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ABSTRACT
Early detection of diseases in the human body is of utmost impor-
tance for the diagnosis andmedical treatment of patients. Supported
by recent advancements in nanotechnology, diseases may be de-
tected by patrolling nanosensors, even before symptoms appear.
This paper explores the detection capabilities of nanosensors flow-
ing through the human circulatory system (HCS). We model the
HCS through a Markov chain and propose the use of machine
learning (ML) methods to learn the corresponding transition prob-
abilities. Doing so, we propose a methodology to develop an early
detection mechanism of quorum sensing (QS) molecules released by
bacteria. Simulation results indicate the suitability of our machine
learning approach as a basis for in-body precision medicine.

CCS CONCEPTS
• Computing methodologies → Classification and regression
trees; • Mathematics of computing → Markov networks; •
Applied computing→ Health care information systems.

KEYWORDS
Biosensors, Machine Learning, Human Circulatory System, Markov
Model, Precision Medicine
ACM Reference Format:
Jorge Torres Gómez, Anke Kuestner, Ketki Pitke, Jennifer Simonjan, Bige
Deniz Unluturk, and Falko Dressler. 2021. A Machine Learning Approach
for Abnormality Detection in Blood Vessels via Mobile Nanosensors. In The
19th ACM Conference on Embedded Networked Sensor Systems (SenSys’21),
November 15–17, 2021, Coimbra, Portugal.ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3485730.3494037

1 INTRODUCTION
Medical applications are evolving through unprecedented devel-
opment in the field of nanotechnology. Nanoscale sensing devices,
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Figure 1: In-vivo disease detection scheme. a) Human cir-
culatory system. b) Communication between nanosensors
and the external gateway. c) Molecular communications for
infection detection.

capable of continuously monitoring health parameters [4, 7], are
foreseen to travel through the human circulatory system (HCS),
enabling next generation precision medicine solutions to actuate
in hard-to-reach areas due to their tiny dimensions. Equipped with
synthetic unitsmade of biological components [27], nanodevices are
expected to carry out embedded computing capabilities to sense and
actuate on targets. Furthermore, such nanosensors can be equipped
with networking capabilities in order to enable inter-device com-
munication [5, 12]. Exploiting these sensing and communication
capabilities, novel applications like early disease detection and
smart targeted drug delivery are in today’s research focus [11, 26].

In the case of infectious diseases, patrolling nanosensors help
avoiding detection delays introduced by conventional methods,
which typically take 48–72 h [3]. Nanonetworks, leveraging the
advances in nanosensors and molecular communication (MC), are
envisioned to detect anomalous concentrations of biomarkers in
vivo. Once detected, observed data will be send to external wearable
hubs for further analysis and diagnosis by healthcare professionals,
allowing proactive treatment procedures. This idea has been studied
in the context of detecting cancer cells [21], tumors [32], and other
abnormalities [18], even before symptoms appear.
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Following this direction, we explore the possibility of early in-
fection detection by mobile nanosensors. There exist already first
studies and concepts on potential shapes and sizes of such nanoscale
sensing devices [25]. These nanosensors, flowing through the ves-
sels of the HCS, will inherently make use of the in body networking
capabilities [24]. As depicted in Fig. 1, nanosensors with sensing
capabilities will detect molecules emitted during quorum sensing
(QS) communications among bacteria, therefore preventing further
infection in the given body region (cf. Fig. 1 c). Upon successful
detection, the nanosensors will report their sensing data to an exter-
nal gateway when passing, e.g., the right heart chamber (cf. Fig. 1 b).
Although we assume an ideal connection link between nanosensors
and the gateway, in practice, communication through human tissue
can be achieved by exploiting sub-terahertz [22, 26] or ultrasonic
frequencies [8, 23].

Doing so, we provide a methodology to evaluate the detection
performance, which will ultimately depend on the distribution of
nanosensors in the human blood vessels. For this purpose, we simu-
late the motion of nanosensors in the HCS using the BloodVoyagerS
simulation framework [15] and compute their distribution through
a Markov model. Furthermore, we incorporate a machine learning
(ML)-based approach to evaluate the transition probabilities of the
Markov model. This approach provides a low-complex and widely
applicable solution avoiding the specifics of physiological parame-
ters (e.g., vessel lengths, blood viscosity, blood pressure [16]) and
the use of complex blood flow mechanisms in the vessels (e.g., tur-
bulence [29]). Unsupervised and supervised methods are combined
to predict the distribution of nanosensors in the HCS based on their
traveling time in the vessels. The use of MLmodels has already been
reported to support the detection of diseases from many different
types of data such as genomics [9]. In this work, we report its use
to infer the location of nanosensors in the HCS for the first time.
Our simulation results clearly show the feasibility of our approach,
paving the way for future precision medicine solutions.

