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Abstract—Nanomachines are envisioned for a variety of appli-
cations in the industry and health sectors operating as sensors
and actuators. Considering their potential mobility, it is relevant
to study the capability of nanomachines to cooperate in molecular
communication scenarios. To this end, we provide new insights
into the leader-follower dynamics when a mobile leader node
moves randomly in three-dimensional space and emits molecules
into a diffusive environment to send information about its position
to a follower node. In this paper, we investigate the random
distance between the two nodes due to decision errors at the
follower and analyze an upper bound for the average distance
as a function of time. Simulations are provided to validate our
analytical results. Moreover, by comparing to the benchmark
scenario of uncoordinated movement of leader and follower, we
investigate for which parameters the follower can reliably follow
the leader.

I. INTRODUCTION

Recently, the use of nanomachines has become a focus of at-
tention with a variety of applications within future generations
of wireless networks [1] and health care systems [2]. Advances
in synthetic biology allow for the realization of communication
components [3], thus, enabling nanonetwork infrastructures.
Furthermore, the dynamic capabilities of nano-sized nodes
enable the controlled mobility of nanonetworks boosting ap-
plications in industrial environments like detection of corro-
sion, or damages in pipes, and their repairing as well [4].
In biomedical applications, these mobile nanonetworks are
expected to locate and monitor targets that can dynamically
appear, move, or disappear like pathogens, infectious micro-
organisms, chemical compounds, or cancer cells in the human
circulatory system [5].

In mobile nanonetworks, it is crucial that nanomachines
exchange information to coordinate as a group. However, the
inherently dynamic environment results in variable channel
conditions. The channel variability impacts the communication
performance impeding their ability to communicate and coor-
dinate their operations. These aspects have been theoretically
addressed through deriving the time-varying channel impulse
response [6] and related metrics such as the received signal
strength [7].

These theoretical results provide the basis for optimizing de-
sign parameters for specific mobile molecular communication
schemes, including the design of an optimized threshold [8],
and evaluating the system performance in terms of the bit
error rate [9] and achievable rate [10]. Also, transmission with

a differential encoding [11] or by using different types of
molecules [12] has been investigated and reception has been
proposed exploiting multiple measurements over time [13]
or using adaptive signal detection techniques [14]. These
solutions for point-to-point connections facilitate cooperation
among mobile nanomachines. Moreover, using different types
of molecules, communication strategies have been devised for
efficient spreading of several mobile nodes and to lead them
to fixed [15], [16] and moving [5], [17] targets, and poten-
tially incorporating relay nodes to extend the communication
range [18]. Tracking the target node, also referred to as the
leader in the following, can be realized through a variety of
mechanisms regarding the communication of the leader node’s
position to the follower node. For instance, the follower node
may track the diffusing molecules of the leader node through
their gradient [15], [16], or the leader node may encode its
current position and send it via diffusion to the follower node
via a specific modulation technique [19].

For proper cooperation between the nanodevices, the dis-
tance between the leader and follower needs to be kept small,
which is difficult since distortions arise from the random time-
varying channel, noise, and interference. Moreover, estimation
errors at the follower increase the distance between leader
and follower which in turn impacts the estimation errors such
that the follower can get lost. Since, studying the distance
between leader and follower over time has only been studied
through simulations so far, in the following, we want to
consider a simple leader-follower system where the leader
is mobile and sends time-periodic position updates to the
follower. To this end, we propose a low-complexity leader-
follower communication scheme where the leader and follower
move in discrete spatial steps and information on the position
of the leader is encoded in the performed jumps of the leader
node. Moreover, considering the randomness of the leader
node’s position, we derive an upper bound for the average
distance between leader and follower, as a function of time,
and validate our results by simulations.

This paper is structured as follows. The leader-follower sys-
tem model is introduced in Section II. Tracking of the leader
by the follower is analyzed in Section III, and numerical results
are provided in Section IV. Finally, Section V concludes this
paper.
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Fig. 1. Illustration of the time varying position of the leader node and the
varying distance.
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Fig. 2. Constellation to encode the leader’s positions. a) Total of quantified
jumps. b) Binary code for the quantified jumps.

II. SYSTEM MODEL

In this section, we introduce the leader-follower scenario
and provide the underlying signal model.

A. Leader-Follower Scenario

We consider the scenario in Fig. 1, where for three time in-
stances t1, t2, and t3 the position of the leader, denoted by LN ,
and of the follower, denoted by FN is sketched. The position of
leader and follower are denoted by pL(t) = [x(t), y(t), z(t)]
and pF (t), respectively. The distances between leader and
follower, corresponding to these time instances, are denoted
by dt1 , dt2 , and dt3 , respectively. It is assumed that at time t1,
the leader starts transmitting to the follower the next position
increment pL(t2)− pL(t1). After transmission and reception
of the information representing this position increment, leader
and follower move to the actual and estimated position,
respectively. In this way, without detection errors, the distance
between leader and follower would be constant over time.

