
J. PERVASIVE COMPUT. & COMM. 2 (3), SEPTEMBER 2006. c�TROUBADOR PUBLISHING LTD) 247

An Adaptive Model for Reconfigurable
Autonomous Services using Profiling

SÉBASTIEN TRUCHAT, GERHARD FUCHS, FALKO DRESSLER
University of Erlangen-Nuremberg, Department of Computer Science 7,

Martensstr. 3, 91058 Erlangen, Germany
email: �sebastien.truchat,gerhard.fuchs,dressler�@informatik.uni-erlangen.de

STEFFEN MEYER
Fraunhofer Institute for Integrated Circuits IIS, Project group Interoperative Systems,

Nordostpark 93, 90411 Nuremberg, Germany
email: mey@iis.fraunhofer.de

Abstract—The importance of mobile services in our everyday
life is growing while at the same time new interoperability issues
arise due to hardware and software heterogeneity. Therefore,
new architectural paradigms and models are needed to enhance
software engineering methodologies with regard to platform
independence and interoperability. This paper describes an
UML pattern based approach for developing reconfigurable
autonomous mobile services. Through the analysis of an m-
commerce project, the relevance of our proposed architecture
will be explained. Our focus lays on a generic reconfiguration
mechanism based on profile matching from software modules.
This profiling part will be further described and discussed.
Finally, the applicability of our approach is investigated within
a project about reconfigurable indoor navigation computers and
a project about robot assisted sensor networks.

Index Terms—Mobile services, software modelling, interoper-
ability, autonomous pervasive systems

I. INTRODUCTION

In the frame of a research in the area of interoperative
systems, our department has been involved in the develop-
ment of the m-commerce project HORN (Home and Office
Replenishment - Nürnberg) [1], which is an initiative of the
Fraunhofer Institute IIS. The goal of our research is to enhance
the development of mobile services in a platform independent
way with regard to interoperability features (i.e. heterogeneous
environments). The analysis of the architecture of the HORN
project will lead to the presentation of our Mo.S.I.S. project
(Modular Software-engineering for Interoperative Systems),
which is a pattern based approach to make mobile services
reconfigurable in heterogeneous environments. The main focus
of this paper relies on the profile based reconfiguration.
Finally, the work being done in two related projects using
this reconfiguration mechanism will be presented.

A. HORN

The Home and Office Replenishment service in Nurem-
berg supplies consumers with dry packaged and fast moving
consumer goods (FMCG). The consumer buys his stock of
products to be replenished once at the beginning of the service

process, and defines maximum and minimum stock as well
as the medium range for each product using a Pocket PC
that is equipped with a barcode scanner and an additional
DECT module that provides the connection to the service
provider’s data base via a residential gateway connected to the
Internet through a modem. After consumption of a product, the
EAN article number that is printed on the product package is
scanned with the same handheld, and a message is generated
automatically to be sent to the service provider. Here the
consumption messages are gathered and stored in a data base
of the residential gateway. Once each day, a special decision
support software algorithm, that takes various system and cus-
tomer specific restrictions into account, checks the data base
and generates picking & packing orders and shopping lists
that are sent to a professional shopper who is also equipped
with a wireless pocket PC with integrated GSM module and
barcode scanner. The shopping is done, products are paid and
packed into transport boxes, and carried to delivery boxes for
unattended delivery. The consumer is supported with an SMS
on his mobile phone that contains dispatch information and an
electronic bill of delivery that is sent to his wireless Pocket
PC. After taking out the items, the delivery is accepted or
not, an acknowledgement of receipt is sent back to the service
provider who then initiates the invoice.

The study from an economic and logistic point of view can
be found in [2]. The pilot trial started at the end of August
2003 and ended at the end of March 2004.

Why do we need this kind of infrastructure? Commonly,
mobile services use the Internet model [3]: the application
runs on an Internet server, while the mobile client has an
access to this service through a standard browser. This client
browser is used as a visual human machine interface, while
data are actually processed on the server side. One obvious
advantage of this architecture, from the point of view of
software engineering and software maintenance, is that the
software only needs to be implemented for the server platform.
Processing power restrictions are to be considered on the
server side. Mobile clients only need a browser to use the
service. One drawback of this strategy is that there must be a

248 J. PERVASIVE COMPUT. & COMM. 2 (3), SEPTEMBER 2006. c�TROUBADOR PUBLISHING LTD)

browser implementation for every new mobile platform, and
the system must agree with the restrictions of this browser,
but the major problem is that the service accessibility depends
on the communication to the server: it must be fast enough,
reliable, and always available. As the consumer wants to
be mobile everywhere in his house, even e.g. in the cellar
where there is no reception of any kind, to manage his
beverage stock for example, the mobile service has to be
an autonomous application on the mobile terminal. This is
one essential characteristic why HORN should be considered
as an m-commerce initiative rather than e-commerce: most
of the transactions are made by the customer in an offline
situation [4]. Furthermore, the price of the communication to
the Internet can be restrictive, and the battery life reduces
with the power consumption of the communication interface
that has to be powered during the time of connection to the
server.

Some approaches, not constrained with local applications,
combine the advantages of a server based solution with short
range charge-free wireless communication such as the Flower
framework [5]. Some approaches combine server based ser-
vices with some client specific software pieces using existing
WSDL standards [6]. Our architecture focuses on local appli-
cations and short range wireless networks.

The “HORN architecture” would reveal expensive for the
operators of the residential gateways and servers, and as a
consequence for the consumer, if it could only be used for this
one single service, so the goal of our research is to enhance
the reusability and interoperability of existing infrastructures
of that kind.

In our research infrastructure, the mobile device has no
direct contact to the service provider but can start a communi-
cation to a residential gateway. Our “residential gateway” can
rather be considered as an association of a local server that
stores data for the mobile terminal and a residential gateway
to access the internet on demand (no permanent connection to
the internet). Since the mobile device has only sporadically
a connection to a (local) server, the applications must run
directly on the device without further external control and
management. That is what we call an autonomous service.

So the “service provider”, who offers applications for the
mobile clients, must implement software modules for every
spectrum of devices on which he wants his application to
run. Moreover, he may want to update some of these modules
sometimes. Once the infrastructure is standing, and when there
is a possibility to update or reconfigure the mobile devices,
there might be other service providers who could want to
use this infrastructure to offer their services. Thus our goal
is to find a way to reconfigure most mobile devices in that
infrastructure, independently of their operating system, and to
improve the software development process for such mobile
applications.