2 DETECTION OF INFECTIOUS DISEASES
To detect infectious diseases, we consider that mobile nanosensors
are capable of sensing QS molecules emitted by bacteria when
establishing communication among them. Even though the human
body contains a large number of harmless bacteria, some pathogenic
bacteria growing out of control can cause serious health conditions.
Early detection of infections and timely administration of antibiotics
can reduce symptoms and improve the cure rate. QS molecules are
unique to each species of bacteria and play a role in the onset of
infection. Since they diffuse into the bloodstream from the infection
site, it is possible to detect them in bodily fluids such as blood, saliva,
and sputum in correlation with the infection status [6, 19].

According to COMSOL simulations, based on our previous work
[3], the distribution of QS molecules in the vicinity of an infection is
shown in Fig. 2. The figure depicts a tissue section with an infection
site on top and the capillaries here located at the bottom of this
figure. Based on this result, we can define the region where the
QS molecule concentration is above the detection threshold of the
nanosensors as the sensing region. Considering the detection limit
of nanosensors to be 1×10−5 million [20], the sensing region can
be approximated to be an ellipse elongated towards the direction

Figure 2: COMSOL simulation results for the distribution of
quorum sensings molecules in the vicinity of the infection.

of blood flow with axes lengths of 0.1–0.5 cm and 1.75–3.5 cm de-
pending on the blood velocity in the capillaries in different regions
of the body (0.01–1 cm/s).

Given the region of interest𝑉𝑘 (e.g, capillaries in the arms, center
body, or legs), we can express the conditional probability for a
nanosensor to visit the sensing region 𝑉𝑘,𝑠 ⊂ 𝑉𝑘 , given that the
nanosensor is in the region 𝑉𝑘 , as

𝑃𝑠 |𝑘 = 𝑃𝑟𝑜𝑏 (𝑙𝑛 ∈ 𝑉𝑠,𝑘 |𝑙𝑛 ∈ 𝑉𝑘 ) =
𝑉𝑠,𝑘

𝑉𝑘
, (1)

where 𝑙𝑛 is the location of nanosensors, 𝑉𝑠,𝑘 is the volume of the
sensing region, defined via the COMSOL simulations for the organ
𝑘 , and 𝑉𝑇,𝑘 is the total volume for the given organ.

We set our observation time to 20min, which is the reproduc-
tion time of many bacteria. During this observation window, QS
molecule concentration will not go through a dramatic change and
nanosensors will go through several loops in the cardiovascular
system, thereby reporting multiple samples.1

We measure the probability of successful detection, 𝑃𝑑,𝑘 , as
the probability of at least 𝑁𝑡ℎ nanosensors reporting sensed QS
molecules as

𝑃𝑑,𝑘 =

𝑁𝑠∑︁
𝑖=𝑁𝑡ℎ

B(𝑖, 𝑃𝑠 |𝑘𝑃𝑐,𝑘 ) (2)

=

𝑁𝑠∑︁
𝑖=𝑁𝑡ℎ

(
𝑁𝑠

𝑖

)
(𝑃𝑠 |𝑘𝑃𝑐,𝑘 )𝑖 (1 − 𝑃𝑠 |𝑘𝑃𝑐,𝑘 )𝑁𝑠−𝑖 ,

where B(·) denotes the binomial distribution, 𝑁𝑡ℎ is the arbitrary
threshold for the number of samples needed to decide towards de-
tection of infection, 𝑃𝑠 |𝑘 is given in Eq. (1), and 𝑃𝑐,𝑘 is the probability
of a nanosensor being located in the capillaries of organ 𝑘 .

The binomial distribution, we report in Eq. (2) accounts for the
probability of 𝑖 nanosensors visiting the sensing region out of a
total of 𝑁𝑠 . Summing from 𝑁𝑡ℎ to 𝑁𝑠 will consider that at least
𝑁𝑡ℎ sensors are visiting the given sensing region. The two main
variables to evaluate this expression are given by 𝑃𝑠 |𝑘 and 𝑃𝑐,𝑘 ,
with the latter still to be determined. In order to estimate 𝑃𝑐,𝑘 , the
probability of a nanosensor visiting the capillaries of organ 𝑘 , we
exploit Markov chains and ML models (cf. Sections 3.2 and 4).

1on average it takes 1min for the blood to circulate through the body [16].
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Figure 3: Flow diagram of the proposed system.

