
Parameter-less Asynchronous Federated Learning
under Computation and Communication Constraints

Mengfan Wu∗†, Mate Boban∗, and Falko Dressler†
∗Munich Research Center, Huawei Technologies

†School of Electrical Engineering and Computer Science, TU Berlin
Email: {mengfan.wu, mate.boban}@huawei.com, dressler@ccs-labs.org

Abstract—Federated Learning is a fast-developing distributed
learning scheme that has promising applications in vertical
domains such as industrial automation and connected automated
driving. In this paper we address the heterogeneity of the
participation of devices in federated learning caused by: i)
non-uniform distribution of local data; ii) uneven and varying
computational resources across the devices; and iii) dynamic
communication link. We propose a quasi-dynamic simulation
scheme allowing realistic approximation of these three factors
of heterogeneity. Aggregation schemes at the server based on
the clients’ work status are implemented. We show that the new
asynchronous aggregation algorithm does not require tuning of
hyper-parameters such as the round time in synchronous feder-
ated learning and the aggregation weight in classic asynchronous
aggregation, while providing better or comparable performance
in terms of accuracy and convergence speed.

Index Terms—Federated learning, heterogeneous devices, wire-
less communications

I. INTRODUCTION

Along with the growing computing power of edge devices
and concerns on sharing sensitive data, federated learning
(FL) emerged as a promising distributed learning scheme
that utilizes the computational resources of devices while
preserving user privacy, since only learned models are shared
with the server or across users [1]. In particular, there is
a strong interest in deploying FL in mobile and dynamic
environments such as industrial automation and connected
automated driving [2], [3] and modern edge computing [4].
While the devices in those environments are typically powerful
and do not have severe energy constraints, there exists a set of
challenges to the classic synchronized FL scheme, since some
devices become stragglers due to limited computational power
or slow update resulting from poor link conditions [5].

For example, in connected automated driving, some vehicles
might experience unstable link connection (e.g., due to signal
blockage by large objects), thus interrupting the transmission
of models in FL. Moreover, since the priority of training is
lower than other critical tasks for vehicles, the computational
resources available for FL are likely to be dynamic and hetero-
geneous across devices, thus leading to slow participants in the
FL task. The above aspects slow down the learning progress
and result in bias of the learned models. In the following
paragraphs, we use participants and clients interchangeably
to denote devices taking part in the learning task.

Asynchronous FL is proposed in [6] to address the hetero-
geneity of devices, where the authors point out the follow-

ing heterogeneous properties of participants: 1) non-uniform
computational resources of the devices; 2) unstable or uneven
resources of communication between the server and clients;
and 3) heterogeneous data distribution, in terms of the number
of data samples as well as the features of the data.

To address the issues of stragglers and heterogeneity, re-
searchers have worked in reducing communication overhead,
allowing flexible participation of devices, and integrating ad-
vanced optimization algorithms, etc. However, most of the
work investigates the heterogeneity of participants from a
simplistic perspective (e.g., modelling the local training time
and/or the success of participation in probability [7], [8]).

In this paper, we propose a scheme for FL that models the
heterogeneity of devices explicitly. We propose an aggregation
algorithm that uses client information and requires fewer
hyper-parameters to be tuned compared to classic approaches
[6], [9]. Our work contributes as follows to the deployment of
FL in dynamic environments:1

1) We design and implement a step-wise scheme that
allows realistic modelling of computational resources
and quality of communication link for participants;

2) We propose strategies for model aggregation with con-
siderations of devices’ local progress, weight in the
overall task, and the latency of their model updates; and

3) We show that the new aggregation scheme is versatile in
various scenarios and easy to set up with fewer hyper-
parameters to tune compared to existing approaches.

II. RELATED WORK

A. Modelling Heterogeneity

In FedAvg [9], heterogeneity of data distribution and pos-
sible communication constraints have been highlighted. The
authors experimented with different tasks with independent
and identically distributed (IID) data and non-IID data. The
communication between the server and clients is assumed to
be steady. However, there is a client-selection step which can
be interpreted as modelling the availability of clients, which is
caused by limitations of either computation or communication.
Client selection has also been explored in [8], [10] as well as
in FedProx [7], where a portion of clients are simulated to be

1The code of implementation can be found at: https://github.com/
mengfanwu96/StepFedSim.

underperforming. However, the actual cause of slow workers
are not modelled with detail.

