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Abstract—Recently, the growing popularity of Spatial Crowd-
sourcing (SC), allowing untrusted platforms to obtain a great
quantity of information about workers and tasks’ locations, has
raised numerous privacy concerns. In this paper, we investigate
the privacy-preserving task assignment in the online scenario,
where workers and tasks arrive at the platform in real time and
tasks should be assigned to workers immediately. Traditional
online task assignments usually make a benchmark to decide
the following task assignment. However, when location privacy
is considered, the benchmark does not work anymore. Hence,
how to assign tasks in real time based on workers and tasks’
obfuscated locations is a challenging problem. Especially when
many tasks could be assigned to one worker, path planning should
be considered, making the assignment more challenging. To this
end, we propose a Planar Laplace distribution based Privacy
mechanism (PLP) to obfuscate real locations of workers and
tasks, where the obfuscation does not change the ranking of these
locations’ relative distances. Furthermore, we design a Threshold-
based Online task Assignment mechanism (TOA), which could
deal with the one-worker-many-tasks assignment and achieve a
satisfactory competitive ratio. Simulations based on two real-
world datasets show that the proposed algorithm consistently
outperforms the state-of-the-art approach.

Index Terms—Spatial crowdsourcing, privacy protection, on-
line task assignment, one-worker-many-tasks assignment.

I. INTRODUCTION

Recently, the increasing availability of mobile Internet and
portable devices has led to a promising paradigm, generally
referred to as Spatial Crowdsourcing (SC) [1]–[3]. Many SC
applications, such as the taxi-calling application Uber and
the product placing application Gigwalk, are emerging in our
daily life. As one of the most foundational issues in SC, task
assignment has attracted much attention in the last decade [4]–
[8], which mainly includes three parts: the platform, workers,
and tasks. Specifically, the platform collects the locations of
workers and tasks, and then assigns tasks to nearby workers
for minimizing the cost (i.e., the distance) of performing tasks.

Compared with the offline task assignment [9]–[11] where
full information of workers and tasks is known in advance, a
more realistic scenario should be the online task assignment
[12]–[15] where tasks arrive at the platform in real time and
need to be assigned immediately. For example, taxi-calling
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Fig. 1: Privacy-preserving online task assignment: one-worker-
many-tasks assignment.

tasks of passengers arrive at the Uber application in real time,
and should be immediately assigned to the nearby drivers.
However, during task assignment, some sensitive information
(e.g., locations) of workers and tasks has to be exposed to the
platform, which raises serious privacy issues since the platform
may be untrusted [16]. Motivated by this, we focus on the
privacy-preserving online task assignment in this paper. Fig. 1
(left) shows such an online scenario, where both workers and
tasks arrive one by one in real time and report their obfuscated
locations to the platform. Given a set of workers and tasks,
we prefer to assign tasks to nearby workers to minimize the
total distance of workers to perform the task. However, in the
online scenario, workers and tasks’ locations are invisible to
the platform until they arrive. Hence, when an online task
arrives, it is difficult to assign the task to a suitable worker.

To this end, some existing works utilize the optimal stopping
problem [13] or the Hierarchically well-Separated Tree (HST)
[12] to solve the online task assignment. However, they ignore
the privacy issues, that is, when the workers and tasks report
the obfuscated locations to the platform, the assignment bench-
mark [13] or the measurement tree [12] is no longer accurate
based on the obfuscated locations. Hence, their approaches
can not work anymore. Actually, there is a tradeoff between
privacy protection and online task assignment, i.e., high-
level privacy protection results in inaccurate task assignment.
Hence, how to protect location privacy as well as ensure the
availability of obfuscated locations is the first challenge.

To this end, some works [5], [17] investigate the privacy-



preserving online task assignment. However, they only focus
on the one-worker-one-task assignment, where a worker can
only perform a task. But in most realistic scenarios, each
worker can perform many tasks, such as the ride-sharing
service [18]. Inspired by this, we consider a more general
assignment scenario, i.e., the one-worker-many-tasks assign-
ment as depicted in Fig. 1 (right), illustrating that when a new
task arrives and is assigned to a worker who has already been
assigned with other tasks, the worker dynamically adjusts its
path plan and performs these two tasks in sequence. Consid-
ering both the task assignment and plan planning makes the
one-worker-many-tasks assignment more challenging. Hence,
the second challenge is how to propose an efficient approach
to conduct the one-worker-many-tasks online assignment.

More importantly, when considering both privacy protection
and one-worker-many-tasks assignment in the online scenario,
it is difficult to provide the assignment performance bound
to the offline solution. Hence, how to prove the effectiveness
of the proposed online task assignment mechanism, i.e., the
competitive ratio is the third challenge.

To overcome the above challenges, we propose a privacy-
preserving online task assignment mechanism. Specifically, for
the first challenge, we design a Planar Laplace distribution
based Privacy mechanism (PLP). Based on PLP, workers and
tasks obfuscate their real locations to other locations around
them by adding the noise. PLP is proven to achieve ε-Geo-
Indistinguishability and ensure the availability of obfuscated
locations, i.e., the obfuscation does not change the ranking
of these locations’ relative distances. For the second chal-
lenge, we design a Threshold-based Online task Assignment
algorithm (PLP-TOA) by leveraging the obfuscated locations
to solve the one-worker-many-tasks assignment in two steps:
(1) the platform estimates a threshold using a graph-based
approach according to the historical data. Specifically, we
construct an extended network graph and formulate the one-
worker-many-tasks assignment as the Extended Minimum-
Cost Flow (EMCF) problem, and then estimate the threshold;
(2) when tasks arrive, the platform filters inappropriate tasks
based on the estimated threshold and then assigns tasks effi-
ciently based on EMCF in the online scenario. Regarding the
third challenge, we first offer the competitive ratio of the no-
privacy version algorithm of PLP-TOA. Then, by combining
properties of the privacy mechanism PLP, we further prove
that PLP-TOA achieves a competitive ratio related to the pri-
vacy budget and historical data. Finally, extensive simulations
based on two real-world datasets demonstrate that PLP-TOA
consistently outperforms the state-of-the-art approach.
• We design a privacy mechanism PLP based on the planar

Laplace distribution to balance the tradeoff between pri-
vacy protection and task assignment in the online SC sce-
nario. PLP is proven to achieve ε-Geo-Indistinguishability
and ensure the availability of the obfuscated locations.