After communicating the next position increment at time
ti−1 to the follower, the leader updates its current position for
time ti as follows.

pL(ti) = pL(ti−1) + ∆L, (1)

where ∆L = [∆x,∆y,∆z] is the step vector with position
increments ∆x, ∆y , and ∆z , randomly chosen from a uniform
distribution in the set {−∆, 0,∆}. Vector ∆L is also referred
to as jump in the following and can take on any of the
coordinates represented in Fig. 2 a). In other words, we
assume a discrete spatial grid with distance ∆ between two
neighboring points and movement with no preferred direction
of the leader. Moreover, we assume that the step size ∆ is
chosen as [2]

∆ =
√

2DTx∆t, (2)

where DTx is a diffusion coefficient modeling the dynamics
of the transmitter movement and ∆t is the discrete-time
step. This discrete-time step is assumed to represent the time
duration for the leader movement, as well as for transmitting
its position increment, the duration of which the leader stays at
the same position. Then, for the time instances defined above
we have ti = ti−1 + 2∆t, i.e., during time ti−1 and time
ti−1 + ∆t the leader stays at position pL(ti−1) and transmits
its position increment to the follower and then during time
ti−1 + ∆t and time ti−1 + 2∆t, the leader moves to the next
position pL(ti).

After detection of the information representing the position
increment at time ti−1 + ∆t, the follower will move time-
synchronous with the leader in the estimated direction ∆Rx

and update its position accordingly as

pF (ti) = pF (ti−1) + ∆Rx . (3)

Communication between leader and follower works as fol-
lows. The jump vector ∆L, is encoded in a 6-bit sequence,
as depicted in Fig. 2 b, where a Gray mapping [20] is applied
to reduce the impact of decoding errors, i.e., the encoding
of neighboring constellation points differs in one bit only.
Considering the fixed time step ∆t of the leader movement,
the resulting bit duration is given by Tb = ∆t

6 . For modulation,
the leader employs on-off keying to send the 6-bit sequence
representing the jump to the follower. In this way, a total of
NTx molecules will be released into the environment when
transmitting a one, and no emission will be made when
transmitting a zero. Once released at τ = jTb, the molecules
will diffuse with a diffusion coefficient D, and some will arrive
at the follower node. For each bit, the leader will wait for the
time duration of Tb before transmitting the next one and also
before moving to the next position.

For signal reception, the follower is modeled as a trans-
parent sphere with volume VRx = 4

3πr
3, where r is the

radius of the sphere. We assume that the receiver is able to
sample synchronously the received signal at the peak time of
the channel impulse response, denoted by Tdτ . This may be
accomplished when the receiver samples the incoming signal
with a sufficient rate to distinguish the peak, which may



require some additional signal processing. Samples are taken
at times tj = ti−1 +(j−1)Tb+Tdτ for bits j = 1, 2, 3, 4, 5, 6
which we denote as NRx(j). Thereby, we assume that the bit
duration Tb is larger than the peak time of the channel impulse
response given by

Tdτ =
d2
τ

6D
, (4)

where dτ is the distance between leader and follower.
We assume that communication is impaired by the time-

variant channel resulting from the movement of both nodes,
including intersymbol interference (ISI) within each 6-bit
sequence, and by a background noise of strength λ0 char-
acterizing the number of interfering noise molecules per unit
time [21]. Then, bit j is detected as a ’1’ when NRx(tj) > Nh
and as a ’0’ otherwise.

Finally, from the detected 6-bit sequence the detected jump
is decoded as the nearest neighbor among the available code-
words (see Fig. 2 b).

B. Signal Model

For the signal model, we consider the time-varying channel
impulse response [6]

hp(t, dτ ) =
1√

(4πDt)3
e−

d2τ
4Dt , (5)

where dτ is the time-varying distance between leader and
follower at the time of emission for bit j.

Then, a suitable threshold, to reduce the impact of ISI, can
be chosen as [21]

Nh =
M0

ln

(
1 + M0∑Lc

j=1

Mj
2 +λ0Tb

) . (6)

where we define

Mj = NTxVRxhp(Td + (j − 1)Tb, dτ ), (7)

which accounts for ISI, and λ0 is the background noise per
unit time [21].

