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Abstract. Most sensor network applications are dominated by the acquisition of
sensor values. Due to energy limitations and high energy costs of communication,
in-network processing has been proposed as a means to reduce data transfers.
As application demands may change over time and nodes run low on energy,
get overloaded, or simply face debasing communication capabilities, runtime
adaptation is required. In either case, it is useful to be able to migrate computations
between neighboring nodes without losing runtime state that might be costly or
even impossible to recompute. We propose stateful mobile modules as a basic
infrastructure building block to improve adaptiveness and robustness of in-network
processing applications. Stateful mobile modules are binary modules linked on
the node itself. Even more importantly, they can be transparently migrated from
one node to another, thereby keeping statically as well as dynamically allocated
memory. This is achieved by an optimized binary format, a memory-efficient
linking process and an advanced programming support.

1 Introduction

A large fraction of Wireless Sensor Network (WSN) applications target long-term
monitoring of environmental conditions. Typical examples are monitoring of trees,
volcanoes, glaciers, and buildings [1]. All these applications collect various sensor values
and transport them to more powerful gateway nodes at the edge of the sensor network.
Energy is commonly the limiting factor of long-term monitoring experiments in the
context of WSNs. Therefore, reducing communication, which is one of the most energy-
intensive tasks in this domain, is crucial. In-network processing, the pre-processing
of sensor data inside the network is a powerful technique to significantly reduce the
amount of data to be transferred [2, 3]. However, in many scenarios the optimal pre-
processing has to be determined at runtime. Furthermore, nodes in this domain can
run low on energy, get overloaded, or face debasing network conditions. In all these
cases the relocation of pre-processing operators is a basic building block to continue
service provisioning. Especially challenging in the context of in-network processing is
the demand to keep application state, despite relocation. Otherwise, the result is data
loss, which can cause blind spots in monitoring experiments decreasing the overall data
quality and in the worst case losing important events thereby rendering them useless.
Even if it is possible to replace lost data, this can take a considerable amount of time and
resources, e.g., using a pause-drain-resume strategy [4].

In order to address the aforementioned demands for adaptability and to minimize
data loss, resource-efficient system support has to be provided that enables the dynamic



deployment and migration of applications in a state preserving manner. However, even the
most basic task to fulfill the goal of dynamic stateful migration, the software deployment,
is cumbersome in sensor networks. Code has to be transferred to target nodes, requiring
non-negligible communication and energy efforts. As a consequence, several research
activities targeted to provide mechanisms and infrastructures to efficiently deploy
software in WSNs at the level of system images [5], modules (pre-linked or linked
at runtime) [6–8], and byte code [9, 10]. Only, a limited number of systems thereby
preserve the execution state of updated code [7, 11], and they all fall short on migration
support. Thus, application developers have to do this manually by providing custom
serialization routines [12] or rely on a high level byte code language, which has the
drawback of a resource-intensive interpretation and a considerable overhead due to the
required runtime environment [13].

Taking these facts into account, we propose the concept of stateful mobile modules.
It enables dynamic migration of stateful, native modules inside a WSN. This is achieved
by combining a set of techniques starting with a size-optimized binary format and a
memory-efficient linking process. The latter provides the freedom to deploy the same
native code on multiple nodes and migrate code inside a WSN as needed. To enable
transparent migration of in-memory module state, we provide a programming model
similar to high-level languages, such as Java and C#, for supporting serialization. All
relevant statically allocated variables that have to survive a migration are marked in the
source code. For dynamically allocated memory and pointer variables therein, additional
actions are needed. Here, we use a smart-pointer approach provided by an easy to use
API. We implemented stateful mobile modules and the associated programming model
as a resource-efficient layer on top of the Contiki Operating System [14] and evaluated
its benefits in a realistic in-network processing scenario.

In the remainder of the paper, we first outline an introductory application scenario.
Sections 3 and 4 introduce our system support for resource-efficient linking and for
runtime migration. Next, we detail evaluation results (Section 5) and briefly summarize
related approaches (Section 6). Finally, Section 7 concludes the paper.

