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Analysis of Cell Sojourn Time in Heterogeneous Networks With Small Cells
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Abstract—Recently, heterogeneous networks with small cells
have been widely used to increase the capacity of mobile sys-
tems. In such environments, accurate estimation of the mean cell
sojourn time is critical for evaluating the performance of the net-
work and its applications. It is especially important to analyze
the cell sojourn times of mobile users as they reside in different
network tiers: either macro-cell-only or small-cell-covered areas.
But because small cells are deployed in an irregular manner, it
is difficult to derive the analytical mean cell sojourn time in a
macro-cell-only area. In this letter, we propose a novel approach
to resolve this difficulty. We developed a simple but effective trick
that approximates the heterogeneous network to a discrete grid
so that it becomes tractable, making it possible to derive the ana-
lytical mean sojourn time in the macro-cell-only area. Simulation
results confirm that the proposed method has excellent accuracy
for general random walk mobility models including random way-
point, Brownian motion, tailored Brownian motion, and truncated
Levy walk.

Index Terms—Heterogeneous network, hierarchical cellular
mobile network, inter-tier mobile access, user mobility, analytical
estimation, cell sojourn time, cell residence time, noncontiguous
and irregular cell deployment.

I. INTRODUCTION

T HE RAPID increase in mobile data traffic is an emerg-
ing issue, and small cells are expected to be an effective

solution for improving the spatial density of cellular mobile sys-
tems [1], [2]. Major cellular operators such as AT&T consider
small cells to be a key part of the advanced network toolsets
used to achieve performance goals. One important observa-
tion is that small cells are deployed on a plug-and-play basis
[3]; this implies that mobile users may opportunistically access
small cell base stations along their travel routes. In such het-
erogeneous cellular networks, cell sojourn time, i.e., how long
a mobile user stays in a given (macro/small) cell, is an impor-
tant performance metric for planning network resources such
as channel frequencies and time slots, and Quality-of-Service
(QoS) analysis [4]. Furthermore, cell sojourn time is also a clue
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Fig. 1. Example of a two-tier heterogeneous network.

that can be useful in reducing the signaling overhead of mobile
services, (e.g., location-based services) [5].

In a heterogeneous network with a mixture of macro and
small cells, there are two types of service areas, a macro-
cell-only-area (MoA) and a small-cell-covered-area (ScA), as
defined in earlier studies [6]–[8]. Fig. 1 illustrates the trajectory
of a mobile user, whose cell connectivity alternates between
MoA and ScA (i.e., Sm → Ss → Sm → Ss → Sm) where Sm

is the sojourn time in the MoA, and Ss is the sojourn time
in the ScA. For this type of network model, it is well known
that there are analytically tractable solutions for estimating the
mean sojourn time in an ScA because the shape of each small
cell is not complicated (e.g., circles) [9]–[11]. However, the
shape of an MoA is likely to be irregular because of the arbi-
trary installation of small cells (see the white colored area in
Fig. 1). This makes it difficult to obtain the analytical mean
sojourn time in an MoA. Therefore, prior studies of analyt-
ical performance evaluation assumed that the mean sojourn
time in an MoA should be estimated from the network trace
data in advance [6]–[8]. One major limitation of this assump-
tion is that the location update frequency in cellular systems is
not fast enough because of signaling overhead concerns, thus
resulting in less accurate estimation [8], [12]. Furthermore, col-
lecting trace data for various deployment scenarios requires
considerable experimental efforts.

In this letter, we propose a novel analytical method for
estimating the mean sojourn time in an MoA of a two-tier het-
erogeneous network. The proposed method complements the
limitation of existing evaluation frameworks [6]–[8]: we can
integrate the proposed mean sojourn time analysis with existing
frameworks, thereby obviating the need for acquiring trace-
based sojourn time datasets. To the best of our knowledge,
none of the prior studies have attempted to build such an
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analytical model for the mean sojourn time in an MoA under
consideration.

For analytical tractability, our estimation method approxi-
mates a macro cell to a discrete grid consisting of small-cell-
sized hexagons. Then, some hexagons are randomly selected to
be ScA hexagons. Others remain MoA hexagons. In this way,
we can approximate the heterogeneous network with small cells
to the hexagonal grid. User mobility is also approximated as
a discrete random jump on the grid. By applying the result
of stochastic geometry [13] to the approximated model, we
can estimate the analytical mean sojourn time in an MoA (see
Section II). We performed an extensive set of simulations to
validate the correctness of the proposed estimation method. The
results suggest that the proposed method has excellent accuracy
under the general random walk mobility models, including ran-
dom waypoint, Brownian motion, tailored Brownian motion,
and truncated Levy walk (see Section III).

II. PROPOSED MODELING AND ESTIMATION

A. System Model and Assumptions

We consider a two-tier heterogeneous macro/small cellular
system where a macro cell includes multiple underlying small
cells. The proposed model has the following assumptions:

• Cell deployment follows the widely used assumption as
in [6]–[8], [12]. The radii of the macro and small cells
are denoted by Rm and Rs , respectively. A macro cell
includes N small cells within its coverage. The small cells
are irregularly deployed.