To realise the reconfiguration software in a platform inde-
pendent way, one can choose a middleware or virtual machine
(e.g. Java) based approach. The idea is to compile the software
once, assuming that the binary will be able to run on any
platform. There are two reasons why we could not use this
approach. First, this middleware (or virtual machine) has to be

present on any platform. Unfortunately, as new mobile devices
are appearing fast, one can not always take this for granted.
Some devices are even too resource constrained to choose
this approach. The other reason is, as mobile devices differ
a lot regarding their hardware interfaces (commencing with
the display), the code for a new platform would have to be
adapted and recompiled anyway. So another way would be to
implement the software in a language for which a dedicated
compiler exists for every platform. Here again the code would
have to be adapted regarding the hardware interfaces. The
idea is to implement the software once, to adapt it slightly
and compile it for new platforms. Here again one can not
take it for granted that the right compiler is available for any
new platform. As we assume that new mobile platforms are
appearing fast and mostly have a short lifetime, our goal is
a fast software engineering. May it be a middleware or a
compiler to realise for a new platform, the initial work would
be too high.

So our approach is to concentrate on the base mechanisms
we need for a generic reconfiguration, to find adequate ar-
chitectures, and to discuss the possible implementations. By
describing these in design patterns, our goal is to enhance the
software development process.

B. Mo.S.I.S.

The goal of the Mo.S.I.S. (Modular Software-engineering
for Interoperative Systems) project is to make the development
of mobile services in general, and especially for HORN-
like architectures and systems with few resources, more cost
efficient [7].

First of all, there is a need for a generic reconfiguration
framework for the mobile devices and residential gateways (i.e.
local servers), since there does not exist a standard for software
deployment that works for every combination of hardware
and operating system platform, especially very lightweight
devices. To achieve this, an ontology to relate the profiles from
devices to software modules with regard to the description of
application profiles has been developed. These reconfiguration
rules can be considered as the necessary clear invariants that
govern the entire system (known as volatility principle [8]).

The second step was to develop patterns permitting a
rapid prototyping of the reconfiguration software for any new
platform (for new residential gateways as well as for new
mobile terminals), using the rules of this ontology. This is also
the preliminary condition to manage a safe reconfiguration and
context awareness mechanism. The benefits of architectural
patterns related by Christopher Alexander [9] can also be
applied to software engineering. A design pattern is a generic
solution to a problem that occurs again and again in various
forms. To describe our software design patterns methodically,
we chose the way proposed by Gamma [10].

To minimize the work of code adaptation i.e. to improve the
code portability, this pattern study also includes the general
architecture of the mobile applications, and the programming
of the communication interfaces.

Cost efficiency can be reached by two aspects: first, by
a dedicated “business model” (as shown by the example of

TRUCHAT ET AL.: RECONFIGURABLE AUTONOMOUS SERVICES 249

Fig. 1. Reconfiguration process of the first prototype.

“B4U” [11]) where the residential gateway operators can lease
the right to use their infrastructure to service providers, and
second, by shortening software development time on both the
service provider side and the residential gateway side by the
use of dedicated design patterns, and code framework reuse,
when possible, to implement the mobile services (i.e. local
applications in a HORN like infrastructure) for the desired
spectrum of devices.

The following part describes the reconfiguration concept of
Mo.S.I.S., where the “local server” of our first prototype plays
the role of the residential gateway of the HORN project (which
in fact has a kind of local server role rather than just a gateway
function).

For the first tests, the local server part is played by a stan-
dard PC connected to a WLAN access point. In the future, this
part might be embedded in the residential gateway platform,
which assumes of course much less memory resources and
computing power. The mobile terminal can try to connect to
any accessible local server over WLAN on request of the user.
This approach has been preferred to a periodical scanning in
order to save battery life, though it assumes the user must be
aware of the presence of a potential local server.

The reconfiguration process can be described as follows
(Fig. 1): 1) the user asks the mobile terminal to try to
connect to some local server. 2) if successfully connected,
the mobile terminal sends its profiles to the local server. 3)
the local server matches these profiles with those of available
software modules in its repository. 4) as soon as there is a
module that matches, it is offered for download. 5) if the
user acknowledges, the module can be downloaded. 6) the
module is being downloaded. 7) when all matching modules
have been downloaded, the connection is being terminated. 8)
after successful download, the software profiles of the mobile
terminal can be updated according to the new modules.

C. Related Projects

Besides the first prototype described earlier, two new
projects use the Mo.S.I.S. work for reconfiguration.

One project deals with a PDA based navigation terminal,
which has to download data (e.g. navigation maps) context
dependently, and to be updated automatically sometimes. This
work will be further described in part III.

The second project is more resource constrained. It aims
at automatically reconfiguring a sensor network using mobile
robots in order to preserve a functional density of the network.
This will be further described in part IV.

The following section describes our reconfiguration mech-
anism. First, the base patterns of Mo.S.I.S. will be presented,
then the focus will lay on the profile matching part. After a
short introduction to profiling, the nature of our mechanism
will be formally described, to finally present the dedicated
design pattern.

II. GENERIC RECONFIGURATION

A. Patterns for Reconfigurable Autonomous Services

Our Mo.S.I.S. concept relies on four basis patterns:

� Profile comparer
This pattern builds the base of our profile matching
concept. Mobile devices and software modules are char-
acterised by profiles. Through matching of these profiles,
diverse devices can be reconfigured automatically, even in
heterogeneous architectures. This part will be presented
in this paper.

� State based RPC
For communication between heterogeneous devices, Re-
mote Procedure Call seems to be the best solution. In
order to make our reconfiguration process work even on
resource constrained platforms, we defined a lightweight
non-blocking RPC mechanism. The principle is to define
only the necessary RPC commands, and to implement on
both sides (mobile device and local server) a client and
a server stub, the behaviour of which is determined by a
state machine. The state machine on mobile device side
and local server side are depending on each other, and
define the global behaviour of the system. In that way,

250 J. PERVASIVE COMPUT. & COMM. 2 (3), SEPTEMBER 2006. c�TROUBADOR PUBLISHING LTD)

type converting of parameters is implemented on demand
within the states, and the system is not blocked by a RPC
call, since the response to the call will be determined by
the resulting state.

� Adapted components
In order to enhance interoperability between software
components written in different languages, we describe
a method to define data oriented interfaces and the
corresponding wrapper code. This is more lightweight
and shorter to implement than a complete component
model.

� Protocol dependent communication prototype
This pattern is useful when the communication inter-
face cannot be interrupt controlled (e.g. a modem based
communication card, and the interrupt signals are not
correctly emulated on the mobile device). This means, the
data flow has to be parsed for commands. The overlaying
protocol (e.g. RPC) has to be defined in a way that data
flows containing the reserved ”command words” can be
transmitted although.

