
Cleaning Up the Mess of Web 2.0 Security
(At Least Partly)

Benjamin Stritter∗, Felix Freiling∗, Hartmut König†, René Rietz†,
Steffen Ullrich‡, Alexander von Gernler‡, Felix Erlacher§, and Falko Dressler§

∗ Department of Computer Science, Friedrich-Alexander-University, Erlangen, Germany
† Computer Networks and Communication Systems, Brandenburg University of Technology Cottbus, Germany

‡ genua mbH Kirchheim near Munich, Germany
§ Computer and Communication Systems, Institute of Computer Science, University of Innsbruck, Austria

Abstract—Everybody loves the new Web 2.0 applications. They
are easy to use, fast, and can be accessed from any computer
or smartphones without installation. They allow us to easily
communicate and share data with each other, make shopping
simple, and give us access to vast amount of information.
However, Web 2.0 is also frequently mentioned in the news
in connection with novel exploits, data leaks, or identity theft.
Active content, tight integration, and the overall complexity of the
continuously evolving Web 2.0 technology creates new risks which
we can hardly grasp. Turning back is no solution, since we would
lose many beloved features. But how can we get both — pleasant
user experience and security — in such a messy place such as
the current Web 2.0 represents? We study the complex security
situation and attack surface of Web 2.0 applications and attempt
to give a brief tour through this zoo, focusing on already existing
applications. We particularly outline open research challenges in
this field and give recommendations how to approach these issues.

I. INTRODUCTION

With the emergence and the success of the original World
Wide Web (WWW), a huge variety of different commercial and
non-commerical applications have been established reaching
from simple link collections via search engines and web shops
to audio and video telephony applications. To facilitate the
use of the Web and to make the interface to the user more
interactive, various scripting languages have been proposed,
among them JavaScript has established itself as the prevalent
one. Later plugins have been introduced. Java and Flash most
popular ones. While the capabilities of JavaScript to interact
with the computing environment have been restricted from the
very beginning, the execution environment for plugins is not
limited by design.

The rapid development of the browsers and their constantly
extended feature set was accompanied by implementation dif-
ferences and incompatibilities between the features. Allthough
security became a major issue for browser developers, security
demands have been met insufficiently. Secure Socket Layer
(SSL), for instance, is used for securing the communication
between the server and the client, but it does not provide
dedicated security measures for the higher layers. The most

This work was supported by the German Bundesministerium für Bildung
und Forschung (BMBF) in the scope of the Padiofire project.

frequently observed security issue in the Pre-Web 2.0 era
was the buffer overflow, which opened up the system for
further intrusions. Reasons were immature implementations of
JavaScript, plugins, ActiveX, and the browsers themselves.

To protect against these attacks, personal and perimeter
firewalls have been deployed to scan downloaded contents
for known vulnerabilities. As the majority of scripts and
plugins are not essential for accessing the respective web sites,
organizations that applied stronger security policies simply
removed all JavaScript, plugins, and ActiveX content, thus
providing a less powerful, but more secure version of the Web
page. For many modern web applications, however, this is
not acceptable any longer because current web sites tend to
become unusable without active content.

In contrast to the usually static old Web, the dynamic Web 2.0
contains highly interactive JavaScript-driven Web applications.
This facilitates the creation of more user-generated (sometimes
sensitive) content. Commercial interests increasingly connect
the content with social networks, advertisements, and user
tracking. Moreover, web interfaces for controlling devices
like routers, phones, or industrial systems are commonplace
nowadays.

To sum up Web 2.0 has become a pretty complex system
which even experts do not fully understand. This complexity
has produced a variety of new attack methods, which especially
affect the client side (i.e., the browser). Therefore, the Web
2.0 is a pretty dangerous place from the security point of
view. Nowadays, however, we depend on the Web 2.0 because
we want to access to information and our data anytime and
anywhere both in personal and in business life. What can be
done to make the modern Web secure and keep it usable at
the same time?