2 Overview

In the following, we outline a data stream processing example, which represents a typical
use case for stateful mobile modules. Next, we summarizes the derived goals that we
took into account for building the proposed system support.

2.1 Environmental Monitoring Stream Processing Example

Fig. 1 depicts a distributed stream processing query targeting the long-term monitoring
of microclimate changes on a rock. The query is composed of a set of connected stream
operators distributed over seven nodes: one taking the role of a gateway to the sensor
network and six additional nodes that build the actual WSN. Besides receiving data from
the network, a server connected to the gateway controls the placement and the wiring
of the stream processing operators. These operators are structured as stateful mobile
modules so they can be dynamically distributed.
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Fig. 1. Migrating of the AGGREGATE operator due to system resource shortage at its current node

In our example scenario, the outer left nodes create three streams each providing
temperature data: S1, S2, and S3. The distributed query creates outputs values if the
temperature of S3 provided by a sensor placed near the ground is lower than in the area
of S1 and S2, both located on top of the rock. A JOIN operator (O1) delivers these
items to a sensor node that is connected to the gateway (GW). In our scenario the values
of S1 and S2 might be erroneous due to isolation (e.g., only one sensor is exposed to
direct sunlight), so we implemented a simple way of sensor data cleaning by using a
minimum function provided by FUNCTION MERGE and an AGGREGATE operator for
smoothing outliers (e.g.,cause by clouds). Both are placed on an intermediate node on
the stream path (O1).

In the following, the migration of the AGGREGATE operator instance is described.
It calculates the mean of a configurable number of samples. For example, due to
energy reasons and debasing communication, the central server decides to integrate
a neighboring node (O3) into the distributed query by initiating the migration of this
operator. This includes transferring the module and its state, and rerouting the data
flow. Furthermore, the new node has to receive the results of FUNCTION MERGE and to
deliver the results to the host of the JOIN operator. Other scenarios might include the
migration of FUNCTION MERGE or relocation of the JOIN operator. In all these cases
stateful mobile modules enable a code and run-time state migration that is transparent
from an operator’s point of view.

2.2 Goals

From the described scenario and targeted more complex ones [15], we derived the
following goals and requirements for providing stateful mobile modules:

Distribution of modules. Modules generated on a host outside the WSN can be sent
to one or more sensor nodes. Furthermore, module code can be shared among nodes
by direct exchange. Modules should only require minimal runtime support besides the
Operating System (OS) and need to be provided in a space-efficient format. The former
avoids overhead during execution, e.g., opposed to a byte-code-based approach, the latter
targets low communication costs.

Linking, loading, and running of modules. Consequently, modules should be
linked on the node. This allows the use of the same module on nodes with slightly
different kernels, e.g., different minor versions or supported hardware. Additionally, the



linking process should be memory-efficient and fast. The former leaves more space for
applications the latter enables faster integration and therefore implicitly aims at reducing
energy demand.

Migration of modules. It should be possible to migrate a module to a new node
with minimal disruption, thereby preserving its execution state. This means that in-
memory data, including static variables as well as dynamically allocated memory, is
automatically copied to the new node and can be utilized right away. The rationale
behind this requirement is not to lose costly computed state information, e.g., gained
by long-term monitoring, to relief application developers from the burden to provide
custom operations to preserving data, and, lastly, to keep services permanently available.

3 System Support for Mobile Modules

In the following, we detail our support for resource-efficient distribution of native
modules using our custom object format (Minilink) and a memory-optimized node-level
linking process.

3.1 Background: Linking and Loading in WSNs

When compiling a C/C++ file into an object file, the compiler translates the source
code into binary code whereas the linker is responsible for the actual memory layout
making the code ready for execution. Thus, the compiler writes placeholders into the
code and adds an entry for each variable and function to the relocation table. Further
on, all functions and variables that might be externally accessed are added to the symbol
table. Next, the linker uses the symbol tables and the target memory location of the code
to resolve all references in the relocation table for substituting the placeholders.