Once all these patterns were defined, the next natural step
was to define a UML profile for Mo.S.I.S. (i.e. a UML profile
for autonomous reconfigurable mobile services) in order to
facilitate software engineering and documentation of projects
using these mechanisms.

In the following part, the profile matching concept will be
explained.

B. What is Profiling?

What we call profiling consists of two parts:
1) To define profiles that characterise a software service

(e.g. software modules, applications), and profiles that
characterise environments i.e. platforms on which ser-
vices can be offered (e.g. mobile devices, user prefer-
ences).

2) To define the profile matching rules defining how these
platforms can be reconfigured with these services. The
word reconfiguration stands here in general for any new
software configuration (in the sense of loading new
software), even if it is only updating.

The reason why we call our services autonomous is that
they have to run autonomously on a (mobile) target platform,
in opposition to server based services (e.g. web services).
Nevertheless, as the profile matching aims at reconfiguring
devices automatically even in heterogeneous architectures, this
work concerns the topic of autonomous computing too, since
the goal is to offer new or updated services without any
supplementary administration work.

An ontology can be seen as a formal specification on how
to represent objects or entities, and the defining of rules on
how they stand in relationship. So one can say profiling is a
kind of interoperative reconfiguration ontology.

Composite Capabilities / Preference Profiles (CC/PP) [12]
offers a way to describe profiles. One typical application for
CC/PP is content adaptation: a client sends a request in HTTP
with its profile, and the HTML server matches the document
profile with the device profile to adapt the document that

is sent in the HTTP response. As meanwhile CC/PP is a
widespread standard, it has been used for the implementation
of the first prototype. Another standard in the domain of
management information is the CIM (Common Information
Model) from the DMTF (Distributed Management Task Force)
[13].

Nevertheless, for the implementation of the new PDA based
prototype (navigation terminal), we chose to define a more
simple XML based way to describe our profiles. As for the
project on sensor/actuator networks (ROSES), we had to define
a byte oriented profile description in order to meet the demands
of the very limited resources anyway.

A similar functionality exists for Java platforms: Java
based over-the-air provisioning permits to install MIDlet suites
through the use of java application descriptors (JAD) which
are kinds of software profiles. The process is controlled by
the application management software (AMS). This architecture
needs a JAD-server, a JAR server (containing the .jar archive),
and a notification server [14].

The following section deals with the formal description of
the reconfiguration process of Mo.S.I.S.

C. Profile Matching

Let �� (Mobiles Endgerät in German) be the set of all
possible mobile devices in the considered scenario. A mobile
device is characterised by a tuple of properties.

Let ����� be the set of possible properties (the German
word for property is Eigenschaft) of a mobile device (e.g.
Processor xy, Displaying abilities, RAM, ...). Within �����

there are equivalence classes (e.g. subset of properties that
define a processor). There are � equivalence classes, so the
mobile device is characterised by a tuple of dimension �,
which we call the profile of the mobile device.

Let us extend ����� with an element ���. This element
is used in a profile tuple when a property does not exist (i.e.
is not relevant, e.g. a mobile device has no display, just an
acoustic output). Let ������ be this new set: ������ �
�����

�
���. (the element ��� builds an equivalence class by

itself in ������).
As there is at most one element from an equivalence class

that corresponds to a profile element of a mobile device, there
exists a function that associates its profile to every mobile
device ��. Let �	
����� be this function.

Let ����� till ����� be the equivalence classes of �����

and ������ till ������ these equivalence classes extended with
the element ���.

�	
����� � �� � ������ � ������ � ���� ������

�� �� �����
 ����
 ���
 �����

Let ��� be the set of all software modules. Additionally
to the properties describing the nature of the module (e.g. for
which processor it has been compiled), a software module
needs an identification (e.g. a name) defining its role in an
application. Let ����� be the set of identifications. In the
same way as for the profile of a mobile device, we define
a tuple of dimension � that characterises the profile of a

TRUCHAT ET AL.: RECONFIGURABLE AUTONOMOUS SERVICES 251

software module. The first property in this profile is the
identification of the module. Let �	
������ be the function
that associates its profile to every software module:

�	
������ � ���� ����� � ���
��� � ���� ���
���

�
� �� ����

 ��
��
 ���
 ��
���

In a similar manner, we define the profile of an application.
Let ��� be the set of all applications, and ����� the set
of identifications for applications. Following properties are
needed to define an application:

� an identification ����� (����� � �����).
� � elements (� � �), that define the very own properties

of an application (e.g. version).
� a list of � software modules (� � ��), that compose the

application. Of course, this is a list of distinct software
modules i.e. in this list there are no two elements that
have the same identification ���
. So we define here
that a module with a given identification (that means a
given functionality) is needed only once (e.g. only in one
version, or with one displaying resolution) on the mobile
device.

Since not every application is composed of the same number
of modules, it is important to notice that � can get different
values depending on the application profile.

Let � be the dimension of an application profile. Since
an application profile is composed of an identification, �
properties, and a list of modules, � � � � �. One could also
say � � � � � � �, but it is more convenient to consider the
list of software modules as one property, since in this way the
dimension of an application profile remains unambiguous, and
since this list of modules has a particular role during profile
matching (see application rules).

So let ������� be the set of possible lists of software
modules for an application. A list of software modules �
�����
is a subset of the set of software modules, where the modules
of this list are represented by their identification.

������� � ��
����� ��
����� � ������

Let �	
������ be the function that associates its profile to
every application:

�	
������ �

��� � ����� � ������� � ���� �������� ��� � �������
��� �� ������
 �����
 ���
 ������� ��
�
������

In a similar manner, we define the profile of a user. In this
profile there are on the one hand properties that define the user
(such as his name), and on the other hand his preferences (e.g.
preferred languages such as German, English, in this priority
sequence). As seen in the application profiles, a preference
property can be a list (possibly ordered). The user profile is
mainly a preference profile, and stands for every kind of profile
that defines preferences (e.g. context profile).

Let � be the set of possible users. A user is characterised
by a tuple of dimension 	. Let �	
���� be the function that
associates its profile to every user:

�	
���� � � � ����� � ����� � ���� ���	�
� �� ����
 ���
 ���
 ��	�

The goal of the profile matching is to reconfigure mobile
terminal devices automatically, that is to say, provide them
automatically the right software modules to be downloaded
during a reconfiguration process. To this end, rules are neces-
sary to define how the information in the profiles have to be
analysed, and which correlations have to be considered. The
rules aim to define a subset from the set of all software mod-
ules present on the local server, which is meant to reconfigure
the mobile device.

