tolerance Yes - - Yes
hardware heterogeneity Yes Yes Yes Yes
software heterogeneity Yes Yes - Yes

TABLE I

MAPPING OF RESEARCH CHALLENGES TO TYPICAL APPLICATION REQUIREMENTS IN WSN

help to address the discussed challenges. First, feature models
help to identify relationships between different modules and
to (semi-) automatically select the functions that are really
needed in a particular scenario. Secondly, a profile-matching
based technique to select code fragments as well as code
templates for generating executable binaries eases the node
and application specific code generation. Finally, assistance
models allow to spread functions over a set of available nodes
in order to either enhance the fault tolerance or to distribute
applications to multiple nodes.

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: a survey,”Computer Networks, vol. 38, pp. 393–422,
2002.

[2] D. Culler, D. Estrin, and M. B. Srivastava, “Overview of Sensor
Networks,” Computer, vol. 37, no. 8, pp. 41–49, August 2004.

[3] I. F. Akyildiz and I. H. Kasimoglu, “Wireless Sensor and Actor Net-
works: Research Challenges,”Elsevier Ad Hoc Network Journal, vol. 2,
pp. 351–367, October 2004.

[4] Y. Guo, P. Corke, G. Poulton, T. Wark, G. Bishop-Hurley, and D. Swain,
“Animal Behaviour Understanding using Wireless Sensor Networks,” in
31st IEEE Conference on Local Computer Networks (LCN): 1st IEEE
International Workshop on Practical Issues in Building Sensor Network
Applications (SenseApp 2006), Tampa, Florida, November 2006, pp.
607–614.

[5] A. Baggio, “Wireless sensor networks in precision agriculture,” in ACM
Workshop on Real-World Wireless Sensor Networks (REALWSN 2005),
Stockholm, Sweden, June 2005.

[6] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, “NextCentury
Challenges: Scalable Coordination in Sensor Networks,” inACM/IEEE
International Conference on Mobile Computing and Networking. Seat-
tle, Washington, USA: ACM, August 1999, pp. 263–270.

[7] G. Fuchs, S. Truchat, and F. Dressler, “Distributed Software Manage-
ment in Sensor Networks using Profiling Techniques,” in1st IEEE/ACM
International Conference on Communication System Software and Mid-
dleware (IEEE/ACM COMSWARE 2006): 1st International Workshop
on Software for Sensor Networks (SensorWare 2006), New Dehli, India,
January 2006, pp. 1–6.

[8] C.-C. Han, R. Kumar, R. Shea, and M. Srivastava, “Sensor Network
Software Update Management: A Survey,”ACM International Journal
on Network Management, vol. 15, no. 4, pp. 283–294, July 2005.

[9] C. Margi, “A Survey on Networking, Sensor Processing andSystem
Aspects of Sensor Networks,” University of California, Santa Cruz,”
Report, February 2003.

[10] D. Culler, J. Hill, P. Buonadonna, R. Szewczyk, and A. Woo, “A
Network-Centric Approach to Embedded Software for Tiny Devices,” in
First International Workshop on Embedded Software (EMSOFT2001),
Tahoe City, CA, USA, October 2001.

[11] V. Handziski, J. Polastrey, J.-H. Hauer, C. Sharpy, A. Wolisz, and
D. Cullery, “Flexible Hardware Abstraction for Wireless Sensor Net-
works,” in 2nd European Workshop on Wireless Sensor Networks (EWSN
2005), Istanbul, Turkey, February 2005.

[12] B. Hurler, H.-J. Hof, and M. Zitterbart, “A General Architecture for
Wireless Sensor Networks: First Steps,” in4th International Workshop
on Smart Appliances and Wearable Computing, Tokyo, Japan, March
2004, pp. 442–444.

[13] D. Martin, A. Cheyer, and D. Moran, “The Open Agent Architecture: a
framework for building distributed software systems,”Applied Artificial
Intelligence, vol. 13, no. 1/2, pp. 91–128, 1999.

[14] A. Chlipala, J. Hui, and G. Tolle, “Deluge: Data Dissemination for
Network Reprogramming at Scale,” Tech. Rep., 2004.

[15] C. Frank and K. Römer, “Algorithms for Generic Role Assignment
in Wireless Sensor Networks,” in3rd ACM Conference on Embedded
Networked Sensor Systems (SenSys), San Diego, CA, USA, November
2005.

[16] M. Gauger, “Dynamic Component Exchange in TinyOS (Dynamischer
Austausch von Komponenten in TinyOS),” Master’s Thesis (Diplomar-
beit), University of Stuttgart, April 2005.

[17] J. Jeong and D. Culler, “Incremental Network Programming for Wireless
Sensors,” inFirst IEEE International Conference on Sensor and Ad hoc
Communications and Networks (IEEE SECON), June 2004.

[18] K. Czarnecki and U. W. Eisenecker,Generative Programming—
Methods, Tools, and Applications. Addison-Wesley, 2000.

[19] D. Beuche, H. Papajewski, and W. Schröder-Preikschat, “Variability
management with feature models,”Science of Computer Programming,
vol. 53, no. 3, pp. 333–352, Dec. 2004.

[20] X. Bai, S. Kumary, D. Xuany, Z. Yunz, and T. H. Lai, “Deploying
Wireless Sensors to Achieve Both Coverage and Connectivity,” in
Seventh ACM International Symposium on Mobile Ad Hoc Networking
and Computing (ACM MobiHoc 2006), Florence, Italy, May 2006, pp.
131–142.

[21] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. B. Srivastava,
“Coverage Problems in Wireless Ad-hoc Sensor Networks,” inIEEE
Infocom 2001, Ankorange, Alaska, USA, April 2001.

[22] B. Liu, P. Brass, O. Dousse, P. Nain, and D. Towsley, “Mobility
Improves Coverage of Sensor Networks,” inACM MobiHoc 2005,
Urbana-Champaign, IL, May 2005.

[23] M. A. Batalin and G. S. Sukhatme, “Coverage, Exploration and Deploy-
ment by a Mobile Robot and Communication Network,” inInternational
Workshop on Information Processing in Sensor Networks, Palo Alto,
USA, April 2003, pp. 376–391.

[24] V. Mhatre, C. Rosenberg, D. Kofman, R. Mazumdar, and N. Shroff,
“A Minimum Cost Heterogeneous Sensor Network with a Lifetime
Constraint,” IEEE Transactions on Mobile Computing, vol. 4, no. 1,
pp. 4–15, January 2005.

[25] G. Xing, X. Wang, Y. Zhang, C. Lu, R. Pless, and C. Gill, “Integrated
Coverage and Connectivity Configuration for Energy Conservation in
Sensor Networks,”ACM Transactions on Sensor Networks (TOSN),
vol. 1, no. 1, pp. 36–72, August 2005.

[26] Z. Yao, Z. Lu, H. Marquardt, G. Fuchs, S. Truchat, and F. Dressler,
“On-demand Software Management in Sensor Networks using Profiling
Techniques,” inACM Second International Workshop on Multi-hop Ad
Hoc Networks: from theory to reality 2006 (ACM REALMAN 2006),
Demo Session, Florence, Italy, May 2006, pp. 113–115.