In this article, we illustrate the most important security issues
of Web 2.0 applications that directly affect the user, e.g., by
attacking the web browser. We then explain basic mitigation
strategies on server and client side and in intermediate devices,
such as perimeter firewalls. By doing this, we wish to bring
some order into the mess of modern web applications and to
show how this mess can be cleaned up — at least partly. We
conclude identifying open research challenges.



Figure 1. Complex interactions in the Web enable a variety of attacks against
the client

II. THE NEW ATTACKS OF WEB 2.0

With Web 2.0, new technologies have emerged. Asyn-
chronous JavaScript and XML (AJAX) and Dynamic HTML
(DHTML) have created the basis to share content from different
sources, to mix them up, and to personalize them. Now web
applications are advocated similarly to desktop applications
without the overhead to install and maintain them. This
motivated companies to use web applications for sharing
business-critical data in the Internet or in intranets. As a
side effect of the personalization capabilities of the Web,
advertisement and tracking providers adapted their techniques
to aggregate and combine the huge amount of freely available
information about the users to create precise user profiles.

As the Web became larger and larger, and more attractive for
users, new attacks have emerged that are specific to the new
Web. They combine and integrate active content, content from
different sources, and old risks lurking in the design decisions of
browsers and web applications. On the other hand, the impact of
buffer overflows decreased due to mitigation methods, such as
sandboxing and Address Space Layout Randomization (ASLR).
In addition, new features of HTML, such as support for Scalable
Vector Graphics (SVG), canvas, and the integration of audio
and video, made lots of plugins obsolete. Some plugins, like
Adobe Reader, Java, and Flash, which are present in most
desktop browsers, are still an attractive attack vector though.

Figure 1 attempts to give an overview over the new attacks.
On the left-hand side we see the client side (including the
browser and the operating system), whereas the (one or more)
Web servers are depicted on the right-hand side . In between a
simplified view of the network infrastructure is depicted which
is fragile itself. The interaction between these components can
create problems, as we explain in the following.

A. Merging of Security Domains Inside a Browser

A single browser can access web sites from different security
domains, e.g., from a corporate network, an intranet, private
mail, social, news, or advertisement networks. These sites can
interact with each other within the browser in different ways.

For an attack, the browser can even be misused as a trampoline
to access internal systems from outside, evading protection
techniques, such as firewalls.

a) Embedding of script.: Usually social networks and
advertisement or tracking sites are directly embedded as scripts,
thus being an integral part of the page and having full control
over it. This often integrates multiple security domains with
totally different levels of trust (see Fig. 2). Since every domain
has the same access privileges, this situation easily allows code
execution from unwanted sources [1]. This is also called Cross
Site Scripting (XSS).

Figure 2. Stored Cross-Site-Scripting through inclusion of untrusted 3rd-party

b) Embedding of iframes.: An iframe is a frame which
embeds another page into the current page. Although a script
inside an iframe is more restricted than a script directly
embedded in the hosting page, it can communicate with other
frames through the postMessage API or similar techniques.
Since iframes have no visible borders with the hosting page,
they can be used for User Interface Redressing attacks, e.g.,
to present a faked login dialogue instead of an advertisement
(see Fig. 3). Furthermore, content can be framed within a
different context by clipping or visually overlaying it, leading
to Clickjacking [2] and similar attacks.

Figure 3. User Interface Redressing using an iframe

c) Shared (cookie) storage.: HTTP is by design a stateless
protocol, but practically all web applications need a stateful
session which consists of several HTTP requests. The states are
usually encoded using cookies, i.e., session identifiers, which
are issued by the server and sent back to the clients with each
subsequent request. The cookies are managed in a storage
inside of the browser. The major security flaw of this solution
is the fact that cookies are sent back with each request to the
server, even if the request originates from a different site (e.g.,
triggered by submitting a form or following a link, see Fig. 4).
This enables so-called Cross Site Request Forgery (CSRF)
attacks [3] from a malicious site to inject actions into existing
sessions. Modern browsers generally allow web applications
to persistently store even more data. This can also be used for
XSS attacks which contain payload that is not related to the
current request.