Following this procedure, we conceive the methodology illus-
trated in Fig. 3 to provide alerts with a given reliability level for
the clinical reports. The successful detection probability (reliabil-
ity level) comes from the COMSOL simulation and Markov chain
results, whereby the latter is derived from evaluating the corre-
sponding transition probabilities with the supervised ML model.
The alert comes after combining the supervised and unsupervised
ML models. The next sections address the specific details concern-
ing the right branch in Fig. 3.

3 MODELING SCHEMES
The detection capabilities of the flowing nanosensors are modeled
by two primary schemes, addressing both, their traveling behavior
and their stationary location in the HCS. The traveling behavior is
modeled using the simulation framework BloodVoyagerS [15]. The
stationary distribution of nanosensors is derived after modeling
the process as a Markov chain.

3.1 Modeling the flow of nanosensors in the
human circulatory system

Modeling all characteristics of the HCS is non-trivial as it com-
prises approx. 4900 cm3 of blood volume and 120 000 km of blood
vessels [31]. To achieve a realistic model of the traveling behavior of
nanosensors, we use BloodvoyagerS [15], which is a nanonetwork
simulation module, capable of simulating the blood flow of all major
vessels in the HCS. BloodVoyagerS is modeled upon a simplified
HCS to realize the movement of nanosensors within the human
bloodstream. Fig. 4 depicts all uniquely numbered vessels and or-
gans considered by the simulator. It comprises a model including 94
vessels and their respective blood flow rates (20 cm/s in the aorta,
10 cm/s in the arteries, 2–4 cm/s in the veins), adding up to a total
simulated vessel length of 12 717m (vessel length measurements
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Figure 4: Human circulatory systems represented in the
BloodVoyagerS simulation framework.

are based on a person with 1.72m height and 69 kg weight). The
blood flow in a healthy circulatory system is laminar, consisting of
ordered layers that slide past each other. BloodvoyagerS incorpo-
rates this effect by implementing separate streams in each vessel.
These streams have different sizes and an additional speed factor
that adapts the basic speed in a vessel to the respective stream. In
streams on the outer part of a vessel the speed is lower than in the
center streams. The simulator allows to inject an arbitrary number
of nanosensors into any vessel as starting point, from where they
then flow along the blood with the respective speed.

3.2 Modeling the distribution of nanosensors as
a Markov model

The varying location of the flowing nanosensors through the HCS
can be modeled as a discrete chain of transitions between vessel
segments. For instance, a traveling path can be modeled as the
transition A1→ A2→ A3→ V4 through the Arcus, Thoratica, and
Intercostales aortas to the thorax in Fig. 4. The transition on the
bifurcations (A1→ A2) can be also modeled as a random variable
to specify the next visiting segment. That is, a given nanosensor
flowing through the Arcus aorta will randomly jump to the Thorat-
ica or to the Subclavia sinistra aorta (cf. A1 to A2 or A7 in Fig. 4).
Therefore, when assuming that random transitions in the bifurca-
tions are independent of the previous visited stage, the transitions
between vessel segments can be modeled by a Markov chain [14].

Fig. 5 depicts the equivalent Markov chain model according
to the vessel segments and transitions from Fig. 4. A total of 30
nodes are defined for the arteries (A1 to A30), 25 nodes for the
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Figure 5: Markov model equivalent to the human circulatory
system.

capillaries (C1 to C25), and 33 nodes for the veins (V1 to V33). Given
the direction of the blood flow, the transition probabilities for the
nodes are mostly given as 1 except for the transitions between
segment vessels on the arteries. This is the case of 𝑝𝐴1,𝐴2, used to
describe the random jump from the Arcus to the Thoratica aorta.
Furthermore, relying on the circuit representation of the Markov
chain [17], such transition probabilities at the arteries’ bifurcations
can be computed based on the flow rate of each vessel segment.
For instance, the probability to jump for the Arcus to the Thoratica
aorta (A1→ A2) yields [30]

𝑝𝐴1,𝐴2 =
𝐼𝐴2

𝐼𝐴1 + 𝐼𝐴2
, (3)

where 𝐼𝐴1 and 𝐼𝐴2 denote the flow through the corresponding vessel
segments Arcus and Thoratica aortas, respectively. Similar to this
relation, the expressions for the remaining transition probabilities
can be derived as well [30].