Three types of rules define the profile matching:
� the module rules that define which modules from a set

of software modules is compiled for a mobile device at
all.

� the application rules that define which modules from a
set of software modules are able to run in the frame of an
application, i.e. which applications can actually be built
from a set of modules. For example: if an application is
composed by three software modules, but only two of the
modules are available in the considered set of software
modules, even these two modules are unnecessary to
be downloaded. The considered set of software modules
consists, in the case of a reconfiguration, of the set of
modules present in the repository of a local server, and
the set of modules already installed on the mobile device.

� the priority rules that define which software modules
are preferably being downloaded. In this case, the goal is
to determine only one module to be downloaded, among
a set of modules possessing the same identification (i.e.
the same functionality). The module having priority can
be found out through the preference profiles (e.g. user
profile). It can be a module displaying information in a
specific language for example.

In the following part, we will describe how a mobile device
can be reconfigured from a module pool on a local server by
applying these rules.

Let �� ��� be the mobile device that is to be reconfig-
ured. On ��, its profile is stored, besides the already installed
software modules:

�	
����� ���� � �����
 ���
 �����

Let ������� be the set of modules already installed on
the device. ������� � ���. Profiles of these modules
are stored on �� too, since at least the identifications of the
modules have to be known during the reconfiguration process,
to determine which modules are already installed on the de-
vice. Although, not all the information of the original module
profiles have to be stored on the device, since information
about the target platform is already present in �	
����� ����.

Let ����� be the set of software modules that are
available for reconfiguration on the local server. ����� �

252 J. PERVASIVE COMPUT. & COMM. 2 (3), SEPTEMBER 2006. c�TROUBADOR PUBLISHING LTD)

���. The profile of these modules and the profiles of the
applications corresponding to these modules are also stored on
the server. Let ����� be the set of applications on the local
server. ����� � ��� .

The profile matching is being realised in three steps corre-
sponding to the three types of rules. By the use of each rule, a
subset of software modules is being generated, that becomes
the set of modules on which the following rules are used.

� Module rules:
The module rules define which modules of ����� are
compiled for ��. There are � rules, � � ��. In a rule
�
 � � �

�
 � 	 � 	 �, it is verified, for every module
�
� of ����� , whether �	 properties of the device
profile are in relation ���	 with �	 properties of the
profile of this module, �	 � ��
 �	 � ��. ���	 can be an
equivalence relation or an ordered relation. Let �	
��	 be
the projection of �	
����� , on the �	 relevant properties
of ��, and let �	
��	 be the projection of �	
������ ,
on the �	 relevant properties of �
�.
Let �
���� be the subset of ����� resulting from
the module rules. �
���� is the set of modules of
����� obeying to the � module rules, minus the set of
modules already present on the device.

�
���� �

�

	��

��
� ������ �

��	
��	��	
����������� ���	

��	
��	��	
��������
����

 �������

When the equivalence classes of the properties of the
software modules are defined so that they correspond to
the equivalence classes of the properties of the mobile
device, there is no need anymore to verify if �	 properties
are in relation with �	 properties, but if one is in relation
with one. This point is explained through the selection
of a central vocabulary in the description of the design
pattern.

� Application rules:
The set �
���� ������ has been generated by the
module rules. The application rules will now be applied
on this subset. These rules define which software modules
of �
���� are actually able to run in the frame of an
application of �����, under consideration of the already
installed modules �������. Let ������ be the subset
of �
���� generated by the application rules. For every
module �
� � �
���� will be verified if there exists
an application ��� � �����, containing �
� in its
list of modules and if furthermore its list is completely
present in �
����
�������. Let �	
�����	�
 be the
projection of �	
������ on the list of software modules.

�	
�����	�
 � ������

������� � ���� �������� ��� � ������� � �������
������
 �����
 ���
 ������� ��
�
������ �� �
�����

So ������ can be written down as follows:

������ � ��
� ��
���� � � ��� � ����� �

��
� � �	
�����	�
��	
������ ��������

��	
�����	�
��	
������ ������

��
����
 ����������

� Priority rules:
From the module rules and the application rules, a set of
modules has been generated in which there are possibly
several modules with the same identification. Among
modules with the same identification, one has to be given
the priority. There exist � priority rules, � � �.
This means that for every priority rule, there exists a
property in the module profile that is relevant to determine
the priority. For this property, an ordered relation has to
be defined.
For priority rule �
 � � ��
 � 	 � 	 � (when � �� �), we
define the projection �	
��	�
	 that is the projection
on the relevant property ��
�!	 of the module profile,
!	 � �

�
 � 	 !	 	 �. We also define the ordered
relation 		 on these properties. This means that the
properties of ��!	� have to be fully ordered, so that one
module is always given the priority. The preferences
of the preference profile eventually change this order.
Since there are several priority rules that can only give
the priority to one module, we also have to define a
priority among the priority rules, that means to define the
sequence in which the rules are applied. Priority rule ���
will be applied after priority rule �. Let �	�
��� �	���
be the set of software modules that is generated when
priority rule �� � is applied on �	�
��� 	.
Let �	�
���� � ������.

�	
��	�
	 �
����� � ���
��� � ���� ���
��� � ���
�!	�

����

 ��
��
 ���
 ��
��� �� ��
�!	

�	�
����	��� is the set of software modules of
�	�
���	, the identification of which does not occur
twice, or the property ��
�!	 of which has the highest
value according to the ordered relation 		.

�	�
����	��� � ��
� � ��
���	 � ��
�� � �	�
���	

��	
�
���	
��������
���� ��

�	
�
���	
��������
�����

�	
��	�
	��	
��������
���� 		

�	
��	�
	��	
��������
�����

�	�
���� is the final subset of ����� , with which the
device �� will be reconfigured.

TRUCHAT ET AL.: RECONFIGURABLE AUTONOMOUS SERVICES 253

Fig. 2. Structure of the profile comparer.

D. The Profile Matching Design Pattern

The complete description of the proposed design pattern
involves discussions about the various ways to implement it
in a real system and the advantages and inconveniences of
each solution. Detailed examples illustrate these solutions too.
In this paper we concentrated only on a few general points.

Name
Profile comparer (Profilvergleicher).

Purpose
The purpose is, among a set of objects (e.g. software

modules), to identify the subset of objects that can fulfil their
functionality in a certain environment. The properties of these
objects are characterised by so called profiles. The properties
of an environment are characterised by one or more profiles
too. The relations between the properties of the environments
and the properties of the objects are described in rules. When
the properties are described using different vocabularies, a
translator defines the equivalencies between the vocabularies
in order to apply the rules.