For adding a new module to a sensor node, it must be placed in memory and linked
against the functions provided by the kernel. If both the modules and the kernel are
known in advance, this can be performed at a different machine outside the WSN (pre-
linking) [7]. However, even slight differences, such as the use of different compiler or
linker versions, can cause incompatible modules. Additionally, the placement of modules
is fixed which can lead to collisions due to the limited available memory if further
modules are added over time.

Alternatively, one can link on the node itself (runtime-linking), which has been proven
an effective way of distributing code in a network with slightly heterogeneous kernels [8].
Dunkels et al. implemented a linker for the Executable and Linking Format (ELF) format,
which they identified as too resource consuming for sensor nodes (see also Section 5).
For this reason, they increased the efficiency by introducing Compact ELF (CELF), a
custom ELF inspired binary format that is tailored to a 16-bit address space instead
of 32 bit. However, a small code size is only one aspect that has to be taken care of,
because the symbol table of a typical sensor OS kernel is several kilobytes and the linking
process requires random access to the symbol table and the linked module. Whereas the
first aspect substantially reduces the available memory, the second leads to a time and
energy consuming linking process. This is even worsen by the fact that an ELF binary
is subdivided into multiple sections, e.g., different program section like code (.text)



and variables (.data). This design was made for flexibility and is not suitable for
resource-restricted systems that rely on flash memory. First, flash can typically only be
modified at the granularity of segments and, secondly, it is usually not possible to buffer
the whole program section of a module in RAM. Due to the use of multiple sections, this
causes a lot of costly random access during the linking process of a module that usually
has to reside on a slow external flash.

We address both problematic aspects of runtime-linking by an optimized symbol
table and a further compacted binary format. In combination, this enables an efficient
linking process building the essential basis for supporting dynamic migratable modules.

3.2 Resource-efficient Linking using Minilink

In the following, we describe the different aspects of Minilink.
Placement of the Symbol Table. The symbol table of our implementation basis, the

Contiki OS kernel, occupies about 5 to 6KB of memory. This is rather large compared
to the 48KB internal flash of the TelosB1 node, the platform we used for evaluations.
However, most sensor nodes are equipped with external storage. The TelosB platform,
for example, has an external flash of 1MB, dedicated to store data. As the symbol table
is only accessed during the process of linking, it can be placed on the external flash. The
latter saves valuable internal memory for running applications.

Optimizing the Symbol Table. Many functions provided by the kernel have a
common name prefix to indicate their relation to a module, e.g., eeprom read and
eeprom write. As a consequence, we order the symbol table alphabetically and
instead of repeating a matching prefix, we store the size of the common prefix and
the remainder of the function name. The symbol table in Fig. 2 shows an example for
the eeprom function set. Each of the three functions starts with eeprom . The first
entry shares no characters with its previous entry, the following two the leading 7. Thus,
11 byte can be saved (14 saved by compression, 3 lost for indicating the prefix size).

In addition, we take advantage of the fact that symbol names are encoded in the
7-bit ASCII character set [16] by using the unused last bit to terminate them. This
saves one byte per table entry. Finally, we exploit that symbols are sorted by name and,
therefore, symbols of the same module are in consecutive order. Accordingly, they are
also co-located within the code and can, under some checked precondition, be addressed
relative to the previous symbol. This demands for only one byte instead of two bytes for
the absolute address.