Figure 4. Cross Site Request using a form

B. Serializing Complex Data Formats As Text

HTML merges information about the structure of a page
together with its content into a “flat” text representation. The
web page does not only contain HTML code, but additionally
also JavaScript, Cascading Style Sheet (CSS), and — with
data-URLs1 — even images and other content. To extract
the structure and the content from the text representation
several layers and kinds of encoding and escaping have to
be unwrapped in the correct order. This makes it extremely
difficult to detect and distinguish the different parts in order to
ensure an unambiguous interpretation (cf. [4]). Some examples
of the resulting problems are illustrated in Fig. 5.

The first example uses Unicode to encode parts of a
script. It is very simple but very effective to evade signature-
based detections of specific JavaScript commands. The second
example uses a different encoding for CSS escaping, i.e., to call
JavaScript from insight of CSS expressions. Similar escaping
techniques can be used for JavaScript strings, HTML characters,
and URLs. The third example is more complex. It shows how
different encoding and escaping techniques can be combined.

Figure 5. Flattening of structured data as text

Errors in adhering to all these encodings and escapings when
creating or interpreting the text inside the browser are sources
for vulnerabilities. They enable various kinds of injections, in
particular XSS. These errors often occur when the processed
user input is assumed to be in a specific format, without
verifying it. Similar problems arise on the server side when
generating database queries from the user input. Failures when
checking input or not applying respective escaping rules may
lead to a “break-out” of the query and the execution of the

1http://www.ietf.org/rfc/rfc2397.txt

injected code, e.g., SQL Injections. The variety of escaping
rules across different databases additionally complicates this
procedure.

C. Incomplete or Conflicting Standards

Although the standards that are directly related to web appli-
cations, notably HTTP and HTML, are complex, they mostly
fail to address the handling of ambiguous or erroneous content,
thus making the interpretation implementation-dependent. A
classic example is the specification of the character set of the
HTML content which can be specified in various places, e.g.,
inside the HTTP header, as various tags inside the HTML
content, or using a Byte Order Mark (BOM). So it is possible
to circumvent security filters in servers or the intermediate
devices using conflicting declarations. This supports various
attacks, in particular XSS, as depicted in Figure 6.

Figure 6. Ambiguous character set interpretation

Another example is the interpretation of the HTTP Content-
Type header. According to the standard, the data type of the
HTTP body is determined in the header, but this is often
ignored. This is especially true when including JavaScript into
HTML using the Script-Tag. Even with an explicit Content-
Type of “image/gif”, a content with “GIF89a=1; alert(1)” will
be interpreted as JavaScript. This also helps to circumvent
content filters in the server. Therefore, securing applications
with user generated content is still a challenge.

D. Unjustified Trust in DNS and PKIs

Same Origin Policy (SOP) is one of the cornerstones of the
browser security. It allows that contents of the same origin may
freely interact among each other, but it restricts interactions
with contents of different sources. It applies to the interaction in
JavaScript and defines the access to cookies and the interaction
of frames. The calculated origin for SOP depends on the host
and domain names, and thus on the Domain Name System
(DNS). But it also depends on the policies regarding effective
top level domains, which can be different for each registrar. For
example, although uk is a global top level domain, effectively
all subdomains (*.uk) and others are used as top level with
some exceptions, such as policy.uk etc.

Although Same Origin Policy depends on the DNS replies
being authoritative and correct, this is not guaranteed. As
long as DNSSec (DNS with signed replies) is not supported
everywhere, queries can easily be hijacked. Even with DNSSec,
a DNS server can still claim any IP address (even internal ones
like 127.0.0.1) to be the address for a host name it manages.
This makes DNS Rebinding attacks possible.