• Mobile users move according to the general random walk
mobility model defined in [14]. In a 2-dimensional field,
each mobile user makes a random walk, expressed by a
sequence of stochastic processes S as

S = (L ,�, T f , Tp) (1)

where a mobile user makes a flight followed by a pause.
L (> 0) is the length of the flight, � is the direction
change from the previous flight, T f (> 0) is the flight
time and Tp (≥ 0) is the pause time. For each step, a
mobile user chooses L , �, T f and Tp from the probability
density function fL(l), f�(θ), fT f (t), and fTp (t), respec-
tively.1 In this definition, the mobile velocity is expressed
as V = L/T f . The point at which each step begins is
referred to the waypoint. The trajectory of each mobile
user is expressed as a set of waypoints and lines gener-
ated by S. Fig. 1 shows an example of a user trajectory
consisting of five steps, each of which has length, that is,
L0, L1, L2, L3, and L4, respectively.

B. Mean Cell Sojourn Time in ScA

To calculate the mean sojourn time in an ScA, existing works
can be adopted; note that our focus is on calculating the mean
sojourn time in the MoA. In this subsection, we briefly intro-
duce one of the well-known models. According to [11], the

1From now on, we denote the probability density function and the cumulative
density function of a random variable X as fX (·) and FX (·) respectively, for
convenience.

Fig. 2. Example of discrete grid approximation of a two-tier heterogeneous
network.

mean sojourn time in a cell with radius Rs can be calculated
from the spatial distribution of mobile users as

E[Ss] = (E[T f ] + E[Tp]) ·
∫ 2π

0

∫ Rs

0
f̃ (r, θ) · dr · dθ (2)

where f̃ (r, θ) is the spatial user density function for the incre-
mental space d A(r, θ) around the point (r, θ) in the polar
coordinate system. f̃ (r, θ) can be derived from fL(l), fT f (t)
and fTp (t). For more details, please refer to [11], [15].

C. Mean Cell Sojourn Time in MoA

As we discussed earlier, the irregular deployment of small
cells makes it difficult to directly derive the mean sojourn time
in an MoA (e.g., Sm in Fig. 1). To make it tractable, we approx-
imate the network model in Section II-A as a hexagonal grid.
We divide a macro cell into small-cell-sized hexagons, each
of which has the size π R2

s . Among them, N hexagons are
randomly selected as the ScA hexagons. Fig. 2 illustrates an
example of the proposed grid. The MoA and ScA hexagons are
indicated in white and gray, respectively. As a consequence, the
contiguous space random walk is also approximated to random
inter-hexagon jumps, which can be categorized into three types:
inter-MoA, MoA-ScA, and inter-macro jumps. Since small-
cell-sized hexagons are used, the mean occurrence time of
inter-hexagon jump can be approximated to E[Ss].

Let us introduce the length intensity which indicates the
probability that an arbitrary trajectory encounters the bound-
ary of a Poisson Voronoi tessellation [13].2 Let ph , ps , and
pm denote the length intensity of the inter-hexagon, MoA-ScA,
and inter-macro boundaries, respectively. From Remark 1 in

[13], we obtain ph = 2
√

1
π R2

s
and pm = 2

√
1

π R2
m

. And, we have

ps ≈ γ · ph where γ (= Nπ R2
s

π R2
m

) denotes the proportion of ScA

hexagons to every hexagon.
Now, the probability of every inter-hexagon jump is

ph + pm − ph · pm . Note that the inclusive-exclusive prin-
ciple is used because some MoA-ScA boundaries are over-
lapped with inter-macro boundaries. Similarly, the probability
that considers only the MoA-ScA and inter-macro jumps is

2Our approximated network model is also a Poisson Voronoi tessellation
where center-points are triangularly deployed.
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TABLE I
MOBILITY PARAMETERS

ps + pm − ps · pm = γ · ph + pm − γ · ph · pm . Consequently,
we can express the probability that a mobile user encounters an
ScA hexagon or inter-macro boundary for each inter-hexagon
jump as

p = γ · ph + pm − γ · ph · pm

ph + pm − ph · pm
= γ Rm

√
π + Rs

√
π − 2γ

Rm
√

π + Rs
√

π − 2

= N Rm R2
s
√

π + R2
m Rs

√
π − 2N R2

s

R3
m
√

π + R2
m Rs

√
π − 2R2

m
. (3)

From the above result, (1 − p)K · p is the probability that
a mobile user takes K−consecutive inter-MoA jumps before
encountering an ScA hexagon or inter-macro boundary. We
derive its expectation as

E[K ] =
∞∑

k=1

k · (1 − p)k · p = 1 − p

p

= (1 − γ ) · (Rm
√

π − 2)

γ Rm
√

π + Rs
√

π − 2γ
. (4)

Since the mean occurrence time of an inter-hexagon jump is
E[Ss], E[K ] is the proportion of E[Sm] to E[Ss]. By multiply-
ing E[Ss] by E[K ], we obtain the approximated mean sojourn
time in the MoA as

E[Sm] ≈ E[K ] · E[Ss] = (1 − γ ) · (Rm
√

π − 2) · E[Ss]

γ Rm
√

π + Rs
√

π − 2γ
.