Stream-based Sequential Linking. Due the outlined memory-intensive linking
process of ELF binaries, we propose a stream-based sequential linking approach,
meaning that each byte needs only to be read once. Our linking process works in
two stages: First, an address index is built. Secondly, the different sections are linked to
their destination in a sequential order. To achieve this, our Minilink format structures
modules in three sections: A header containing general information about the module,
an alphabetically sorted and compressed list of used symbols, and the binary data itself.
In contrast to the ELF file format, we do not have a relocation table as the relocation
entries are directly woven into the binary data. The header contains only information

1 The Xbow TelosB was formerly sold by moteiv under the name Tmote Sky.



0x1022

0x1033
0x1055

<0>eeprom_init<0x1022>
<7>read<0x1033>
<7>write<0x1044>
<1>timer_set<0x1055>

<0>eeprom_init
<7>read
<1>timer_set

00  4d4c 3d53 ceea 000a 0206 000a 000c 0000
10  0000 000f 4500 5f56 4f4d 5544 454c 435f
20  444d 0000 494d 5f47 4f44 454e 0400 4552
30  5551 5345 0054 6500 6974 656d 5f72 6572
40  6573 0074 7307 7465 0800 6f74 0070 6d00
50  6769 6d5f 0502 005f 6e65 0064 7000 6972
60  746e 0066 6f02 6563 7373 635f 7275 6572
70  7405 0500 0700 6e08 006f 050c 0001 7200
80  6d69 6165 6464 5f72 6d63 0070 6f0a 7970
90  0900 756e 6c6c 0000 6573 736e 726f 5f73
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Fig. 2. Mapping used for relocation

that is essentially needed to link the module: the size of each section, the module name,
the entry point, and the number of required external symbols. Based on this information,
the linker ensures that the node offers enough memory to link the module.

Building the Symbol Index. A module starts with a list of symbols required for
linking. They are saved applying the same concepts as used for compacting the symbol
table but miss address information. The latter is provided by matching the module
symbols against the symbol table. As a result, we get the address index that contains all
resolved symbol addresses of a module and builds the input for the linking phase (see
Fig. 2). As both lists are ordered alphabetically they can be processed in a sequential
order. Together with the module header, the address index is the only data that has to
reside in RAM during this process.

Linking Using the Symbol Index Using Minilink, all relocation entries are directly
woven into the binary data. To identify them, these two bytes large entries are marked by
a preceding escape sequence. We chose the escape sequence to be h05 as this is neither
a binary command on the TelosB platform nor is the escape-character itself commonly
used in ASCII strings. Still h05 can be encoded by h050000. The access to the address
index starts with one, as zero is already reserved.

Fig. 2, (1) shows the escape sequence for the second symbol. Accordingly, the
sequence h050200 is replaced by the second value of the address index h3310 that
further on is written to memory. Sometimes, not only a symbol is referenced by a
relocation entry, but additionally an offset is added, e.g., when accessing an element of a
struct or array. For these cases, we reference the address index with an offset, and this
time the value of the word following is added (2). Higher escaped values map to the
different sections of the module containing the program code or variables (3).

4 Stateful Migration

In the context of in-network data processing, the migration of state in terms of statically
and dynamically allocated variables is important as these often capture long-term
execution results. In contrast, the execution stack representing the call history is of minor
importance as applications in this domain are rather small and moderately complex.



Furthermore, transferring the stack would introduce additional costs in terms of data
transfer. Therefore, we support weak migration [17], meaning only application state
is transferred but no execution-dependent state, such as values on the stack and CPU
registers. This is also in line with the lightweight thread model of Contiki. Here, so-called
Protothreads [18] lose their stack and register values when yielding the CPU in favor of
another thread. However, once a Protothread is resumed, it still continues execution at the
same position the CPU was released. Accordingly, we keep this behavior by restarting
an application at the same point where it was suspended before migration. Thus, from
an application programmer’s perspective, releasing the CPU for another application
and migrating to a different node are equivalent: in both cases, the stack is lost and the
execution is continued immediately after the last executed statement.

In contrast to the execution stack, the handling of pointers still needs special attention
when migrating modules using Protothreads. To keep them valid despite migration,
one option would be to place data at the same memory address. Due to the limited
available resources and the use of multiple modules as well as the absence of a Memory
Management Unit, this is not practical for sensor nodes. However, if variables are
dynamically allocated there is no way to avoid the use of pointers. Therefore, mechanisms
must be provided to properly access the data despite relocation. If the placement of
pointers is known, they can be adjusted to the new memory layout. This reduces the
burden for the developer to the necessary minimum.