Motivation
A typical scenario would be that a service provider wants

to provide services for mobile devices. These mobile devices
do not dispose of a permanent connection to a server of the
service provider. Consequently, the application that realises
this service has to be installed locally on the mobile device.

Now the service provider wants to update his service, or
modify it, or offer new services. To this end, he uses the
sporadic connection that a mobile device sometimes builds up

to some of his servers (a so called local server) to reconfigure
the device automatically. Since the environment can be het-
erogeneous (different local server platforms, different mobile
devices), the reconfiguration mechanism has to be platform
independent.

An application can be split in several smaller software
modules, so that only the necessary modules are exchanged
during a reconfiguration process. A software module is char-
acterised by a profile (module profile), in order to know
for which platform the module has been compiled, what
is his role in an application, and what its other properties
are. Additionally, there exist profiles that describe of which
modules an application is composed (application profiles).
These modules, with their module profiles and application
profiles are available for download on the server. Several types
of mobile devices exist, on which services have to be provided,
so a mobile device is characterised by a profile too (device
profile). Some preferences can be described in a profile too
(preference profile), as for example the desired language.

When the mobile device builds up a connection to a server,
it sends its profiles to it in order to have this latter doing the
profile matching (the profile matching should be realised on
the side disposing of the most computing power, but this is
not necessarily the server). Then the profile matching occurs
in three steps:

1) The module rules determine which of the software
modules on the server are, in principle, compiled for
the mobile device platform. Here, one profile comparer
compares the device profile with several module profiles.
Additionally, it has to be considered that the modules
that are already present on the device do not have to be
downloaded. This generates a subset of modules.

254 J. PERVASIVE COMPUT. & COMM. 2 (3), SEPTEMBER 2006. c�TROUBADOR PUBLISHING LTD)

2) The application rules determine which modules from
this subset of software modules are able to run in the
frame of any application characterised by the applica-
tion profiles on the server. Here, one profile comparer
compares each application profile with several module
profiles. This generates a new subset of modules.

3) The priority rules verify if, in this subset of modules,
there are modules with identical functionality (i.e. the
same identification) but differing properties. From these
modules with identical functionality, one is given the
priority. Here, one or more profile comparer compare
one preference profile at a time with several module
profiles. This generates the final list of modules that have
to be downloaded on the device.

Applicability
A profile comparer is useful when following conditions

come together:
� Different types of mobile devices must be reconfigured

automatically. The properties of the mobile devices are so
different, that different software modules are necessary.

� It is not possible to provide one software for the whole
spectrum of mobile devices through a virtual machine
mechanism because of one of the following reasons:
– there is no standardised virtual machine for all the

devices
– the software modules have to be compiled in a native

format anyway [15]
– the interfaces of the devices are so different that

different software modules are necessary [16]
– the terminal devices do not have enough resources

to host a virtual machine
– the virtual machine does not exist at all for some

devices
– some services that have not been compiled for a

virtual machine have to be reconfigured too
� For the desired spectrum of mobile device there exists no

synchronisation software that can be easily automatised
(above all in the special case of PDAs), and that runs on
every mobile device platform as well as on every local
server platform.

Structure
Figure 2 shows the structure of a profile comparer in a

class diagram.

Participants
� Profile A

– represents the properties of the environment, for
which a list of matching objects has to be found

– is a pure profile consisting of � properties
– every property is an element of a reference vocabu-

lary
� Profile B

– represents the properties of an object in the set from
which the subset of objects matching to the proper-
ties represented by Profile A have to be identified

– is a pure profile consisting of ! properties
– every property is an element of a reference vocabu-

lary
� Vocabulary

– defines the vocabulary used to represent a property
� Translator

– is the central reference, hat transforms all the vocab-
ularies in a central reference vocabulary

– knows all the vocabularies to be translated
– offers an interface to transform the properties of

a vocabulary in properties of the central reference
vocabulary

� Rules
– defines the rules on how properties of Profile A

have to match with properties of Profile B using the
central reference vocabulary of the Translator

– uses a Translator to transform the properties of
Profile A and Profile B into properties according to
the central reference vocabulary in order to compare
them through the matching rules

– has an access to all the profiles for this purpose
– offers an interface to give back the list of Profile

B objects matching to the properties of Profile A
according to the rules

A Profile B object has ! properties. This number of
properties remains constant in the frame of one profile
matching process (e.g. all the software modules have the
same number of properties). The same can be said for the
n properties of Profile A. Nevertheless, it is theoretically
possible that several properties use the same vocabulary,
that is why Profile B stands in a dependency relation
with � to ! vocabularies, and Profile A with � to �. It is
important to notice that the elementary profile comparer
compares one Profile A with � Profile B objects. To realise a
complete profile matching process, a complex composition of
several elementary profile comparer is necessary. The profile
comparer pattern only represents the general elementary
foundation-stone.

Interaction
� The class Rules wants to verify a list of rules. A rule �

will verify if � properties of Profile A are in relation ����
with � properties of Profile B, and this for every Profile
B object.

� To this end, Rules uses Translator to translate the � prop-
erties of Profile A in a property ������� of the central
reference vocabulary, and the � properties of Profile B in
a property ������� of the reference vocabulary.

� Afterwards, it will be verified if ������� is in relation
���� with �������. The result is a Boolean.

� This procedure is repeated for every � rules. If the result is
always "	#� the Profile B object matches the properties
of Profile A and gets on the list of suitable objects.

Consequences
� During a reconfiguration process, it can be decided

whether the user is given the possibility to modify the

TRUCHAT ET AL.: RECONFIGURABLE AUTONOMOUS SERVICES 255

generated list of suitable modules or not. Giving the user
this possibility bears the risk that an inconsistent list of
modules is being downloaded on the mobile device (e.g.
if the user chooses only some modules of an application
against the application rules). One solution would be to
say the user is responsible for his actions. The other
would be to send this list again to the server to check
it.

� If it is possible, during the design phase, to define the
profiles in a way that they all use a central reference
vocabulary, this solution should be given the priority.
In this way the translator becomes unnecessary, which
makes the implementation considerably easier.

� It is possible to integrate new mobile devices, with
profiles that must use other vocabularies, in an existing
infrastructure through the use (or extension) of a Trans-
lator. In the same way, a new service provider can use an
existing infrastructure to offer his new services.

� The content of the profiles is strongly influenced by the
chosen developer tools. For example, if a compiler always
compiles a module for a given family of processors,
this processor family will appear in one property of the
profile.