The relation in Eq. (3) can also be estimated by computing the
flow of nanosensors when considering that they become part of
the blood flow. This can be achieved by identifying the total of
nanosensors traveling per closed-loop, as introduced in the current-
mesh method in [30]. To illustrate, the total of nanosensors flowing
through the vessel segment A2 is given by the number of nanosen-
sors through the variety of loops starting and ending at C1 and
passing through A2. This is the case of loops L1 and L2 represented
in Fig. 5, as well as the others defined on the lower body region.

Following this reasoning, an alternative way to estimate the
corresponding transition probability in Eq. (3) yields

𝑝𝐴1,𝐴2 =

∑
𝑖∈𝐿𝐴2

𝑁𝑖∑
𝑘∈𝐿𝐴1

𝑁𝑖 +
∑
𝑖∈𝐿𝐴2

𝑁𝑖
, (4)

where 𝑁𝑖 is the total of nanosensors flowing on a given loop 𝐿𝑝 ,
and 𝐿𝐴1 and 𝐿𝐴2 represent the set of loops which pass through the
vessel segments A1 and A2, respectively.
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Although the relation in Eq. (4) seems complex to assess at a
first glance, its corresponding term𝑀𝑘 can be readily computed at
the gateway. The total of nanosensors per loop can be identified
based on their traveling time. Those with the longest traveling times
will correspond to the capillaries on the feet (largest path loop),
while those with shorter traveling times will correspond to the head
(shortest path loop). Based on the collected timestamps, provided
by the nanosensors to the gateway, the total of nanosensors per
circuit can be identified, and thus their flow per vessel segment.

Considering this methodology, circuits on the right and left sides,
accounting for the arms and the legs, will not be resolvable. Due
to the symmetry of the human body, the traveling time by the left
shoulder will be similar to the one through the right shoulder, for
instance. Consequently, the total of nanosensors will be counted
twice. Just a total of 14 circuits will be distinguishable according to
the upper body (head, upper arms, shoulders, elbows, hands), center
body (thorax, spleen, intestine, liver, pelvis), and from the legs (hips,
knee, feet), (cf. Fig. 5). To identify the total of nanosensors on both
sides, we assume that the distribution of nanosensors will be the
same on both (due to the symmetry of the human body). Thus, we
just divide by two the total of identified nanosensors for those loops
concerning the arms and the legs.

This way, based on these transition probabilities 𝑝𝑖, 𝑗 , the lo-
cation of a given nanosensor can be derived from the transition
matrix Π = {𝑝𝑖, 𝑗 }, after solving for the stationary probability vector
𝝂 in 𝝂 = 𝝂Π. The vector 𝝂 will have a total of elements equal to the
total of stages in the Markov model as 91, where the probability to
locate a nanosensor on a given vessel segment 𝑘 will be directly
given by the vector component as

𝑃𝑠,𝑘 = 𝜈𝑘 . (5)

4 LEARNING METHODOLOGY
To determine the total number of traveling nanosensors per closed-
loop in the HCS, we propose the use of machine learning (ML)
methods. Due to their self-learning capacity, ML models can be
used to compute the total of flowing nanosensors through the
wide range of physiological parameters of the human body (e.g.,
blood viscosity, vessel lengths, pressure levels) and for a variety of
activities (e.g., walking, running, sleeping).



A Machine Learning Approach for Abnormality Detection in Blood Vessels via Mobile Nanosensors SenSys’21, November 15–17, 2021, Coimbra, Portugal

Figure 7: Histogram plot for the distribution of nanosensors
per loop in the human circulatory system.

To apply machine learning, we follow the three-steps methodol-
ogy depicted in Fig. 6. In the first step, we collect the timestamps
provided by the nanosensors at the gateway. These timestamps
indicate the traveling time on a given loop for one round (cf. Fig. 5).
Besides, we assume that nanosensors reset their internal counter
after delivering this information to the gateway. In the second step,
we apply ML models to self-identify the total of loops and samples
per loop. In the last step, we compute the transition probabilities
according to Eq. (4), based on the outputs provided by theMLmodel.

In the first step, samples are collected at the gateway in four
different groups (a total of 5882 samples). Through the use of anchor
nodes located on the hips, the shoulders, and the head, nanosensors
traveling nearby are updated with the corresponding coordinates.
As shown in Fig. 7, samples coming from the head, arms, center
body, and legs can be distinguished, otherwise overlapped.

In the second step, we combine two ML models from those
available in MatLab®. The unsupervised method k-means is used
to identify the total of circuits from the collected timestamps at
the gateway. Then, the transition probabilities 𝑝𝑖, 𝑗 for the Markov
model are computed as shown in Eq. (4). Furthermore, the resulting
labeled sequence is used to train a second ML model using Decision
Trees. This second model is used to assist an early detection mecha-
nism. Whenever a sample is received, the Decision Tree model will
predict the corresponding source location in the human body.