4.1 General Process and Programming Model

In general, it is not reasonable to migrate all statically and dynamically allocated
variables. If values can be easily recomputed or are dispensable to provide a service, they
should be excluded from migration. We therefore provide two macros (MIGRATABLE
and MIGRATABLE POINTER), which assign a section attribute to the variable. This
attribute instructs the compiler to put a variable in a special memory section. These extra
memory sections are supported by our linker and handled separately. During migration
only those two sections are copied to the target node, and the one containing the pointers
is adjusted to the new memory layout.

Frequently, dynamic memory is used, which is allocated at run-time from heap
space. To support the migration of dynamically allocated memory, we built two wrapper
functions (migmem malloc and migmem free). Two extra bytes are used to add the
newly allocated memory block to a linked list, which is managed by our framework and
assigned to the module. Finally, when implementing a linked list and similar complex
dynamic data structures, it is very likely that pointers reside inside the dynamically
allocated memory. We provide a function (migmem register) to make pointers
placed in heap memory known to our framework. It saves the address of the pointer in a
special array. The memory for the array is also taken from heap memory and dynamically
adjusted in size. The list of registered pointers is transmitted and the pointers adjusted
during the migration process. Of course, it is also possible to “unregister” a pointer.
Furthermore, pointers are automatically removed from the list when freeing memory
containing a registered pointer.

Preparation. Although we are able to migrate variables and execution state, it is
not possible to migrate state that is directly bound to the node itself, such as a network



connection and a file handle. For this reason, a module is informed by a MIG REQUEST
event that it is about to be migrated. It then has the option to take appropriate actions,
e.g., to close open sockets, before it is moved to a new node. In the case of ongoing
communication with external hardware, the module is able to postpone migration by
calling mig delay(). It will automatically get a new migration request a few seconds
later. The module can also deny migration by calling mig deny().

Migration. Before the actual migration, the module is linked, but not started on
the target node. The linker already allocates both memory sections containing the data
and pointers. The source node serializes all memory blocks and also transmits the old
memory address to the target. The static sections are copied to the memory allocated by
the linker while memory for the other blocks is allocated from the heap memory. The
old addresses are used to build a lookup table to map the addresses of the source node to
the target node. Using this lookup table, the pointers in the pointer section are adjusted.
In a next step, the list of pointers registered at runtime is transmitted. The lookup table
must be used to find their new location, before they can be adjusted. Finally, the state of
the Protothread is received and the local thread structure is updated accordingly.

Continuation. After the module is successfully migrated to the new node, it
continues to run and receives a MIG SUCCESS event so it can reestablish its connections
and perform other preparations, e.g., initialize variables omitted from migration. The
thread on the old node will be terminated and its memory freed. If an error occurred
during migration, e.g., as there is not sufficient memory on the target node, the migration
is aborted and the module continues to run at the original node. To notify the module
that the migration was aborted, it receives a MIG FAILED event.

4.2 Application Example

To illustrate our programming support, we describe an application example based on
the environmental monitoring stream processing example presented in Section 2.1. We
concentrate on the AGGREGATE operator as this one is migrated in the scenario.

Fig. 3 shows the simplified listing of the AGGREGATE operator. It takes a number
of samples (window), calculates the average, and forwards the result. The number
of samples taken to calculate the average can be adjusted at runtime. Therefore, the
memory used to save these variables is dynamically allocated. Our data stream framework
abstracts the network traffic and sends commands either directly to an operator or
broadcasts incoming data to all operators hosted by the node.