Implementation
This section deals with some aspects to be considered for

the implementation.

� The profile comparer only generates a list of software
modules to be downloaded. It does not provide an in-
stallation process. In many cases it will be sufficient to
download modules on the mobile device, but sometimes
a specific installation process will be needed. An instal-
lation process can vary significantly from one platform to
another. The simplest solution to this problem is to write
installation scripts that are also considered as software
modules to be downloaded. These installation scripts
can be either executed by the user, or executed once
automatically after the download process.

� The profiles are stored in files (or memory regions).
These profiles must be loaded in objects (or any entity
readable in the given programming language) to apply the
rules. Many programming languages offer serialisation
mechanisms, but it offers some advantages to write the
profiles in XML:

– the profiles can be edited in a normal text editor
– XML is platform independent
– there exist XML parser for most programming lan-

guages and even for embedded systems [17]

Of course, some systems exist that are so resource
constrained that even XML does not fit.

� After the reconfiguration process, it is important to ac-
tualise the software profile on the mobile device side,
i.e. the profiles of the installed modules. This means on
the one hand to delete the old profile of modules that
have been replaced, and on the other hand to download
the profiles of the new modules. Here, it is important to
notice, that not all the information of the module profiles

Fig. 3. Position Calculation Overview

must be downloaded, since the information relative to the
target platform are already present in the device profile.
This can shorten the download time and save memory
place on the mobile device.

� Modular software engineering does not mean necessarily
to download software modules, but eventually by very
lightweight platforms, to choose modules (in this case
code fragments) to put together in order to compile a
complete application for the target device [18].

III. THE NAVIGATION TERMINAL PROJECT

Another real world application for the presented recon-
figuration mechanism is a indoor positioning system devel-
oped at Fraunhofer Institute IIS. Cellular local networks like
DECT and 802.11 WLAN are widely spread. So a software-
only positioning system using these existing standards can
be widely deployed at low costs. The developed positioning
technology [19] is able to locate DECT- or WLAN-enabled
devices using standard wireless network components. It uses
received signal strength (RSS) information in combination
with fingerprinting for position calculation and can be used
with any kind of cellular local network that is capable of
scanning for communication partners around and reporting
their signal strength. As this feature is needed for roaming
between base stations, most cellular networks implement it.
This includes 802.11 WLAN and DECT.

Position calculation is done completely on the client side.
There are several steps needed as shown in figure 3. The mo-
bile device frequently scans for base stations (access points).
During the scan, a list of found base stations with their signal
strength information is generated. This data is preprocessed to
minimize measurement errors. It is then handed over to the
position calculation algorithm. This calculates a raw position
by matching the raw data to reference data captured before.
Also a model of the environment may be used to perform plau-
sibility checks and optimized routing. A postprocessing step
transforms raw positions into an application specific position
information. This may include coordinate transformation or
position to location mapping (e.g. room finding).

256 J. PERVASIVE COMPUT. & COMM. 2 (3), SEPTEMBER 2006. c�TROUBADOR PUBLISHING LTD)

Fig. 4. Reference Data in Office Building.

A. Capturing Reference Data

Capturing reference data is necessary for building up a posi-
tioning system based on fingerprinting. The capturing process
basically consists of recording RSS data for all base stations at
a certain set of positions (”reference points”) and storing them
for matching with data measured during localization. The set
of reference points is called reference carpet. As the position
calculation is done on the client side, reference data has to be
stored on each client. Updating this database if necessary is
one of the needs of the localisation system.

B. Modelling the Environment

A key feature of the system is the use of a model of the
environment. This model is used for two main purposes. It
helps the navigation algorithm to minimize errors as it limits
the number of directions a user can possibly move to (e.g. a
user cannot move through a wall, see office algorithm below).
Second the model is used to create a customized map view
of the environment for displaying location information. The
model contains geometric information about buildings, floors,
rooms, walls and any type of object that seems of importance.
It is extensible, XML-based and can vary in detail to fit the
application’s demands.

Again, as the position calculation is done on the client
side, a model representing the actual environment has to be
stored on each client. Updating this model and downloading
additional models if necessary is one of the needs of the
localisation system.

C. Target Platform

The location system is implemented in Java. Although Java
is not so popular on PDAs yet, it is very popular on the widely
spread mobile phones. As integration of 802.11 WLAN into
mobile phones has started (first devices are already available),
they are expected to be an attractive target platform soon.
Goal was to implement all functionality in Java, only access
to the wireless device has to be done in native code. The
location software now runs on PDAs and on Laptops. The
reconfiguration mechanism has to update java packages and
system dependent libraries (e.g. dlls). Therefore it is essential

that the reconfiguration is done both language and platform
independent.

D. Accuracy and Performance

Positioning accuracy of the WLAN positioning system
cannot be specified in general. There are many parameters that
influence the results, mainly the number of access points per
area and the type and material of obstructions in the building.
Also the type of WLAN adapter used may have an impact.
Tests in a typical office building (1000 square meter) with 5
access points showed an average position accuracy of about
1-3 meters (office algorithm). In halls accuracy is about 10m
due to the lack of obstructions. Obstructions increase accuracy
if signal strength values before and behind are significantly
different. As the WLAN adapter needs at least 200ms for
scanning, the software is slowed down to calculate 5 positions
per second.

E. Reconfiguration

For the definition of the profiles, we decided to agree
on a central vocabulary, since this is the simplest way. If
someday other platforms are introduced, a new Translator
can be implemented afterwards if necessary. We defined our
profiles as follows. An application profile contains following
elements:
� name of the application
� path on the mobile device
� list of modules
The application profile is written in XML style in order to

be parsed by tags on any platform (even without XML parser):

<AppliProf>
<Name> Name </Name>
<Pfad> Path </Pfad >
<Liste> List </Liste >

</AppliProf>

The list of modules itself is written:

<Modul> Name of module 1 </Modul>
<Modul> Name of module 2 </Modul>
...

A module profile contains following elements:
� name of the module
� path within the application path
� version
� processor (for which it is compiled)
� operating system (for which it is compiled)
� needed RAM memory
� needed resolution of the display
The module profile is written:

<ModulProf>
<Name> Name </Name>
<Pfad> Path </Pfad >
<Version> Version </Version>
<Prozessor> Processor </Prozessor >
<OS> Operating System </OS >

TRUCHAT ET AL.: RECONFIGURABLE AUTONOMOUS SERVICES 257

<RAM> Memory </RAM >
<Display> (x, y) </Display >

</ModulProf >

The local server also hosts a context profile which contains
his name. This is only needed for authentication, which is not
very complex for the moment.