• To the best of our knowledge, we are the first to solve the
one-worker-many-tasks assignment in the online scenario.
Specifically, based on the historical data, we formulate
the online assignment problem as an extended minimum-

cost flow (EMCF) problem and leverage the graph-based
approach to estimate a threshold. Based on the threshold
and EMCF, the platform assigns tasks to suitable workers
in the online scenario.

• We offer the competitive ratio of the no-privacy version
algorithm of PLP-TOA. Then, by combining the privacy
mechanism PLP, we prove that PLP-TOA achieves the
competitive ratio O(1/(d̄ · ε2)), where d̄ is the average
distance of performing a task in the offline solution using
the historical data, and ε is the privacy budget.

• We conduct extensive simulations based on two real-
world datasets to evaluate the performance of the pro-
posed algorithm, and the results illustrate that our algo-
rithm outperforms the state-of-the-art approach.

II. RELATED WORK

Regarding the privacy-preserving task assignment, Wang et
al. [4] propose a geo-obfuscated task allocation framework
to protect workers’ location privacy and formulate the task
assignment as a mixed-integer non-linear programming prob-
lem. Then, they solve the problem using the genetic algorithm.
Different from the location privacy, Ren et al. [16] focus on
the cost privacy of workers, and formulate the task assignment
with the obfuscated costs as an integer linear programming
problem. Then, they propose a Hungarian method and a
greedy method in two different scenarios, respectively. In
addition, Xiao et al. [19] focus on protecting the privacy
of both workers’ quality and cost when assigning tasks to
workers for minimizing the total cost. Based on the secret
sharing scheme, they propose two secure task assignment
protocols, which are based on the greedy method and proven
to achieve an approximation ratio. However, all of [4], [16],
[19] focus on the offline scenario, i.e., the information of
workers and tasks are known in advance to the platform. To
this end, Shahabi et al. [5] investigate the privacy-preserving
task assignment in the online scenario and propose a heuristic
approach, which estimates the reachability probability between
a worker and a task, and assigns tasks greedily based on the
probability. Unfortunately, the performance of the proposed
heuristic approach cannot be guaranteed theoretically.

Furthermore, Tao et al. [17] propose a privacy-preserving
online task assignment framework called TBF through con-
structing a hierarchically well-separated tree, which achieves
a performance guarantee, i.e., the competitive ratio. Based on
the tree, they confuse the locations of workers and tasks and
assign the online tasks greedily. It is worth noting that all
the works mentioned above only focus on the one-worker-
one-task assignment. However, when a worker is able to
perform multiple tasks, these approaches cannot work. To
this end, given a worker, Demiryurek et al. [20] study the
one-worker-many-tasks assignment, and propose a series of
algorithms based on dynamic programming and branch-and-
bound strategies. However, when there are multiple workers,
the algorithms cannot work. Inspired by this, Deng [21] further
investigate the one-worker-many-tasks assignment for multiple
workers and propose a bisection-based framework to divide



Fig. 2: Workflow of privacy-preserving task assignment.

workers and tasks into different partitions and assign tasks.
However, both of [20], [21] consider the offline scenario and
ignore privacy issues. Once in the privacy-preserving online
scenario, their approaches fail to assign tasks effectively.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a privacy-preserving online spatial crowdsourc-
ing system model consisting of a platform, a large number
of workers and tasks. The system evolves in a time-slotted
fashion over T time slots, and temporary measures (e.g.,
seconds, minutes, or even days) can be used to represent the
length of a time slot. Then, we introduce the three main parties
and the workflow of the system model as follows:
(1) Platform. Without loss of generality, we assume that the
platform is honest-but-curious [22], meaning that the platform
will honestly carry out the task assignment but is curious about
the private information (e.g., locations) of workers and tasks.
(2) Worker. As mentioned above, workers denoted by W dy-
namically arrive one by one in the online manner. Each worker
wi ∈ W is specified by a set of attributes [τa, τl, C, lx, ly],
where wi.τa, wi.τl represent the time slots in which wi arrives
and leaves. wi.C represents the capacity (i.e., the number of
tasks that can be assigned to wi). In addition, wi.lx, wi.ly
represent the coordinates of wi’s location. For short, we use l
to denote the location in the subsequent sections.
(3) Task. Similarly, tasks denoted by T also arrive dynami-
cally one by one in the online manner, and each task tj ∈ T
is specified by a set of attributes [τa, τl, lx, ly]. Note that the
task does not have the capacity attribute.
(4) Workflow. The workflow of the privacy-preserving task
assignment is shown in Fig. 2. At first, workers W and tasks
T arrive one by one in the online manner. Considering the
privacy issues, both workers and tasks obfuscate their real
locations to the obfuscated locations, by leveraging a privacy
mechanism, to be introduced in Section IV. Fig. 2 (lower part)
offers the location obfuscation process. For example, a worker
or task’s real location specified by (lx, ly) is changed to an
obfuscated location specified by (l∗x, l

∗
y) (l∗ ∈ R2 for short).