Mistrust is also justified against Public Key Infrastructures
(PKIs), the basis of HTTPS. While earlier attacks often were
ignored, the high profile compromise of two certification
authorities (CAs) in 20112 and the abuse of certificates issued
by mistake for intermediate CAs in 20123 enabled attackers
to issue unauthorized certificates for major sites, such as
google.com. This publically demonstrated the fragility of
Public Key Infrastructure (PKI). While these attacks are not
really specific to the Web 2.0, the strong interconnection
between various websites in modern web applications make
attacks on DNS and PKIs much more attractive today than in
the past.

III. PRACTICAL MITIGATION METHODS TODAY

Although it seems futile to establish high security in an
environment that is so complex and messy, there are some
general approaches to make the Web 2.0 a better place. So
what can we do to (at least partly) clean up the mess? Possible
solutions can be classified according to the place where they
are deployed in the network architecture: at the client, at the
server, or in intermediate systems.

A. Mitigation inside the Web Browsers

Most modern browsers offer mitigation heuristics against
Reflected XSS attacks at the client side. Reflected XSS means
that a request from the client contains the actual XSS payload
which is reflected by the server and then executed by the client.
Usually the protection is directly implemented in the browser,
but sometimes it is only available as add-on. Most browsers
also apply URL blacklists, such as Google Safebrowsing4, to
block malicious sites. Additionally, virus scanners are used to
check for local or downloaded malware. More comprehensive
security suites trigger a warning when their heuristics detect
“abnormal” system behavior.

Other solutions limit the impact of exploits by putting
the browser into a sandbox or a newly generated virtual
machine. This protects against malware spreading, but it does
not help against XSS or CSRF attacks because these attacks
manipulate data in the Internet or an intranet, respectively, and
would not work that way. Current web browsers also do not
provide protection against Stored XSS attacks when attacker
data are stored on the server and later injected to arbitrary
users. Browsers do not protect neither against CSRF nor
Clickjacking. A noteworthy extension of Firefox is NoScript5

which restricts the execution of JavaScript to only few sites
and thus effectively mitigates XSS attacks. It also offers some
CSRF and Clickjacking protection. Unfortunately, NoScript
needs an extensive individual adaption and is only manageable
by experienced users.

2https://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html
3http://googleonlinesecurity.blogspot.de/2013/01/enhancing-digital-

certificate-security.html
4http://googleonlinesecurity.blogspot.de/2012/06/safe-browsing-protecting-

web-users-for.html
5http://noscript.net/

Even though it hampers the ability of websites to finance
themselves, the use of browser extensions, such as AdBlock-
Plus6 to inhibit integrated advertisments, tracking, and social
networks, is an effective way to remove the usuallly unjustified
trust in these sites without impairing their usability.

While most research focuses on securing the web application
on the server side, there are some client-related approaches. The
CsFire [5] browser extension blocks most cross-site requests to
inhibit CSRF, while detecting and allowing cross-site requests
used with payment or single-sign-on solutions. The browser
extension JaSPIn [6] creates a profile of the application usage
of JavaScript and enforces it later. Unfortunatly, it needs
individually be tuned to websites which heavily use JavaScript
functions. It has to be recreated whenever the web application
changes. Noxes [7] instead works as a client-side proxy and
tries to protect against data leakage through detecting and white-
listing valid cross-site requests by analyzing the requested web
page. It has a high false-positive rate and requires often user
interactions.

To sum up builtin security solutions offer protection against
Reflected XSS and widely spread malware, respectively. A better
protection can be achieved by specific browser extensions and
sometimes by some, still rare commercial security solutions,
such as Web application firewalls. Although experts may be
capable to install procedural safeguards for their individual
use, there is currently no solution in sight, which provides the
average user with enough protection against Stored XSS, CSRF,
User Interface Redressing, or targeted malware attacks.

B. Server-side Approaches

The best strategy to protect web servers, of course, would
be to only write secure web applications from scratch. With
appropriate efforts, most of the security problems could be
mitigated by the web application developers, but only if they
are aware of the security problems and have enough resources
to implement countermeasures.