Assuming the reception process is also noisy, the received
signal for bit j can be described probabilistically by [21]

NRx (tj) ∼ P
(
bjM0 + nISI(tj) + λ0Tb

)
, (8)

where P(·) denotes the Poisson distribution, bj is the j-th
transmitted bit and the term nISI(tp) accounts for the ISI
according to

nISI(tj) =

Lc∑
j=1

bLc−jNTxVRxh(tj + jTb, dτ ), (9)

where Lc is the channel length.

III. SYSTEM ANALYSIS

In this section, we analyze the distance between leader
and follower over time. As a reference, we note that for
stationary nodes, without coding, the bit error rate is given
in [21]. However, for the leader-follower scenario considered
here, estimation errors lead to random changes in the distance
between the nodes, which in turn impacts the error rate in a
complicated manner due to the time-variant channel and the
coding.

At a given time instant, when no errors are produced, the
distance between the transmitter and the receiver is equal to the
initial distance x0. When only one error is produced (kn = 1),
then we add to the previous distance an additional quantity
∆ε ≤ 2∆ to account for errors that will always increase
the distance between both nodes (as a worst-case scenario).
Considering the randomness of the leader node position, an
upper bound in the x-direction can be given by

∆xn ≤ ∆x(u)
n = ∆x0 + kn · 2∆, (10)

where n is the time-index to indicate the sample time
as tn = n∆t, and x0 is the initial distance in x-axis direction.
Here, x0 is the initial separation and ∆ε is the increase in
distance in case of an error. The variable kn ∈ N will assess
the total number of errors which occurred until time instant n.

Despite the interdependence of distance between leader
and follower and error probability over time, in general, for
each time instant n an error can be modeled as a Bernoulli
random variable [22] with a time-dependent occurrence prob-
ability pe(ti). Then, kn will be the accumulated value of n
Bernoulli random variables with different occurrence probabil-
ity each. In general, the error events will not be independent.
Nevertheless, we assume that the accumulated number of
errors can be modeled as a Poisson-Binomial random variable
with the occurrence probabilities pe(ti).

For ease of analysis and assuming a sufficiently large num-
ber of attempts, we will further approximate the distribution
of kn by a normal distribution as

kn ∼ N

(
n∑
i=1

pe(ti),

n∑
i=1

pe(ti)(1− pe(ti))

)
. (11)

In summary, using this Gaussian approximation for kn, the
considered upper bound for ∆xn in (10) comprises the sum of
a deterministic value x0 and a normal random variable scaled
by 2∆. Hence, under these conditions, the considered upper
bound will also be normally distributed as

x(u)
n ∼ N

(
µ
x
(u)
n
, σ2

x
(u)
n

)
, (12)

with mean and variance

µ
x
(u)
n

=2∆

n∑
i=1

pe(ti) + x0, (13)

σ2

x
(u)
n

=4∆2
n∑
i=1

pe(ti)(1− pe(ti)). (14)



The same argument can be analogously repeated for the other
two spatial directions y and z, replacing x0 with y0 and z0,
respectively. Hence, the corresponding upper bounds for ∆y
and ∆z will also be normally distributed. Finally, considering
that d =

√
(∆x)2 + (∆y)2 + (∆z)2, we can obtain an ap-

proximate upper bound for the distance between leader and
follower as the square-root of the sum of squared normal
random variables, which in turn yields the non-central Chi
distribution with 3 degrees of freedom as [23]

d(u)
n ∼ χ (3, λn) , (15)

where

λn =
µ2

x
(u)
n

+ µ2

y
(u)
n

+ µ2

z
(u)
n

σ2
n

, (16)

and σ2
n = σ2

x
(u)
n

as given in (14).
Based on the derived probability density function in (15),

we can analyze the average behavior of the upper bound with
time when considering the average value of the non-central
Chi distribution as [23]

d
(u)

n = µ
d
(u)
n

=

√
πσ2

n

2
L

(1/2)
1/2

(
−λ

2
n

2

)
, (17)

where L(·)
· (·) is the Laguerre function.

By the relation in (17), the average distance between both
nodes will be time dependent through parameter λn given
in (16). The time dependence of d

(u)

n is ultimately caused by
the time dependence of the bit error probability pe(tn), which
is unknown in this scenario.

Since pe(ti) cannot be specified analytically due to the
interdependence with the distance and the applied coding,
in the following we will assume several general parametric
descriptions of pe(ti). Then, we numerically evaluate the cor-
responding impact on the derived upper bound in Section IV.