Afterward, workers and tasks report their obfuscated locations
to the platform for the subsequent task assignment. When
workers or tasks arrive and report their obfuscated locations,
the online privacy-preserving task assignment mechanism is

TABLE I: Notation Description

Notations Description

T,W, T Number of time slots, the worker set, the task set
wi, tj Worker wi ∈ W , task tj ∈ T

τa, τl, lx, ly Arrival time, leaving time, and location coordinates
C Number of tasks that a worker can perform
δ Cardinality constraint to the number of assigned tasks
M Privacy mechanism

d(l, l′) Distance between any two locations l and l′
di Total travel distance of worker i
Ti Tasks assigned to worker i

l, l∗, ε Real and obfuscated location, the privacy budget
G,V,A Network graph, the vertex set, the arc set
s, t Origin vertex and destination vertex of the flow in G

P(G, s, t) Path in G from the source s to destination t
d̂(s, v) Distance of the shortest path from s to vertex v in G

invoked. As demonstrated in Fig. 2 (upper part), the plat-
form assigns tasks according to the obfuscated locations. The
assignment results are different in the one-worker-one-task
and one-worker-many-tasks scenarios since a task could be
assigned to a near worker even though the worker has been
assigned with other tasks. In this paper, we focus on the one-
worker-many-tasks assignment. Let d(l, l′) denote the distance
between arbitrary two locations (workers and tasks’ locations)
l and l′. A worker wi can be assigned multiple tasks denoted
by Ti in a specific order, e.g., tasks Ti = {t1, t2, t3} are
assigned to wi, then wi’s total travel distance is represented
as di = d(i, t1) + d(t1, t2) + d(t2, t3). Note that a task can
only be assigned once, i.e., Ti ∩ Ti′ = ∅,∀wi, w′i ∈ W . The
notations used throughout the paper are described in Table I.

B. Privacy Model

To prevent the platform from private information, we pro-
pose a privacy mechanism M to help workers and tasks
obfuscate their real locations by adding the noise. Then, we
offer the definitions regarding the privacy mechanism, privacy
budget, and geo-indistinguishability as follows:

Definition 1 (Privacy mechanism). Given a metric space L,
a privacy mechanism M can map a real location l ∈ L to an
obfuscated one l∗ ∈ L.

Definition 2 (Privacy budget). Privacy budget ε indicates the
privacy level that the privacy mechanism M can provide. A
smaller ε denotes a stronger privacy level.

Definition 3 (ε-Geo-Indistinguishability [23]). A privacy
mechanism M is said to satisfy Geo-Indistinguishability iff

M(l)(Z) ≤ eεd(l,l
′)M(l′)(Z), (1)

where M(l)(Z) and M(l′)(Z) denote the probabilities that
the obfuscated locations belong to Z when real locations are l
and l′, and Z ⊆ L is the set of possible obfuscated locations.
Note that d(l, l′) ≤ r denotes the Euclidean distance between
arbitrary two locations l and l′.

C. Problem Formulation

Privacy-preserving Online Task Assignment (POTA)
Problem: Given a set of workers W and tasks T that
arrive one by one in real time and an untrusted platform,



Fig. 3: The planar Laplace dis-
tribution centered at l0.
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Fig. 4: The polar Laplace dis-
tribution with origin in l0.

POTA aims to design a mechanism including two parts: (1)
design a privacy mechanism to obfuscate workers and tasks’
real locations, satisfying ε-Geo-Indistinguishability; (2) design
an online one-worker-many-tasks assignment mechanism to
assign tasks to minimize the total travel distance of workers
under the assigned task cardinality constraint.

Minimize
∑

wi∈W
di (2)

Subject to
∑

wi∈W
|Ti| ≥ δ (3)

|Ti| ≤ wi.C, ∀wi ∈ W. (4)

As mentioned above, the goal of POTA is to minimize the total
travel distance of all workers, as shown in Eq. (2). Note that
di = 0 if no task is assigned to worker wi, i.e., |Ti| = 0. The
first constraint indicates that the number of all assigned tasks
is not less than δ, called the cardinality constraint. The second
constraint indicates the number of assigned tasks for wi should
be limited by wi’s capacity, i.e., the capacity constraint. More
importantly, the platform has to use the obfuscated locations
of workers and tasks generated by the privacy mechanism M
to assign tasks, called the privacy constraint.

IV. MECHANISM DESIGN

In this section, we introduce the privacy mechanism and on-
line privacy-preserving task assignment mechanism in detail.

A. The privacy mechanism

In this section, we design the privacy mechanism in POTA.
To protect the location privacy of workers and tasks, we prefer
to hide their real locations and use the obfuscated locations to
conduct the online task assignment. However, it will inevitably
affect the assignment effect, i.e., there is a tradeoff between
privacy protection and online task assignment. To balance
the tradeoff, we propose a privacy mechanism called PLP
to obfuscate workers and tasks’ real locations based on the
planar Laplace distribution (PLD) [23]–[26]. In the subsequent
sections, PLP is proven to achieve the privacy guarantee and
availability of obfuscated locations. Intuitively, the idea of
PLP is that for each real location l ∈ R2, which can also be
represented as (lx, ly), PLP randomly generates an obfuscated
location l∗ ∈ R2 around l by adding the noise generated by
PLD. Specifically, given the privacy budget ε ∈ R and real
location l, we offer PLD’s probability density function (pdf):

f(l, l∗, ε) =
ε2

2π
e−ε·d(l,l

∗). (5)

Fig. 3 shows an example of the pdf centered at the real
location l0 = (0, 0). We can discover that a standard Laplace

Algorithm 1: PLP
Input: Privacy budget ε, real location l = (lx, ly)
Output: Obfuscated location l∗ = (l∗x, l

∗
y)

1 Draw p ∈ [0, 1] uniformly, ρ = F−1(p);
2 Draw θ ∈ [0, 2π] uniformly;
3 l∗x = lx + ρ cos(θ), l∗y = ly + ρ sin(θ);
4 return l∗ = (l∗x, l