Apart from thoroughly checking all input and output for XSS
and SQL injections, there are other effective strategies at the
server side. For example, a secret can be set by the server for
each resource using CSRF tokens [8]. Only actions that contain
the token will be executed, so that CSRF attempts will fail.
Other examples are hardening Session-IDs to inhibit Session-
Hijacking by guessing the Session-ID, adding frame busting
code or headers to fight Clickjacking, and using different
domain names to partition the application into security realms
with interactions restricted by the Same Origin Policy.

Some modern browsers also support the Content Security
Policy (CSP)7 which restrains the execution environment in
browsers based on explicit policies given in the response, such
as to only include scripts, styles, or media from specific sites, to
forbid inline scripts, or to prohibit the execution of dynamically
created code. Applications often contain an inline script that is
indistinguishable from a script injection. Even if it is only used

6http://adblockplus.org/
7https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-

specification.dev.html



to describe the respective implementation of the application,
it already provides a certain protection. If the application is
changed to a stricter software architecture and the policy is
adapted, CSP provides an extensive protection against XSS.
This requires, however, that application developers are aware
of security problems.

A common protection strategy for the server side is to set up
a Web Application Firewall (WAF) to check input, to add and
verify CSRF tokens, to harden session cookies, and to detect
common attack patterns. If tightly integrated with the web
application, a web application firewall can provide a reasonable
but still insufficient protection. Some web application firewalls
even have a limited ability to adapt themselves through learning
the input data types of the application.

Unfortunatly, resources and knowledge are highly limited in
reality, so the focus of the research is to provide better security
without too much effort. Approaches, such as S2XS2 [9] or
NonceSpaces [10], provide a framework, in which the developer
has to explicitly distinguish between trusted application data
and untrusted external data. He/she has further to specify how
untrusted data can propagate into a dynamically generated
page. Based on these information, the server then can restrict
propagation of unexpected external data. BEEP [11], Blueprint
[12], and the Content Security Policy instead let the developer
specify a security policy which has to be enforced at the client.
These policies allow one to distinguish between application-
specific and external data, and may even restrict executions
inside the JavaScript interpreter. All of these solutions, however,
require changes in the application to make it conform to the
policy.

The server-side proxy XSSDS [13] instead tries to learn the
application-specific JavaScript of the unchanged application by
itself. Thereafter, it allows only known JavaScript. Additionally,
it facilitates to define filters against Reflected XSS attacks
similar to the ones used inside current web browsers. A
similar approach of comparing the received page with the
expected page inside a server-side proxy shows XSS-GUARD
[14]. Instead of learning the application specific script though,
a shadow page based on benign input will be generated using
an adapted application and the real page will be compared
with it.

C. Solutions for Intermediate Devices

A common practice to securely connecting a company
to the Internet is the use of firewalls. While simple packet
filters up to Layer 4 do not offer any protection against
Web-specific attacks, application layer proxies and Intrusion
Detection System (IDS)/Intrusion Prevention System (IPS) with
deep packet inspection capabilities can explore the application
protocols and block or manipulate connections. These systems
are often called Secure Web Gateway (SWG), or increasingly
marketed as Next Generation Firewall (NGFW) or Unified
Threat Management (UTM). They all inspect the traffic at least
up to the HTTP layer and provide thus the possibility to classify
and filter the traffic based on URLs. They are also capable
of scanning traffic for viruses or other malware. Advanced

Table I
ATTACK COVERAGE OF DIFFERENT PLACEMENT STRATEGIES

attack clients intermediate server
systems

major attacks
attacks against servers x
cross-site scripting p p
credential/session prediction x
session fixation x
cross-site request forgery p x
buffer overflow x x
malware p p p
URL redirector abuse x

minor attacks
integer overflows
content spoofing
remote file inclusion x
HTTP response splitting x x
HTTP request splitting x x
null byte injection
routing detour
XML external entities x

x - good attack coverage
p - partial attack coverage

solutions can additionally bridge and inspect Transport Layer
Security (TLS) traffic. Few of them are capable of inspecting
the traffic for Reflected XSS attacks, of normalizing HTML,
and of removing scripts, plugins, or ActiveX embeddings.