(5)

III. VALIDATION RESULTS

We conducted an extensive set of simulations to validate the
proposed estimation method. The general random walk mobil-
ity simulation was implemented using OMNeT++, an open
discrete event driven simulator.3 We also imported a GNU
scientific library to generate the random walk process.4

We considered random waypoint (RWP) [11], Brownian
motion (BM) [9], tailored Brownian motion (TBM) [9] and
truncated Levy walk (TLW) [14] mobility models. These mod-
els belong to the class of general random walk models. We
list their fL(l) and f�(θ) in Table I. In the table, vmin , vmax

and vm denote the min, max, and mean velocity of mobile
users, respectively. φ(·) and �(·) denote the probability and

3http://omnetpp.org
4http://www.gnu.org/software/gsl/

TABLE II
SIMULATION PARAMETERS

Fig. 3. Comparison between estimation and simulation results.

cumulative density functions of standard normal distribution,
respectively. BM and TBM use constant flight time, i.e., T f =
t f . On the other hand, RWP and TLW generate the flight times
as conditional random variables T f = L

vm
and T f = k · L1−ρ ,

respectively. For the pause time Tp, RWP, BM and TBM use
constant time tp. In TLW, Tp is a Levy distributed random
variable with the following density function:

fTp (t) = 1

2π

∫ ∞

−∞
e−i xt−|ct |β dx . (6)

For more details regarding mobility parameters, please refer
to [9], [11], and [14]. Unless otherwise mentioned, we followed
the default settings listed in Table II.

To validate the correctness of the proposed estimation
method, we measured E[Sm] while E[L] was increased from
10 m to 100 m in increments of 10 m. Mobility parameters were
properly calibrated to set E[L] as designated. Fig. 3a presents
a comparison of estimated and measured mean sojourn times in
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TABLE III
E[K ] WITH VARYING E[Tp ] AND vm

the MoA. The average differences of RWP, BM, TBM and TLW
are 6.017%, 6.115%, 2.175%, and 2.321%, respectively. The
estimated and measured results generally fit well to each other.
The estimation differences of RWP and BM are more than 10%
when E[L] ≤ 20 m. This is because RWP and BM have zigzag
(or back-and-forth) movement patterns. With short flight dis-
tances, zigzag movements between cell boundaries result in a
large number of short sojourn time samples, and thus mean val-
ues are biased. In contrast, fewer zigzag movements appear in
TBM and TLW. TBM does not produce a sharp curved tra-
jectory (see f�(θ) in Table I). TLW generates frequent long
distance flights owing to the nature of the Levy distribution
(see fL(l) in Table I). Their results remain plausible at small
flight distances. For example, their estimation differences are
less than 10% at E[L] = 10 m.

Next, we considered how the size of a small cell area affects
the estimation accuracy. We plot E[K ] instead of E[Sm] for
the sake of illustration. As illustrated in Fig. 3b, the average
estimation difference of RWP, BM, TBM and TLW is 5.389%,
6.001%, 1.779%, and 1.564%, respectively. Similar to the pre-
vious scenario, the proposed method generally shows excellent
estimation capabilities. When Rs ≤ 20 m, the estimation differ-
ences of RWP and BM increase to approximately 25%. This is
attributed to a well-known phenomenon called the biased sam-
pling problem [16]. For example, suppose a zigzag moving user
wanders in the middle of the MoA when the small cells are
sparsely deployed. Because the user is not likely to encounter an
inter-tier or inter-macro cell boundary, the users sojourn time is
not likely to be sampled by the simulation. Due to such hidden
long sojourn time users, the measured sojourn time is biased,
thus E[K ] is also. In the cases of TBM and TLW, thanks to
fewer zigzag movements, their estimation differences remain
low (6.512% and 1.294% for TBM and TLW, respectively, at
Rs = 10 m).

We also conducted the simulations with varying E[Tp]
(10 s ∼ 300 s) and vm (2 m/s ∼ 50 m/s), and observed that their
average estimation differences were less than 10%. We present
brief results in Table III instead of plots for space reasons.5 The
simulation results suggest that the proposed estimation method
has excellent accuracy, especially for the Levy walk, which is a
recently emerged model for human mobility studies.

5TLW is not considered in varying vm because the velocity of the TLW is
defined as a conditional random variable V = Lρ/k.

IV. CONCLUSION

In this letter, we propose a simple but powerful method
for estimating the mean sojourn time in macro-cell-only areas
of two-tier heterogeneous networks where macro-embedded
small cells are irregularly deployed. By approximating the
user mobility in a continuous space as discrete random jumps
on a hexagonal grid, we develop a tractable analytical pro-
cedure to derive the proportion of the mean sojourn time in
the macro-cell-only area to the small-cell-covered area. The
simulation results show that the proposed method has plausi-
ble accuracy for general random walks, including the random
waypoint, Brownian motion, tailored Brownian motion and
truncated Levy walk models. This implies mobility-model-free
application of our analysis. As a new complementary method,
the proposed estimation technique can be integrated into exist-
ing performance evaluation frameworks [6]–[8] considering
macro/small cell heterogeneous networks.
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