∗
y)

distribution can be projected through the plane passing l0.
Afterward, we introduce how to draw the noise based on PLD.
For convenience, we switch Eq. (5) to the polar coordinate
system with the origin of l0 in Fig. 4 and get Eq. (6).

f(ρ, θ, ε) =
ε2

2π
e−ε·ρ, (6)

where ρ represents the distance between l and l∗, and θ
represents the angle of the vector ll∗ from the horizontal axis
of the Cartesian coordinate system. Hence, the key to draw
the noise from PLD is to determine the values of ρ and θ. To
this end, we offer the cumulative probability function (cpf):

F (ρ, ε) =

∫ ρ

0

∫ 2π

0

ε2

2π
e−ερdθdρ = 1− (1 + ερ)e−ερ. (7)

Based on Eq. (7), we determine the values of ρ and θ. For
θ, since θ is independent with the cpf, we draw the value of
θ randomly from [0, 2π]. For ρ, given p = F (ρ, ε) denoting
the probability that d(l, l∗) ≤ ρ, we offer the inverse function
F−1 of cpf such that ρ = F−1(p, ε). Since each probability
p corresponds to a distance d, we randomly generate a value
of p ∈ [0, 1], and find the corresponding value of ρ based on
the inverse function. The process is shown in Alg. 1. After
getting ρ and θ, we can specify an obfuscated location l∗

through adding the noise to the real location l = (lx, ly) such
that l∗ = (lx + ∆x, ly + ∆y) = (lx + ρ cos(θ), ly + ρ sin(θ)).
Next, we offer some properties of PLP as follows:

Theorem 1. PLP achieves ε-Geo-Indistinguishability.

Proof. Given arbitrary two real locations l1, l2 ∈ L, and any
an obfuscated point l∗ ∈ Z , we get

M(l1)(l∗)/M(l2)(l∗) = f(l1, l
∗, ε)/f(l2, l

∗, ε) (8)

= eε·(d(l2,l
∗)−d(l1,l∗)) ≤ eε·d(l1,d2).

The inequality holds because d(l2, l
∗) − d(l1, l

∗) ≤ d(l1, l2).
Also, for each location in Z , we can get the above property.
Thus, we haveM(l1)(Z)/M(l2)(Z) ≤ eε·d(l1,d2). According
to Definition 3, ε-Geo-Indistinguishability is achieved.

B. Privacy-preserving online task assignment

In this section, we design the online task assignment mecha-
nism in POTA. In the online scenario, workers and tasks arrive
one by one in real time, so their locations are invisible to
the platform until they arrive. Due to the lack of information
about future workers and tasks, when an online task arrives,
the platform has no assignment benchmark to decide whether
to assign the task. Hence, we need to estimate a benchmark or
threshold to help with the online task assignment. In addition,
the online task assignment in POTA is the one-worker-many-
tasks assignment. So, after deciding whether to assign the



task based on the threshold, we still need to decide which
worker to assign the task with considering the path planning
of workers. To this end, we design a Threshold-based Online
task Assignment mechanism (TOA). When TOA uses the
obfuscated locations generated by PLP to assign tasks, we
call it PLP-TOA. At first, PLP-TOA finds the optimal solution
to the offline one-worker-many-tasks assignment based on
the historical spatial-temporal data to estimate a threshold.
Then, PLP-TOA conducts the online one-worker-many-tasks
assignment based on the threshold.

1) Offline one-worker-many-tasks assignment: In the
offline scenario, where the platform has the entire spatial-
temporal information of workers and tasks in advance [27],
[28], we aim to find the optimal solution to the offline one-
worker-many-tasks assignment. However, considering both the
task assignment and path planning makes it difficult to find
the optimal solution directly. Inspired by the fact that the
one-worker-one-task assignment is a special and simple case,
we try to solve the one-worker-one-task assignment at first,
then extend the approach to solve the one-worker-many-tasks
assignment. To solve the one-worker-one-task assignment,
we introduce its equivalent problem, i.e., the well-known
minimum bipartite matching (MBM) problem in Definition 4.

Definition 4 (Minimum bipartite matching (MBM) problem
[12]). Given a set of workersW and tasks T , the MBM prob-
lem aims to find a maximum cardinality one-to-one matching
to minimize the total distance between pairs.

MBM problem can be reducible to the minimum-cost flow
(MCF) problem (also called the minimum-cost circulations
problem) [9], [29], [30] in the network graph and solved
by Bellman-Ford algorithm. Therefore, to solve the offline
one-worker-one-task assignment, we could construct a special
network graph based on workers and tasks’ information and
find the minimum-cost flow. Specifically, given workers W =
{w1, · · · , wn} and tasks T = {t1, · · · , tm}, let G = (V,A)
be the network graph as shown in Fig. 5, where V =W

⋃
T

is the vertex set and A is the arc set. We call W the worker
vertices and T the task vertices. Note that each arc (v, v′) ∈ A
contains two properties: capacity c(v, v′) and cost d(v, v′) (i.e.,
distance), and the flow in each arc is limited by its capacity.
Then, we add a source vertex s and a sink vertex t to V and
corresponding arcs to A. Also, we assign different capacity
and cost to each arc in A. Formally, we offer the specific
network graph construction process as follows:

V =W ∪ T ∪ {s, t},
A = {(s, wi) ∪ (wi, tj) ∪ (tj , t)|∀wi ∈ W,∀tj ∈ T },

c(s, wi) = 1, d(s, wi) = 0,∀wi ∈ W,

c(wi, tj) = 1, d(wi, tj) = d(wi, tj),∀wi ∈ W,∀tj ∈ T ,
c(tj , t) = 1, d(tj , t) = 0,∀tj ∈ T . (9)

Note that d(wi, tj) is the actual distance between worker
wi and task tj . Then, let s be the origin of the flow and
t the destination to find the minimum-cost flow based on
Bellman-Ford algorithm. The minimum-cost flow is proven

Fig. 5: Illustration of the MCF problem instance.