IV. NUMERICAL RESULTS

In this section, we validate our theoretical upper bound on
the leader-follower distance in (17) by comparing it with sim-
ulation results. Simulation generally follows the description
in Section II and is implemented by simulating the discrete
random walk of leader and follower, i.e., the random distance
between leader and follower is simulated directly while the
number of received molecules at the follower is simulated by
a Poisson random number generator. As parameters, we choose
Lc = 1 for evaluating the ISI in (9) [24], a background noise
of λ0 = 100 s−1, an initial distance of 10−7 m, and discrete
time steps of size ∆t = 1 ms.

In Fig. 3, we show the distance between leader and follower
over time for 1000 realizations (dτ ) of the random walk
of the leader. Interestingly, for the simulation results, the
average distance (dτ sim.) is increasing in a linear fashion
over time. We note that the density of realizations below
the average is larger than above, i.e., visually the curve
for dτ is much smaller than the realization with the largest
overall distance. The theoretical upper bound in (17) is also
depicted in Fig. 3 by assuming three different behaviors for

Fig. 3. Varying distance between the leader and follower nodes.

the error probability regarding their dependency on time. For
normalizing these functions, by simulation, we obtain an initial
error rate of 10−1, which in the following is denoted by
pe0 . On the one hand, when considering a linear relation
with time (order 1) as pe(tn) = pe0 · (n10−3 + 1), visually,
a better fit with the average simulated curve is obtained for
small times compared to large times (d

(u)

τ theo. pe linear).
On the other hand, when modeling the time dependence of
the underlying error probability as a logarithmic function by
pe(tn) = pe0 · (1 + ln(1 + n10−3)), then we obtain an even
better fit, especially for small times (d

(u)

τ theo. pe log.). Finally,
when assuming a constant behavior via pe(tn) = pe0 , which
represents a steady behavior, then we obtain the tightest upper
bound for the given simulation results (d

(u)

τ theo. pe const.).
As a reference, we also show the distance over time for
the scenario when the leader and follower move randomly
and independently from each other. In this case, leader and
follower quickly spread and the average simulated curve is
significantly smaller than this benchmark, highlighting the
effectiveness of the proposed communication scheme. The
same conclusion also holds for the theoretical upper bound
in the case of a constant error rate behavior. Considering the
theoretical results depicted in Fig. 3, the best fit with the
simulated results is obtained when pe(tn) is assumed to be
constant with time. Hence, we will use this upper bound for
the following analysis.

In Fig. 4, we study the impact of different diffusion coef-
ficients for the signaling particles. To this end, we consider
the ratio D/DTx as a parameter, i.e., the relative diffusivity
of the signaling molecules compared to the leader diffusivity.
As expected, the larger the ratio the better the tracking
performance. That is, the movement of the leader node will
be slow compared to the signaling molecules, which in turn
implies smaller jumps per time step and thus a reduced number
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Fig. 4. Varying distance for different values of the diffusion coefficient.

of errors benefiting the tracking performance. In particular,
for diffusion coefficient ratios larger than 20, the slope of
the average upper bound will be small, which indicates that
the distance between both nodes will behave quasi-stationary.
This result can also be interpreted as follows. According to
the Einstein relation [6], the diffusion coefficient is inversely
proportional to the molecule size. Hence, the ratio D/DTx

can also be interpreted as the relative size of the leader
compared to the signaling molecules. Here, if the leader is 100
times larger than the signaling molecules, the distance between
leader and follower will be almost constant.

We note that although the results provided here are based
on a particular mobility model of the leader, the derived upper
bound in (17) is generally applicable since it does not directly
depend on the chosen mobility model. A given mobility model
will correspondingly only need to be accounted for in the
assumed model for pe(t).

V. CONCLUSION

This paper provides a first approach to theoretically analyze
the tracking of a leader node by a follower node in a mobile
molecular communication scenario. A simple communication
scheme based on transmitting position increments from leader
to follower has been devised and its effectiveness is demon-
strated compared to a benchmark of uncoordinated movement
of leader and follower. Moreover, a closed-form expression for
an upper bound on the distance between leader and follower
is derived and validated by simulation results. The presented
approach allows predicting the conditions necessary for a
follower to reliably track a leader node, which is crucial in
mobile nanonetworks comprising multiple follower nodes.

Our research can be further elaborated in a variety of
directions to address more realistic scenarios and improved
designs. For instance, the limited resources of the leader node
to synthesize molecules, the use of relay nodes to increase
the network size, the analysis of different communication

strategies including the impact of the modulation technique,
the application of different analytical tools such as the age
of information metric to study delay and error rate jointly,
the study of the nanonetwork formation in different topolo-
gies with multiple leader nodes, or the impact of particular
nanosensor mobility models. Also, studying further channel
effects such as the impact of turbulence, sedimentation, and
drift, or the use of more elaborated mathematical tools to
account for unknown system parameters such as ordered
weighted average operators.
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