In the first three lines, the necessary variables are defined. The in-variable is a pointer
and is therefore marked as such. The other two save the window size and the position to
write the next incoming data. Lines 5-7 and 23 contain macros generating the structures
needed by the Contiki OS to manage the Protothread. In line 11, the operator waits for
an incoming event. If the event is a command, the data pointer contains additional data.
If the operator is instructed to resize its window size, the old memory is freed (line 16)
and a new memory is allocated (line 17). For simplicity of the example, the data is lost
upon window resize. As connection handling and all further system-dependent tasks are
performed by our framework, there is no need to inform the operator about a migration.
Thus, due to migration support of statically as well as dynamically allocated memory, a
migration is fully transparent to the operator.



1 MIGRATABLE_POINTER static u16 * in;
MIGRATABLE static u8 pos;

3 MIGRATABLE static u8 window;

5 PROCESS(p_migagg, "Mig.Aggr");
AUTOSTART_PROCESSES(&p_migagg);

7 PROCESS_THREAD(p_migagg, ev, data)
{

9 PROCESS_BEGIN();
while(1) {

11 PROCESS_WAIT_EVENT(); // Wait for an event
if(ev == EV_MODULE_CMD) { // A command event

13 if(*data == MOD_CMD_SIZE) { // Resize window command
window = *(++data); // Set window size

15 pos = 0; // Reset write position
if(in != NULL) migmem_free(in); // Free old window

17 in = migmem_alloc(window * 2); // Allocate new window
}

19 else if(ev == EV_MODULE_DATA) { // Handle incoming data
in[pos++ % window] = *(u16 *)data; // Copy data

21 // Calculate average and send it
} } }

23 PROCESS_END();
}

Fig. 3. Simplified listing of the data stream AGGREGATE module

5 Evaluation

While our implementation runs on the native TelosB hardware, we performed most of our
evaluations on top of the Cooja [19] simulator. Cooja utilizes the MSPsim simulator [20],
an instruction level simulator for the MSP430 micro controller. Thus, code can be added
and executed at runtime. For our evaluation, we considered the basic characteristics of
our binary format, the linking process and the support for migrating stateful modules.

5.1 Support for Linking and Loading

Overall Resource Demand. Our system support for sending, receiving, linking, starting
and stopping modules as well as migration is 7KB in size and has a memory footprint
of 160B. It also includes helper functions such as for remote monitoring (e.g., listing
the currently installed modules) as well as commands for managing the external flash.

Symbol Table Footprint. To measure the memory savings provided by our
compression of the symbol table we analyzed the symbols of a “hello world” kernel using
the default kernel for the TelosB platform, having 316 symbols in total (see Table 1).

The Contiki ELF-Linker stores all kernel symbols in an array containing the address
and a pointer to the string. While this improves performance when searching for a certain
symbol, we omit this additional pointer, which saves two bytes per symbol. The reason
why the use of the Minilink format reduces the size not by 623B (symbols × 2), but
only 573B, is because of our slightly larger header and 4 symbols2 that are excluded
in the Contiki symbol list. The largest savings are achieved using our simple prefix-
compression (prefix). As the character set for symbols is limited to 7 bit ASCII we

2 bss size, data load start, data size and stack



Size Saved (relative) Saved (total)
Contiki 5732B
Minilink 5159B 10.00% 10.00%
Minilink+option(prefix) 3399B 34.12% 40.70%
Minilink+option(prefix,7bit) 3083B 9.30% 46.21%
Minilink+option(prefix,7bit,offset) 2918B 5.35% 49.09%

Table 1. Comparison of the Contiki symbol table and the Minilink symbol table.

Application hello world mod agg mod agg + rudolph2
code size 74B 910B 2230B
symbols 1 15 36
relocations 5 48 145

ELF (overhead) 752B (+916%) 2956B (+225%) 6028B (+170%)
CELF (overhead) 179B (+142%) 1611B (+77%) 3793B (+70%)
Minilink (overhead) 96B (+30%) 1164B (+28%) 2772B (+24%)

Table 2. Comparison of ELF modules and Minilink modules for modules of three different sizes.

can use the 8th bit to substitute the NULL-terminator (7 bit). Finally, we are able to
save some extra bytes by using relative addressing where possible (offset). In sum,
our symbol table is almost half the size of the Contiki symbol table. This speeds up the
linking process as only half the data must be transferred from the external flash. These
savings are even more valuable if the symbol table must be saved together with the
kernel on internal flash, e.g., if there is no external flash available.