Fig. 6: Illustration of the EMCF problem instance.

to be the optimal solution to the MBM problem [31]. For
instance, given a special MBM problem aiming to find three
worker-task pairs while minimizing the total distance, we
construct a network graph G as mentioned in Eq. (9) and
solve the MCF problem to obtain the minimum-cost flow
F = {(s, w1, t2, t), (s, w2, t1, t), (s, w3, t3, t)} with the cost of
4 and worker-task pair number of 3. Then, the optimal solution
to the MBM problem are the worker-task pairs (w1, t2),
(w2, t1) and (w3, t3), which are also the optimal solution to
the offline one-worker-one-task assignment.

In summary, we construct a network graph and transfer the
offline one-worker-one-task assignment to an MCF problem,
then get the optimal solution to the offline one-worker-one-
task assignment by finding the minimum-cost flow. However,
as mentioned above, the approach cannot be used to solve the
offline one-worker-one-task assignment because the platform
has to consider not only the task assignment but also the path
planning. For example, if two tasks t1, t2 are assigned to a
same worker wi, the total distances of different paths, such as
wi → t1 → t2 and wi → t2 → t1, are different.

Therefore, to find the optimal solution to the one-worker-
many-tasks assignment, we propose an extended network
graph as shown in Fig. 6 by introducing the virtual worker
vertices. The insight is that considering a worker’s travel path
such as w1 → t1 → t2, it is easy to understand that a task
actually becomes a new worker vertex if it is assigned to a
worker. Specifically, given workers W and tasks T , we copy
the task vertices T = {t1, · · · , tm} as the virtual worker
vertices T ′ = {t′1, · · · , t′m} as shown by the blue arrow in Fig.
6, then construct an extended network graph G′ = (V ′, A′)
based on G and add some new vertices and arcs to G′:

V ′ = V ∪ T ′,
A′ = A ∪ {(s, t′i)|∀t′i ∈ T ′} ∪ {(t′i, tj)|∀t′i ∈ T ′, tj ∈ T },

c(s, t′i) = 1, d(s, t′i) = +∞,∀t′i ∈ T ′,
c(t′i, tj) = 1, d(t′i, tj) = d(t′i, tj),∀t′i ∈ T ′, tj ∈ T , i 6= j,

c(t′i, tj) = 0, d(t′i, tj) = +∞,∀t′i ∈ T ′, tj ∈ T , i = j. (10)

In the initial G′, the costs of the arcs between s and new



Algorithm 2: Extened minimum-cost flow (EMCF)
Input: Workers W , tasks T , cardinality constraint δ
Output: The minimum-cost flow F , total cost D

1 Construct G′ = (V ′, A′) as Eq. (10) based on W, T ;
2 Initialize the flow F ← ∅, total cost D ← 0;
3 foreach (wi, tj) ∈ A′ do
4 if wi.tl < tj .ta or wi.ta > tj .tl then
5 Remove the arc (wi, tj) from A′;

6 Find the minimum-cost augmenting path P(G′, s, t);
7 while P(G′, s, t) exists and |F| < δ do
8 F ← F ∪ P(G′, s, t);
9 foreach arc (v, v′) ∈ P(G′, s, t) do

10 if arc (v′, v) /∈ A′ then
11 A′ ← A′ ∪ {(v′, v)};
12 d(v′, v)← −d(v, v′), c(v′, v)← 0;

13 c(v, v′)← c(v, v′)− 1, c(v′, v)← c(v′, v) + 1;
14 D ← D + d(v, v′);
15 if v′ = tj ,∀tj ∈ T then
16 d(s, t′j)← 0;

17 Find P(G′, s, t) again based on the current G′;

18 return F , D

vertices T ′ are set to +∞, meaning a path from s to t
cannot pass through this arc at the beginning. Next, inspired by
Bellman-Ford algorithm, we propose an Extended Minimum-
Cost Flow (EMCF) algorithm to solve both task assignment
and path planning in Alg. 2. To describe Alg. 2 clearly, we
offer the definition of the augmenting path in Definition 5.

Definition 5 (Augmenting path). A path P(G′, s, t) from the
source s to destination t in G′ is called augmenting path if
for any arc (v, v′) ∈ A′, its current capacity c(v, v′) > 0.

In Alg. 2, given the worker set W and task set T , we
construct the extended network graph G′ as shown in Eq.
(10). Next, we set the initial values of the flow F as ∅ and the
total distance D as 0 in line 2. The flow can be regarded
as the set of paths from s to t. In lines 3-5, due to the
scenario where both workers and tasks arrive one by one
in real time, we eliminate the arcs in G′ between workers
and tasks that cannot exist at the same time, e.g., a task
that exists during 8 : 00∼9 : 00 cannot be assigned to the
worker that exists during 10 : 00∼11 : 30. After that, we
find the augmenting path P(G′, s, t) with minimum cost by
leveraging the Shortest Path Faster Algorithm (SPFA) [32] in
lines 6 and 17. If P(G′, s, t) exists and the current assigned
task number does not exceed the cardinality constraint δ in
Eq. (3), Alg. 2 enters the loop part (lines 7-17). In this part,
we first add the path P(G′, s, t) to the flow. Then, for any
two vertices v, v′, if (v, v′) exists in P(G′, s, t), connect v′

and v and add the reverse arc (v′, v) to G′. In addition, we
assign specific capacity and cost to the reverse arc. The reverse
arc enables Alg. 2 to change the previous decision when the
current path is chosen, so as to obtain the optimal solution
effectively. Note that in lines 15-16, we change the cost of the

Algorithm 3: Threshold online assignment (TOA)
Input: W , T , δ, T , φ
Output: F

1 F ← ∅, t← 0 ;
2 while t ≤ T and |F| < δ do
3 Wt, Tt ← the current workers and tasks in t;
4 Ft,Dt = EMCF(Wt, Tt, δ);
5 foreach P ∈ Ft do
6 if d(P) ≤ κ and the pre-path of P is in F then
7 F ← F ∪ {P};