Another solution is to crawl the Web in advance to detect
malware. Analysis methods applied are virus scanning, the de-
tection of common exploits, obfuscation patterns, or abnormal
behavior within a sandboxed execution. Results of this analysis
are then provided in the form of URL blacklists, e.g., Google
Safebrowsing8. Since these methods do not integrate real-life
interactions with web sites, they cannot detect attacks on the
application logic, such as CSRF, Stored XSS, or Clickjacking.

Although apparently no current intermediate devices offer
reasonable protection against the new Web 2.0 attacks, there
seems to be no major research in this area.

D. Attack Coverage

Existing protection solutions against the malicious use of
web applications differ in the attack coverage and in placement
strategies. Table I lists the currently known attack methods
based on the classification system of the web application
security consortium9. Attacks against the integrity of servers or
the intermediate devices network infrastructure do not directly
affect the client side, but may result in various attacks against
the client. Therefore, we subsume attacks, such as brute force,
denial of service, HTTP request or response smuggling, path
traversal, predictable resource location, SOAP array abuse, mail
or OS command injections, LDAP, SSI, SQL, XPATH, XML
and XQUERY injections, XML attribute blowup, and XML
entity expansion, as attacks against servers.

8http://googleonlinesecurity.blogspot.de/2012/06/safe-browsing-protecting-
web-users-for.html

9http://projects.webappsec.org/w/tags/show?tag=Threat%20Classification



The upper part of Table I, which is loosely based on the
OWASP Top Ten Project [15], lists the major attacks. With
appropriate effort, applications can be protected fairly well
against the major attacks on the server side. However in real-
life, most servers are not protected in this way. Therefore,
attack mitigation strategies are required at the client side and
in intermediate devices.

IV. OPEN RESEARCH CHALLENGES

To secure web traffic in the Web 2.0 era novel protection
methods are required. Currently deployed solutions do not
provide adequate security.

Of server-side approaches there are only several ones which
usually try to cover application-specific vulnerabilities, such as
insecure cookie flags or missing CSRF protection. Although
it would have been better to fix the Web application itself in
most cases, these approaches nevertheless are reasonable to
secure specific flaws in existing applications.

More effective approaches are based on the distinction
between trusted and untrusted content, but they require modifi-
cations in web applications and browsers. Some of the most
promising ideas led to the implementation of the Content
Security Policy (CSP) in recent browsers which provides a
significantly better protection against XSS attacks, but it lacks
adoption in Web applications. Even if new applications may
use CSP, most existing Web applications will never be adapted.

There is only little research to secure the client side in
insecure web applications. Although valuable context, such as
the application state or other runtime information, is available
at the client side, currently no approach takes the full advantage
of these benefits. Further research is required here. Solutions
for intermediate devices are very rare and currently limited to
specific attack vectors. Their main focus is malware detection,
often based on an offline analysis in combination with URL
blacklists. Single attack vectors, such as reflective XSS, are
sometimes covered as well, but none of the existing approaches
provides a comprehensive protection against existing threats.

The presented approaches and solutions offer only partial
protection using heuristics, require adaptations on client and
server side, or an extensive manual configuration is needed that
only few users are capable to perform. In order to provide a
reasonable protection against web attacks research is required
in the following areas:

• Protection of the web browsers against typical Web 2.0 at-
tacks. There is an urgent need for solutions which provide
solid protection without requiring extensive configurations
through the user. Since the usage of web applications
is highly individual and use patterns change fast, it is
not sufficient to provide this protection only for the most
important web applications.

• Transparent protection against attacks on both sides in
intermediate devices like firewalls. The protection must
adapt itself to individual and fast moving usage patterns on
the client side and continuously changing Web applications
on the server side without losing reliability. Manual
configurations are also not feasible here.

• Creation of secure and easy to use application frameworks
for the server-side to make future Web applications more
secure with less effort.

• Rethinking the interaction between browser, server, and
all the other components of the Web to provide security
by default.