Minilink Module Footprint. We also compared the size of ELF modules provided
by Contiki and their optimized variant CELF with our Minilink format (see Table 2).
As a first sample, we chose a hello world module, which basically outputs a “Hello
World” string. The next sample is a module implementing the AGGREGATE operator,
as outlined in the stream processing example (mod agg). For evaluating a larger module
we also linked the rudolph2 (and polite) network protocol [21] to the AGGREGATE
operator as one module. Further on we added a call to watchdog periodic() to
this module to evaluate the symbol table lookup performance (see following paragraph
on Minilink linker performance for details).

The code size represents the size of the program and the data section (not .bss).
This is the minimum size even a prelinked module must have without its header. We
also list the number of used symbols and relocations. The numbers in braces represent
the overhead compared to the minimum prelinked module. Apparently the ELF has a
big static overhead. This has a huge impact on small modules, as can be seen for the
hello world example, with an overhead of over 900%. While CELF performs much
better, Minilink has an overhead of only about 30%.

Minilink Linker Performance. Table 3 compares the time required to link a module
using the previously introduced examples. We measured the duration to build up the
address index and the linking process independently. Contiki OS provides the Coffee file
system, which has a high standard deviation when opening file handles (132± 36.6ms
according to Tsiftes et al. [22]) therefore we excluded these from our measurements.



However, the time to access the actual data on the external flash is included. When
calculating the percentage of relocations, it has to be taken into account that each
relocation results in a memory address and is therefore two bytes in size. It can be seen,
that the time to build up the address index does not entirely depend on the number of
different symbols, but where the last used symbol is located in the symbol table. The
reason for this, are the sorted symbols. Once a symbol is found, the next symbol in the
module must be further down the symbol table and there is no need to restart the search.
The linking process itself scales with the size of the module. This is mainly due to the
slow access to flash. Half the time is spent writing to internal flash.

5.2 Stateful Migration

The migration support is responsible for 2 of the 7KB needed for the module and
migration support. It includes all functions required for the serialization of modules.

We analyzed the migration of the mod aggr-module. It has 8B of data, one pointer
and 10B allocated from heap, which totals in 20 byte that must be migrated. The size
of the serialized data was 44 byte. This is mainly caused by static overhead, like the
individual sizes and addresses of the different memory sections (6 × 4B), the total
number of dynamically allocated memory blocks and registered pointers. The only
additional overhead are 4 byte (address and size) for every additional dynamically
allocated memory block.

A single-hop migration takes about 1 s. Almost all of the time is spent due to the
network stack: To save power, each node has a short listening period every 300ms. Also,
the route is not previously known to the mesh network stack and has to be found first.
Even under optimal conditions (route known, and the target listening), the migration
would take at least 19ms. Thereby, less then 2ms is caused by our migration support. The
serialization itself takes about 0.4ms and the deserialization – including the allocation
of additional memory and adjustment of the pointer – takes 0.6ms.

We also compared our approach to the one suggested by [12]: Their framework
provides a buffer and the module does the serialization by itself. We implement a very
simple serialization using memcopy() and all variables placed in a struct without any
error handling. This approach adds another 183B to the mod aggr Minilink module
(+208B in the case of ELF ).

Module hello world mod agg mod agg + rudolph2
Symbols 1 14 27
Last symb. puts rimeaddr copy watchdog periodic
Match symb. 55ms 82ms 114ms

Size (text + data) 78B 910B 2230B
Relocations 5 (12.8%) 48 (10.6%) 119 (10.7%)
Link 5ms 67ms 159ms
Bytes/ms 14.4 13.6 14.0

Table 3. Comparison of the time to build the address index and linking for different modules.