8 t← t+ 1;

9 return F

arc (s, t′j) if the vertex tj is in the path P(G′, s, t), meaning
that the arc (s, t′j) is now passable since a worker needs
to travel to tj first, and then travel to other tasks from tj .
Note that introducing the passable arc (s, t′j) may result in
negative-cost circulations and we should cut these negative-
cost circulations. Finally, Alg. 2 returns the flow F and total
cost D. Actually, the task assignment solution is F , e.g., Alg.
3 returns a flow F = {(s, w1, t2, t), (s, t

′
2, t1, t), (s, w2, t3, t)},

then the assignment solution is w1 → t2 → t1 and w2 → t3
with the total cost D.

Theorem 2 (Optimality). The flow returned by Alg. 2 is the
minimum-cost flow with the cardinality constraint δ.

Proof. To prove the optimality, we offer the optimal condition
of Alg. 2, that is, if there are no negative-cost paths from s to
t in G′, the flow returned by Alg. 2 is the minimum-cost flow
[31]. Next, we prove that there are no negative-cost paths in
G′ when Alg. 2 terminates. First, we call a path P(G′, s, t)
the negative-cost path if its total cost

∑
(v,v′)∈P d(v, v′) < 0.

Note that in line 6 of Alg. 2, we utilize SPFA to find the
current shortest path. Actually, SPFA will calculate the cost
of the shortest path from the source s to an arbitrary vertex
v ∈ V ′ as the intermediate results, denoted as d̂(s, v),∀v ∈ V ′.
Thus, for each arc (v, v′) ∈ A′ at the end of Alg. 2, we get
d̂(s, v′) ≤ d̂(s, v) + d(v, v′). This is because if d̂(s, v′) >
d̂(s, v) +d(v, v′), indicating that d̂(s, v′) is not the cost of the
shortest path from s to v′, then SPFA will not terminate. In
other words, if SPFA terminates, we always have d̂(s, v′) ≤
d̂(s, v)+d(v, v′). In addition, for an arbitrary path P(G′, s, t),
the cost is calculated as∑

(v,v′)∈P
d(v, v′) ≥

∑
(v,v′)∈P

(d̂(s, v′)− d̂(s, v)) = d̂(s, t).

Clearly, d̂(s, t) ≥ 0. Hence, there are no negative-cost paths
in G′ at the end of Alg. 2. Also, the cost of every s-t path
is greater than d̂(s, t). It is worth noting that adding the task
vertices T ′ in Eq. (10) and changing the costs of the arcs
between s and each vertex in T ′ do not affect the optimality
of Alg. 2 due to the following two reasons: (1) The change on
G′ is considered for the previous augmenting paths. Reverse
arcs provide Alg. 2 with opportunities to change the previously
chosen augmenting paths. For example, in the current iteration,
we have the flow F = {(s, w1, t1, t), (s, t

′
1, t2, t)}, meaning
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Fig. 7: The spatial-temporal distributions of the three cities.

that w1 travels to t1, t2 in sequence. In the next iteration, we
have F = {(s, w1, t3, t), (s, t

′
1, t2, t), (s, w2, t1, t)}, meaning

that w2 replaces w1 to travel to t1, t2, and w1 travels to a new
task t3. (2) The change on G′ is considered for the afterward
augmenting paths. As mentioned above, it has been proven
that at the end of Alg. 2, we get the minimum-cost flow with
new task vertices T ′. Above all, the optimality is proved.

Based on the flow F obtained by Alg. 2, we can estimate
the threshold κ = min{d(P)},∀P ∈ F , where P is the s-t
path, and d(P) =

∑
(v,v′)∈P d(v, v′) is the total cost of P ,

e.g., if P = {s, w1, t2, t}, then d(P) = d(s, w1)+d(w1, t2)+
d(t2, t) = d(w1, t2) since d(s, w1) = d(t2, t) = 0.

2) Online one-worker-many-tasks assignment: After de-
termining the threshold κ, we propose a Threshold-based
Online task Assignment (TOA) algorithm in Alg. 3 to assign
tasks in the online manner. We input workers W , tasks T ,
cardinality constraint δ, total time slot number T and threshold
κ, and get the final task assignment solution F . Specifically,
in each time slot t, we get the current workers and tasks,
including those who have just arrived or not yet left, and
conduct EMCF algorithm (i.e., Alg. 2) to obtain the current
minimum-cost flow Ft. After that, we filter the paths in
Fi and add specific paths to F based on the threshold in
lines 5-7. Note that the pre-path in line 6 means that only
when a path (s, w1, t1, t) is contained in F , then the path
(s, t′1, t2, t) can be added. At the end of Alg. 3, the flow F
returned is actually the task assignment solution. Furthermore,
the theoretical guarantee of the online assignment algorithms
is usually measured by Competitive Ratio (CR), and the
definition of CR is given as follows according to [30]:

Definition 6 (CR). The competitive ratio of an online algo-
rithm A in the random order model is defined as

CR = E(A)/OPT , (11)
where E(A) is the expected total distance produced by the
online algorithm A over all possible arrival orders, and OPT
is the total distance produced by the offline algorithm.

We claim that TOA achieves a performance guarantee and
offer the CR of TOA in Theorem 3.

Theorem 3. TOA achieves the CR as φ·δ
d(O′)−σ .