The k-means method has been selected as it is a low-complex
solution providing the total number of clusters in advance with a
good performance. This corresponds to a total of 13 loops excluding
the head (cf. Section 3.2). Its performance is verified by the silhouette
diagram depicted in Fig. 8, where the total of clustered samples are
close to one on the different body regions, except for the Kidneys
and the Spleen. Specifically, in the Center Body the performance
is less due to the superposition of received samples. As Fig. 7 c)
exhibits, samples coming from the Liver, Kidneys, Intestine, and
Spleen are hard to distinguish since their traveling time is pretty
similar. However, as presented in the next section, the derived
distribution of nanosensors is in accordance with results obtained
following different methods, as illustrated in [30, Fig. 9].
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Figure 8: Resulting silhouette graph for the k-meansmethod.
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Figure 9: Prediction performance of the Decision Treemodel.

The labeled samples are then used to train the Decision Trees
model,2 implemented with 21 nodes [1]. This method is mainly
selected due to its low-complexity. The prediction performance is
illustrated in Fig. 9, depicting the positive and false negative results
per capillaries on the tissues. Results perform well on the upper
body and the legs, however, in the center body the false negative
is higher than the positive predicted samples for the Liver, the
Kidneys, and the Intestine. Samples coming from these body regions
are not well distinguishable due to its superposition, as exhibits the
histogram plot in Fig. 7 c). Although the method fails to predict the
location on these capillaries, still we can distinguish alerts coming
from the center body, which in turn target the possible regions
to diagnose. As future work, we will analyze further localization
methods like fingerprinting [13] or hop counting [10, 28] to improve
the localization performance in this specific region.

5 RESULTS
The detection capabilities of the nanosensors, when sensing the
released QS molecules by bacteria, will be dependent on the total

2Using the Classification Learner App from MatLab [2].
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Figure 10: Distribution of nanosensors in the HCS.

of nanosensors in their surrounding (cf. Section 2). The number of
nanosensors observing a particular organ will be ultimately defined
by their flow in the corresponding vessel segments, and can be
described by the transition probabilities given in Eq. (4). We now
illustrate the derived detection capabilities of the flowing nanosen-
sors by evaluating Eq. (2). To do so, we first illustrate the stationary
probability of nanosensors per capillaries following Eq. (5).

The resulting stationary probability of nanosensors per vessel
segment is depicted in Fig. 10. This distribution is derived after
computing the transition probabilities using Eq. (4) with the total
of nanosensors per circuit computed by the k-means method. As
expected, the larger probability to find the nanosensors will be given
in those segments where all the loops pass by, i.e., Arcus aorta (A1),
heart (C1, C3), lungs (C2), and vena cava (V3). The least probability
will be found on the arteries, capillaries, and veins located in the
legs. The distribution derived exhibits a similar pattern as shown
in [30, Fig. 9]. In both cases, the larger probability is achieved in
the arteries and veins directly connected to the heart. Besides, a

Figure 11: Detection probability for varying thresholds for
shoulders and upper arms.

similar distribution is also obtained for the capillaries located in
the center body region.

Fig. 11 depicts the detection probability versus the total of flow-
ing nanosensors in the system. To illustrate, this is obtained when
evaluating Eq. (2) in the shoulders and upper arms, although a
similar analysis can be conducted in other capillaries as well. As ex-
pected, this is a monotonic growing function of the total of nanosen-
sors. Besides, with increasing threshold value, as defined by 𝑁𝑡ℎ in
Eq. (2), the total number of nanosensors required to reach the same
probability of detection also increases. Although the velocity of
blood flow in capillaries is similar in the shoulders and upper arms,
it requires a larger number of nanosensors to detect an infection in
the upper arms, due to large volume, and the lower probability of a
nanosensor being in upper arms, as depicted in Fig. 10.

6 CONCLUSIONS
In this work, we presented a methodology to evaluate a detection
mechanism for infections in the human body. We introduced the
use of ML models to predict the location of nanosensors traveling
through the blood vessels. Through these mechanisms, we provide
a new approach to use the inherent body-networking capabilities
to early detect infections. Our approach will have wide applicability
for in-body precision medicine solutions due to its adaptability to
varying physiological parameters. As future work, we have plan
to study the performance of the proposed methodology when con-
sidering different activities, e.g., walking, running, sleeping. We
will also conceive more accurate probabilistic-based ML methods
to distinguish the flowing nanosensors and particular localization
mechanisms to improve performance.
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