6 Related Work

We approach related work by examining how code modules are deployed and updated in
WSNs and then investigate systems supporting state migration.

Loading Code at Runtime. Using a Virtual Machine (VM) is one of the most
flexible solutions for code deployment as it typically employs some from of high-level
byte code that is less machine and OS dependent than plain native code. Furthermore, due
to its higher expressiveness, the code size of a module is usually smaller and consequently
less data needs to be transferred. In consequence, several VMs are available for sensor
networks, e.g., Maté [9] and VM* [23]. In [8], VMs are compared against runtime
linking of native modules, showing that installing a module using a VM can be more
efficient than linking in terms of integration time, but offers less performance at runtime.
Our work reduces the downsides of runtime linking while retaining the performance
offered by native execution.

SOS [6] is one of the first WSN-class OSs that has native support for modules. Thus,
single modules can be added without affecting the rest of the system. A limited number
of kernel functions are exported using a jump table. All other function addresses are
resolved at runtime using string comparison and a lookup table. Once resolved, function
addresses are cached to speed up calling functions. Still, this entails a runtime overhead
for every function call. Further on, all strings that are needed to resolve function calls
must be saved in the internal flash.

Dunkels et al. [8] have built a runtime linker for ELF-based modules on top of the
sensor OS Contiki. However, the ELF binary format is rather resource consuming. The
symbol table for a standard Contiki kernel requires about 5KB of flash memory and an
ELF-module is normally more then twice the size of the resulting binary file. Accounting
these facts, Dunkels et al. proposed an ELF inspired binary format called CELF, which
is optimized for 16 bit microcontrollers. Dong et al. [24] also proposed an optimizing
the ELF format that kept the basic design. However, they pre-fill the placeholders of
a module with concrete addresses. This combines the advantages of pre- and runtime
linking: If the correct kernel is installed, the module can be copied without linking;
otherwise, the module can still be linked.

Based on the BTnut3 we have built a host-based linker, which generates binary
modules that are custom-tailored for a remote node [7]. This solution misses the flexibility
provided by a node-based linker. However, only the final code has to be transferred,
which further on can be directly executed. In sum, none of the presented approaches
offers such a highly optimized binary layout for native modules like Minilink and a
tailored memory-efficient linking process.

Stateful Migration. Chien-Liang et al. [13] proposed system support enabling the
mobile agent paradigm in sensor networks. This was achieved using a VM concept with
a dedicated instruction set that is based on Maté [9]. This way, code can be immediately
executed; and it is portable so it can be shared between different nodes. However, this
higher layer of abstraction adds a considerable run time overhead.

The closest related work to our knowledge is UbiMASS [12]. UbiMASS is a
framework for Contiki OS supporting migration of agents at runtime – something,

3 http://www.btnode.ethz.ch/



that can easily implemented with our approach. We believe our approach is superior
in three main aspects: Firstly, the Contiki linker, which’s file format we have proven
inefficient, is used. Secondly, the developer of the agent must do the serialization of data.
Meaning, instead of just marking each variable as migratable it must be passed to special
function and recovered manually after migration. Thirdly, UbiMASS only supports the
migration of integer and string variables, while we can migrate any data type, and even
pointers if there were made known to the framework.

7 Conclusion

In-network processing of sensor data is a powerful technique to enable long-term
monitoring using WSNs. However, changing runtime conditions demand for flexible
state-preserving relocation of pre-processing modules to enable continuous monitoring.
We presented a resource-efficient solution based on stateful mobile modules. At its core,
we provide a size-optimized binary format and a memory-efficient linking process
together with runtime support to migrate statically allocated variables as well as
dynamically allocated memory. Finally, stateful mobile modules can be seen as a novel
approach, which give application programmers the convenience to implement migration-
enabled stateful applications using a simple API.
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