These modules and profiles must be stored on the local
server according to a defined structure in a repository, so that
the profile matcher can always find them.

On the mobile terminal side, the device profile contains
following elements:

� processor
� operating system
� memory
� resolution of the display

The mobile terminal profile is written:

<MEProf>
<Prozessor> Processor </Prozessor >
<OS> Operating System </OS >
<RAM> Memory </RAM >
<Display> (x, y) </Display >

</MEProf >

The user profile only contains a list of trusted local servers.
The module rules are following:

� a module has to be compiled for the processor of the
device

� a module has to be compiled for the operating system of
the device

� the device must meet the required memory amount
� the display of the device must meet the required resolu-

tion

In this particular case, a software module belongs at most
to one application. This facilitates the implementation of the
application rules, since when one module is missing for an
application, all the other modules in the application list can
be deleted of the list of modules that have to be downloaded.

The priority rules choose the module with the highest
version, among modules with the same name.

IV. ROSES

A. Project Description

The development and the control of self-organizing, self-
configuring, self-healing, self-managing, and adaptive commu-
nication systems and networks are primary research aspects of
the Autonomic Networking group at the chair for Computer
Networks and Communication Systems. In the frame of the
ROSES (Robot Assisted Sensor Networks) project, we study
these aspects on a combination of mobile robots and stationary
sensor networks that are usually called mobile sensor/actuator
networks.

In this context, we distinguish between sensor assisted teams
of mobile robots and robot assisted sensor networks. An
example for the former scenario is sensor-based localization
and navigation. We developed a robot control system named

Robrain for general purpose applications in multi-robot sys-
tems. Part of this work was an interface between the robot
systems and our sensor motes (see below). This allowed us
to study the applicability of the ad hoc sensor network for
localization assistance [20]. An example for the latter scenario
is assistance for maintenance and deployment of sensor nodes
as well as for task and resource allocation [21]. Currently,
we are investigating methods for adaptive re-configuration
of sensor nodes using mobile robot systems. Two separate
goals should be achieved using these techniques: calibration
of sensor hardware and re-programming based on changes in
the environment. In order to address these issues, we apply
profiling mechanisms as described in the following.

B. Adaptive Re-Programming

In our laboratory, we use the Robertino robot platform
developed at the Fraunhofer Institute AIS running Embedded
Linux and the Mica2 sensor motes running TinyOS [22]
developed at the University of Berkeley. We have connected
a MIB510 programming and serial interface board with the
Robertino and installed a Mica2 node as a base station. This
enables our robot to directly communicate with the wireless
sensor network. In the following, we concentrate on the
reprogramming of the sensor nodes for dynamic adaptation
to environmental changes.

For re-programming, we prepare our sensor motes with an
initial binary, which contains a module for profiling concerns.
The robot can use this module to receive information about the
hardware configuration and the currently installed applications
of the sensor mote, e.g. Mica2 / Mica2dot, temperature mea-
surement / localization. On the robot, we store nesC-code and
code templates that are described by profiles. This enables
the robot to select and adapt the source code concerning
the current context and requirements and, finally, to create
a new binary for the sensor node. The robot can install the
image over the air. Figure 5 shows the principal concept of
reconfiguration:

(a) Depending on the goal, the robot drives to the
position in the sensor network, where reconfiguration
is necessary.

(b) The robot collects information about the environment
(e.g. current temperature), builds the context and
explores his neighbourhood.

(c) All motes, which have received the exploration mes-
sage, send their profiles.

(d) The robot uses the information gathered in steps b)
and c) for profile matching, and to assign the roles
of the sensor motes, optimized for the current goal.
As a result, it creates the new binaries of the sensor
motes.

(e) The robot reprograms the selected sensor motes over
the air.

C. Profiling

In the sensor net project ROSES, we had to define a byte
oriented profile in order to meet the demands of the very

258 J. PERVASIVE COMPUT. & COMM. 2 (3), SEPTEMBER 2006. c�TROUBADOR PUBLISHING LTD)

Fig. 5. Application scenario for dynamic reconfiguration in sensor/actuator
networks.

limited resources. Each hardware element plugged in a node
is defined by an ID (identification number). An ID can be
stored in one byte. In the same way, each software module is
defined by an ID stored in one byte. As we decide that a sensor
node can only contain three different hardware elements, and
host up to five software modules, we consequently need only
eight bytes to characterise the hard- and software of one
sensor node. So the profile of a sensor node is written in
the following way: three bytes defining the hardware (one
byte per hardware element) and five bytes characterising the
software configuration (one byte per module). As we only need
a few RPC commands, we reserve only one byte for the RPC
command, so a communication datagram for reconfiguration
is nine bytes long.

The Robot having definitely more resources, it hosts the
database where the complete profile description related to an
ID can be found. In that way, once the node has transmitted
its profile, the robot can decide with which software modules
to reconfigure the node through profile matching.

One can say, the ”translation” process into a central ref-
erence vocabulary, as explained in the pattern description, is
very simple here, since it just consists in converting an ID into
the profile description in the database. Application profiles and
application rules are not necessary yet, since in these first tests,
the modular application structure is static. Only module rules
are necessary for the moment, to decide which of the modules
at all are meant for a given functionality (”localisation” or
”acquiring sensor data”) on the given platform. It is obvious,
that the definition of a static modular application structure re-
places both an application ID and a module list. Nevertheless,
for future works, as the complexity of the system grows, it
may become necessary to introduce real dynamic applications
as foreseen in Mo.S.I.S.

V. CONCLUSIONS AND FURTHER WORK

When it comes to interoperability between heterogeneous
platforms, the most platform independent way to ”develop”

software turns out to be a pattern based approach. Indeed,
considering the general mechanisms about reconfiguration per-
mitted us to design patterns, the use of which allows enhancing
the development of automatic reconfiguration software as well
for PDA based architectures as for resource constrained sensor
networks. Of course, the needs and constraints related to these
systems vary significantly, which makes the discussion part so
important during the elaboration of patterns. The definition
of an UML profile based on these patterns turns out to be
helpful, since in one application field, the software structures
and rules governing the system remain similar. After the first
version for ROSES, the profile matching algorithm will grow
more complex in order to reach the conservation of a complex
functional density. As for the navigation terminal project, we
would like to investigate the possibility to edit profiles directly
in a UML tool as objects, in order to run profile matching rules
written in OCL.

REFERENCES

[1] HORN - Home and Office Replenishment Nürnberg. Available (Septem-
ber 2005): http://www.horn-nuernberg.de/

[2] A. Pflaum. Die Zukunft des “E-Fullfillment” für Lebensmittel: Versuch
einer Prognose, Logistik Management, 5. Jahrgang 2003, Ausgabe 1,
pp. 25–39.