While the chance of a restart are promising it is certainly not
acceptable in practice. Therefore, security solutions have to
start with the mess we currently have.

V. CONCLUSION

In conclusion, it can be said that Web 2.0 security is to
be considered one of the most challenging issues in the field.
Cleaning up the mess (at least partly) is not only a matter of
providing solutions for singular problems and weaknesses. We
identified several open research challenges, most prominently
focusing on real-time identification of active content both at the
browser and at the serve side. One possible way to approach the
mentioned challenges is to investigate more intelligent firewall
systems doing application layer inspection of traffic beyond
application layer, i.e., inspecting contents transported in Web
2.0 application layer protocols.

REFERENCES

[1] CERT, “Malicious HTML Tags Embedded in Client Web Requests,” https:
//www.cert.org/historical/advisories/CA-2000-02.cfm, February 2000.

[2] R. Hansen and J. Grossman, “Clickjacking,” http://www.sectheory.com/
clickjacking.htm, 2008.

[3] P. Watkins, “Cross-Site Request Forgeries (Re: The Dangers of Allowing
Users to Post Images),” http://www.tux.org/∼peterw/csrf.txt, June 2001.

[4] R. Hansen, “XSS Filter Evasion Cheat Sheet,” https://www.owasp.org/
index.php/XSS Filter Evasion Cheat Sheet, April 2015.

[5] P. D. Ryck, L. Desmet, W. Joosen, and F. Piessens, “Automatic and
Precise Client-Side Protection against CSRF Attacks,” in ESORICS, ser.
Lecture Notes in Computer Science, V. Atluri and C. Dı́az, Eds., vol.
6879. Springer, 2011, pp. 100–116.

[6] P. Raman and C. U. (Canada)., JaSPIn: JavaScript Based Anomaly
Detection of Cross-site Scripting Attacks, ser. Canadian theses. Carleton
University (Canada), 2008.

[7] E. Kirda, C. Krügel, G. Vigna, and N. Jovanovic, “Noxes: a client-side
solution for mitigating cross-site scripting attacks,” in SAC, H. Haddad,
Ed. ACM, 2006, pp. 330–337.

[8] OWASP, “Cross-Site Request Forgery (CSRF) Prevention Cheat
Sheet,” https://www.owasp.org/index.php/Cross-Site Request Forgery
(CSRF) Prevention Cheat Sheet.

[9] H. Shahriar and M. Zulkernine, “S2XS2: A Server Side Approach to
Automatically Detect XSS Attacks,” in DASC. IEEE, 2011, pp. 7–14.

[10] M. V. Gundy and H. Chen, “Noncespaces: Using randomization to defeat
cross-site scripting attacks,” Computers & Security, vol. 31, no. 4, pp.
612–628, 2012.

[11] T. Jim, N. Swamy, and M. Hicks, “Defeating script injection attacks
with browser-enforced embedded policies,” in WWW, C. L. Williamson,
M. E. Zurko, P. F. Patel-Schneider, and P. J. Shenoy, Eds. ACM, 2007,
pp. 601–610.

[12] M. T. Louw and V. N. Venkatakrishnan, “Blueprint: Robust prevention
of cross-site scripting attacks for existing browsers,” in IEEE Symposium
on Security and Privacy. IEEE Computer Society, 2009, pp. 331–346.

[13] M. Johns, B. Engelmann, and J. Posegga, “XSSDS: Server-Side Detection
of Cross-Site Scripting Attacks,” in ACSAC. IEEE Computer Society,
2008, pp. 335–344.

[14] P. Bisht and V. N. Venkatakrishnan, “XSS-GUARD: Precise Dynamic
Prevention of Cross-Site Scripting Attacks,” in DIMVA, ser. Lecture
Notes in Computer Science, D. Zamboni, Ed., vol. 5137. Springer,
2008, pp. 23–43.

[15] OWASP, “OWASP Top Ten Project,” https://www.owasp.org/index.php/
Category:OWASP Top Ten Project, 2012.