Proof. Let O, O′ denote the optimal solutions to the online
task assignment shown in Alg. 3 and offline task assignment
based on historical spatial-temporal data in Alg. 2, respec-
tively. Obviously, the costs of O, O′ have the same distribution

TABLE II: Simulation Parameters

Parameters Value
Time length T 100

Worker number |W| 10 ∼ 90

Task number |T | 50 ∼ 250

Privacy budget ε1 0.1 ∼ 2.1

Cardinality δ 5 ∼ 45

Capacity C 1 ∼ 10

[17], [30]. According to Chebyshev inequality, we have
Pr[|d(O)− E(d(O′))| ≤ ε] ≥ 1− σ2/ε2, (12)

where E(d(O′)) and σ represents the expectation and standard
deviation of d(O), and ε ∈ R+. Hence, we get
CR = E(TOA)/OPT = E(δ ·∆)/d(O) = δE(∆)/d(O)

≤ φ · δ/d(O) ≤ φ · δ/(1− σ2/ε2) · (d(O′)− ε). (13)
Then, limε→σ CR = φ · δ/(d(O′)− σ), proved.

When the platform uses TOA to assign tasks based on the
obfuscated locations generated by PLP, we call the algorithm
PLP-TOA. While protecting the privacy of workers and tasks,
we prove that PLP-TOA still achieves a performance guaran-
tee. At first, we give the following lemma according to [26].

Lemma 1 (λ-Distance Aggregation Error). Given the privacy
budget ε and a real λ ∈ R+, we claim that the privacy
mechanism PLP achieves λ-distance aggregation error, i.e.,

Pr[|d(F̃)− d(F)| ≥ λ] ≥ 6

λ2 · ε2
, (14)

where d(F̃), d(F) are the aggregated distances returned by
PLP-TOA and TOA, respectively.

Furthermore, we give the CR of PLP-TOA in Theorem 4.

Theorem 4. PLP-TOA achieves the CR of 6(κ·δ+λ)
λ2ε2(d(O′)−σ) .

Proof. Given Theorem 3 and Lemma 1, we have

CR = d(F̃)/OPT ≤ 6(d(F) + λ)

d(O) · λ2ε2
≤ 6(κ · δ + λ)

λ2ε2(d(O′)− σ)
,

where κ is the threshold determined by Alg. 2, δ the cardinality
constraint, λ ∈ R+ the distance aggregation error, ε the privacy
budget and σ the standard deviation of d(O). Hence, the CR
can also be represented as O(1/(d̄ · ε2)), where d̄ = d(O′)/δ
is the average cost of performing a task in O′, meaning that
lower average cost and privacy level lead to a better CR.

V. SIMULATIONS
A. Dataset and Settings

In the simulations, we adopt two widely-used real-world
datasets, Gowalla [33] and Foursquare [34]. The datasets
contain a large amount of check-in data of workers over years
such as worker id, check-in location, and check-in time. From
datasets, we mainly select three cities: Tokyo, New York,
and London as shown in Fig. 7, where the orange nodes
represent workers’ real check-in locations. Then, we determine
the simulation settings as follows. For workers, we select some
workersW randomly from the datasets and |W| ∈ [10, 90]. We
take a period of time in datasets and normalize it to T = 100
time slots, each of which lasts approximately one day. Then,
each worker’s arrival time τa is determined by the check-in
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Fig. 8: Total distance vs. Worker number.
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Fig. 9: Total distance vs. Task number.

time. Hence, the leaving time τl = τa + %. In addition, we
take some popular check-in locations as tasks |T | ∈ [50, 250]
and set the tasks’ arrival time in a similar manner. The values
of key simulation parameters are presented in Table II. The
default values of key simulation parameters are as follows:
|W| = 50, |T | = 200, ε = 0.6, δ = 20, and C = 1.

B. Metrics and Baselines

Total distance and competitive ratio (CR) are the key metrics
to evaluate the performance of online assignment algorithms.
Then, we mainly introduce some baselines as follows:

(1) PLP-TOA, the proposed algorithm that uses PLP to
protect the location privacy and uses TOA algorithm to as-
sign tasks. Note that PLP-TOA is the one-worker-many-tasks
algorithm, i.e., the worker has the capacity C ≥ 1.

(2) TBF [17], the state-of-the-art algorithm proposed to
protect privacy and assign tasks based on a tree structure called
HSTs. TBF is the one-worker-one-task algorithm.

(3) PLP-OA, the algorithm similar to PLP-TOA and de-
signed to compare with TBF. When a task arrives, PLP-OA
does not filter tasks based on the threshold, but only decides
which worker to assign the task. We adjust PLP-OA to the
one-worker-one-task algorithm, i.e., C = 1.

(4) OPT, the algorithm to find the offline optimal solution
without privacy protection, i.e., the offline-version TOA.

(5) PLP-Gre, the algorithm that uses PLP to protect the
location privacy and assign tasks greedily, i.e., assign tasks to
the nearest worker when online tasks arrive. Also, C = 1.

Note that the state-of-the-art algorithm TBF can only be
applied in a restricted scenario where (1) tasks arrive dynami-
cally but workers are fixed and known in advance, (2) a worker
can only perform a task, and (3) when tasks arrive, TBF will
not filter tasks and discard inappropriate ones, but assign each
arrival task to workers until the cardinality constraint is met.
Actually, the restricted scenario is a special case of the scenario
considered in this paper. Hence, to verify the performance of
our algorithm fairly, we should compare them with TBF in the
same scenario by adjusting our algorithm. When our algorithm
still outperforms TBF, the following holds: (1) our algorithm
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Fig. 10: Total distance vs. Privacy budget.
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Fig. 11: Total distance vs. Cardinality.

supports more general scenarios; (2) even though in the same
restricted scenario, our algorithm is still better than TBF.