[3] U. Hansmann, L. Merk, M. S.Nicklous, T. Stober. Pervasive Computing
Handbook, Berlin: Springer, 2001, pp. 327–340.

[4] J. Zobel. Mobile Business und M-Commerce, Hanser, 2001, pp. 3–4.
[5] T. Hakkarainen, A. Lattunen, V. Savikko. Flower – Framework for Local

Wireless Services, ERCIM News Number 50, July 2002, pp. 51–52.
[6] M. Hillenbrand, P. Müller and K. Mihajloski. A Software Deployment

Service for Autonomous Computing Environments, International Con-
ference on Intelligent Agents, Web Technology and Internet Commerce,
Juli 2004.

[7] S. Truchat. Interoperative Systems for Replenishment (doctoral collo-
quium of the Pervasive 2004 conference, April 2004), in: Alois Ferscha,
Horst Hörtner, Gabriele Kotsis (eds.): Advances in Pervasive Computing,
pp. 161–166. Vienna: Österreichische Computer Gesellschaft.

[8] T. Kindberg and A. Fox. System software for ubiquitous computing,
IEEE Pervasive Computing, January-March 2002, pp. 70-81.

[9] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King
and S. Angel. A Pattern Language, pp. x. New York: Oxford University
Press, 1977.

[10] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Entwurfsmuster
- Elemente wiederverwendbarer objektorientierter Software, pp. 8-10.
Addison-Wesley 2004.

[11] T. Haaker and O. Rietkerk. Introducing New Mobile Services Faster,
ERCIM News Number 54, July 2003, pp. 44-45.

[12] Composite Capabilities / Preference Profiles: Requirements and archi-
tecture, W3C Working draft 21 July 2000. Available (September 2005):
http://www.w3.org/TR/2000/WD-CCPP-ra-20000721/

[13] Common Information Model (CIM) Standard. Available (March 2006):
http://www.dmtf.org/ standards/cim/

[14] K.-D. Schmatz. Java2 Micro Edition Entwicklung mobiler Anwendungen
mit CLDC und MIDP, pp. 29-30. Heidelberg: dpunkt.verlag, 2004.

[15] A. Austermann. Java zum Mitnehmen. Toolbox – PDAs in Java pro-
grammieren, Juli-August 2001, pp. 6-21.

[16] D. S. Kochnev and A. A. Terekhov. Surviving Java for Mobiles, IEEE
Pervasive Computing, Volume 2, Number 2, April-June 2003, pp. 90-95.

[17] C. Gordon. Embedded XML eases networking and comms, Embedded
Systems, February 2002, pp. 33-37.

[18] G. Fuchs, S. Truchat and F. Dressler. Distributed Software Manage-
ment in Sensor Networks using Profiling Techniques. Proceedings of
1st IEEE/ACM International Conference on Communication System
Software and Middleware (IEEE COMSWARE 2006): 1st International
Workshop on Software for Sensor Networks (SensorWare 2006), New
Dehli, India, January 2006.

[19] Lakale Navigation. Available (September 2005):
http://www.iis.fraunhofer.de/ec/navigation/indoor/

TRUCHAT ET AL.: RECONFIGURABLE AUTONOMOUS SERVICES 259

[20] F. Dressler. Sensor-Based Localization-Assistance for Mobile Nodes.
Proceedings of 4. GI/ITG KuVS Fachgespräch Drahtlose Sensornetze,
Zurich, Switzerland, March 2005, pp. 102-106.

[21] F.o Dressler and G. Fuchs. Energy-aware Operation and Task Allocation
of Autonomous Robots. Proceedings of 5th IEEE International Work-
shop on Robot Motion and Control (IEEE RoMoCo’05), Dymaczewo,
Poland, June 2005, pp. 163-168.

[22] TinyOS. Available (September 2005): http://www.tinyos.net/

Sébastien Truchat received a diplôme d’ingénieur
(M.Sc.) from the Ecole Supérieure des Sciences
Appliquées pour l’Ingénieur - Mulhouse (ESSAIM)
in France in 1997. Afterwards, he joined the Siemens
Automation & Drives department as a software de-
veloper. In 2000, he joined Computer Networks and
Communication Systems Group, Dept. of Computer
Sciences, University of Erlangen as a research assis-
tant. He is currently working towards his Ph.D. in
the field of software engineering for reconfigurable
mobile services and interoperative systems.

Gerhard Fuchs received his M.Sc. in computer
science from the University of Erlangen in 2004.
Afterwards, he joined the Autonomic Networking
Group at the Dept. of Computer Sciences, University
of Erlangen as a research assistant. Presently, he
is working towards his Ph.D. in the fields of task
allocation and resource management in the area of
sensor/actuator networks.

Steffen Meyer studied Computer Science at the Uni-
versity of Erlangen-Nuremberg where he graduated
with a diploma degree (M.Sc.) in 2002. Since then
he has been working in the field of indoor navigation
at the Fraunhofer Institute for Integrated Circuits at
Erlangen.

Falko Dressler is an assistant professor leading
the Autonomic Networking Group at the Depart-
ment of Computer Sciences, University of Erlangen-
Nuremberg. He teaches on self-organizing sen-
sor/actuator networks, network security, and commu-
nication systems. Dr. Dressler received his M.Sc. and
Ph.D. degree from the Dept. of Computer Sciences,
University of Erlangen in 1998 and 2003, respec-
tively. From 1998 to 2003 he worked at the Regional
Computing Center at the University of Erlangen as
a research assistant. In 2003, Dr. Dressler joined

the Networking Group (Chair for Computer Networks and Internet) of Prof.
Dr. Georg Carle at the Wilhelm-Schickard-Institute for Computer Science,
University of Tuebingen as an assistant professor. In 2004, he joined the
Computer Networks and Communication Systems Group of Prof. Dr. Reinhard
German at the Department of Computer Sciences, University of Erlangen-
Nuremberg. Dr. Dressler co-authored more than 50 reviewed research papers.
He was co-chair and PC member for various international conferences (ACM,
IEEE, GI, ITG). He is a member of ACM, IEEE, IEEE Computer Society,
and GI (Gesellschaft fr Informatik). Dr. Dressler is actively participating in
several working groups of the IETF. His research activities are focused on (but
not limited to) Autonomic Networking addressing issues in Wireless Ad Hoc
and Sensor Networks, Self-Organization, Bio-inspired Mechanisms, Network
Security, Network Monitoring and Measurements, and Robotics.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