C. Evaluation Results

1) Total distance: At first, we illustrate the simulation results
in terms of the main metric, i.e., the total distance as shown in
Figs. 8∼11. In Fig. 8, we observe the total distance with the
worker number changing from 10 to 90 when other parameters
remain default. The total distances of all algorithms gradually
decrease when the worker number rises because the platform
could assign the task to a more suitable worker when more
workers are available. OPT outperforms best as it should be.
Then, we discover that PLP-TOA outperforms better than PLP-
OA because when tasks arrive, PLP-TOA will filter tasks based
on the threshold and select specific tasks to assign, e.g., if
a task tj is far away from all workers, then PLP-TOA will
abandon this task. However, PLP-OA will assign all tasks no
matter the task is good or not. In addition, compared with PLP-
OA, PLP-TOA is the one-worker-one-task assignment and can
select a suitable worker to perform multiple tasks. Hence, PLP-
TOA is better than PLP-OA. More importantly, in the same
condition, it always follows that PLP-OA>TBF>PLP-Gre,
showing that our algorithm outperforms the state-of-the-art
algorithm, and both of them outperform the greedy algorithm.

In Fig. 9, we increase the task number from 50 to 250, and
the total distances of OPT and PLP-TOA marginally decrease
due to the similar reason as Fig. 8, i.e., more tasks lead to a
higher probability to select good tasks. However, it shows that
the total distances of other algorithms are basically unchanged
because these algorithms only select the first δ tasks to assign,
no matter how many tasks will come next. In addition, our
algorithm PLP-OA still outperforms TBF.

In Fig. 10, given the privacy budget from 0.1 to 2.1, the total
distances of all algorithms decrease except that OPT remains
unchanged. This is because OPT does not consider privacy
protection and uses the real locations to assign tasks, thus the
total distance does not change. However, for other algorithms
that consider privacy protection, as the privacy budget becomes
larger, meaning that the level of privacy protection becomes
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lower, the obfuscated locations are closer to the real locations
according to Alg. 1, hence the task assignment effect is better.

Furthermore, we evaluate the effect of the cardinality con-
straint in Eq. (3) on the total distance as depicted in Fig. 11.
With the increase of the cardinality, the total distances of all
algorithms grow rapidly, indicating that the cardinality is the
main factor that affects the performance. Also, our algorithms
are still better than TBF, and greedy based algorithm has the
worst performance. In summary, with the change of various
parameters, the simulation of the total distance illustrate that
(1) PLP-TOA and PLP-OA outperform the state-of-the-art
algorithm TBF in the same scenario, and (2) in the general
scenario, PLP-TOA achieves the close performance to OPT.

2) Competitive ratio: Next, we verify the performance in
items of another essential metric, i.e., the competitive ratio
(CR). In Fig. 12, we calculate the CR of our algorithm PLP-
TOA based on the three cities according to Eq. (11). With
the decline of the privacy budget from 1.6 to 0.1 and the
cardinality from 40 to 10, the CR shows an upward trend.
Note that when the cardinality increases, the average cost of
the offline optimal solution, i.e., d̄, decreases gradually because
the distance function d(O′) is actually non-submodular with
respect to the number of assigned tasks, i.e., the cardinality.
Therefore, we can say that CR shows an upward trend as
the privacy budget ε and average cost d̄ decrease, which is
exactly consistent with the theoretical guarantee O(1/(d̄ · ε2))
that has been proved in Theorem 4. In addition, the result also
demonstrates when the privacy budget and cardinality are not
too small, the value of CR is very close to 1, indicating the
performance of PLP-TOA is close to the optimal solution.

3) One-worker-many-tasks assignment: Compared with the
one-worker-one-task assignment, the one-worker-many-tasks
assignment is more realistic. To evaluate the difference be-
tween them, we first evaluate the effect of the worker capacity
in Fig. 13. The results show that the total distance decline
with the increase of the capacity from 1 to 10. Furthermore,
we perform a specific simulation based on the check-in data
in New York and offer specific examples with the capacity
C from 1 to 3. In order to show the examples intuitively,
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Fig. 14: Examples of the one-worker-many-tasks assignment.

we normalize and mesh the real locations of workers and
tasks to lx, ly ∈ [1, 100] and set the parameters as follows:
task number |T | = 10, worker number |W| = 5, cardinality
constraint δ = 5. Then, the examples are illustrated in Fig.
14, we discover that when C = 1, the case is actually the
one-worker-one-task assignment scenario, where each worker
only performs a task and the total distance is 33.0018. When
C = 2, some workers perform two tasks near them and the total
distance is effectively reduced to 15.7147. Note that the two
worker-task pairs in the dotted rectangle in Fig. 14a disappear
in Fig. 14b because when C = 1, to satisfy the cardinality
constraint, tasks have to be assigned to the workers who are far
away. But when C = 2, tasks have the better worker to select
even though the worker has been assigned. When C = 3 in Fig.
14c, we discover that five tasks are assigned to three popular
workers, i.e., those at the center of all tasks. In addition, we
get the lowest total distance 14.3203. It is reasonable since
when we relax the restriction on the capacity, our algorithm
will assign tasks to the workers who have location advantages
to minimize the total distance, illustrating its effectiveness in
the one-worker-many-tasks assignment scenario.

VI. CONCLUSION
In this paper, we propose a privacy-preserving online task

assignment framework to assign tasks to workers for minimiz-
ing the total travel distance under the assigned task cardinality
constraint. Specifically, to protect privacy, we present a Planar
Laplace distribution based Privacy mechanism (PLP), which
achieves ε-Geo-Indistinguishability and ensures the availability
of the obfuscated locations. Then, we propose a Threshold-
based Online task Assignment (PLP-TOA) algorithm using
the obfuscated locations to conduct the one-worker-many-tasks
assignment. Specifically, at first, based on the historical data,
we formulate the task assignment as an Extended Minimum-
Cost Flow problem (EMCF) and estimate a threshold. Fur-
thermore, based on the threshold and EMCF, the platform not
only assigns tasks but also plans the path for workers in the
online scenario. Finally, results of extensive simulations based
on real-world datasets illustrate that our algorithm consistently
outperforms the state-of-the-art approach.
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