To avoid bias towards fast clients, allowing partial progress
of slow clients has been proposed to apply in the scenario
of heterogeneous computational resources. For example, in
FedProx [7], a portion of the clients is assumed to be only
capable of completing less than required number of optimiza-
tion epochs in limited time.

Besides modelling the effect of heterogeneity, we also see
works modelling the actual limitations of clients’ resources.
Wu et al. [11] defines a performance variable as the number
of batches that a device processes per second, which follows an
exponential distribution. In FedCS [12], the uplink throughput
for clients to upload models is simulated in an LTE environ-
ment where clients share time-division resource blocks.

B. Approaches to Address Heterogeneity

1) Data Compression and Partial Transmission: This ap-
proach is to trade off model accuracy for light communica-
tion overhead, which is plausible due to the redundancy in
machine learning models, especially in deep neural networks.
According to [13], neural networks can be pruned with up to
60% sparseness while achieving comparable performance to
unpruned models. One naı̈ve method is to convert parameters
in machine learning models from high-precision data types
to approximated ones. Another idea is to design quantization
schemes to approximate the values with less binary bits
(i.e., linear/exponential scaling [14]). For partial transmission,
part of the parameters in models with greater numerical
weights is selected, e.g., matrix sparsification [15], [16].
This way, the communication overhead can be significantly
reduced. However, the computational overhead added in the
(de)compression/(de)sparsification process, together with the
increased latency due to these procedures, need to be weighted
against the benefits and will depend from one scenario to the
other.

2) Flexible Strategies for Client Participation: A lot of
work has been proposed to allow more flexible client par-
ticipation, e.g., allowing incomplete or out-of-synchronization
updates from clients and target-driven selection of participants.

a) Flexible Local Progress: By modelling the effect of
limited resources as incomplete progress, various strategies
are proposed to integrate partially-trained model updates into
the global model. Li et al. [7] propose to use a parame-
ter of inexactness to allow early stopping of optimization,
which is customizable according to the computational capacity
of participants. However, the model updates with different
progress are treated homogeneously. The instability caused by
aggregating less-trained models is not addressed.

b) Asynchronous Federated Learning: Asynchronous FL
is beneficial for dealing with straggler effect, by allowing
fast participants to achieve high efficiency and accepting the
contribution from slow participants. We often use the term
staleness, usually related to the interval between the two
consecutive updates of a client, to distinguish fast and slow
clients in the task. Based on the availability of a global

clock to define rounds of optimization, asynchronous FL
can be further classified into semi-synchronous (with global
clock) and fully asynchronous (without global clock). The
criteria for the global clock to step forward can be time-
based [11], [17], or filling a buffer [17], [18]. Authors in [17]
designed a weighting scheme when aggregating updates with
different staleness. Their goal is to match each clients’ overall
contribution proportionally to the size of their local data. We
note that in these method, adapting the aggregation weights
for stale updates usually entails an attenuation function to be
carefully tuned in trial runs so as to achieve good performance.

c) Target-Driven Selection of Participants: In both syn-
chronous and asynchronous FL, it is possible to select a
subset of fast or reliable clients to achieve fast convergence
or fairness. For example, Nishio and Yonetani [12] aim to
maximize the number of participants in one round of ag-
gregation by assigning early time-division resource blocks to
fast participants. Imteaj and Amini [19] propose a scoring
scheme to evaluate the participants’ activity and contribution
and select the most reliable ones. In selection algorithm taking
clients’ status of resource as inputs, clients are often required
to exchange their system information, thus creating additional
communication overhead. Moreover, such exchange might not
even be successful in extreme communication conditions.

In general, despite the challenges posed by application
conditions, allowing flexible participation suits the character-
istics of FL in dynamic environments. Our work follows this
direction and aims to build a system that maximizes flexibility
and also address the heterogeneity issue resulting from it.

III. SYSTEM DESIGN

In this section, we elaborate on the learning algorithms, the
functions of system components, and the aggregation schemes
in the step-wise simulation system of FL.

A. Learning Objective
We consider a machine learning task performed by N

computing devices together with a model aggregator. Assume
the data distribution follows the vector D =

〈
D1, . . . , DN

〉
,

with local dataset Di only visible to device i. The global and
local learning tasks are the same minimization optimization
problem, aiming to reduce the user-defined loss on certain
datasets. Mathematically, with the loss function L, we define
the original centralized global task as finding the optimal
model x∗ which results in the minimum global loss:

x∗ = argmin
x
L(x,∪Ni=1D

i) (1)

Due to the privacy concern in federated learning task, de-
vices perform local training task aiming to minimize the local
loss x∗

i = argminx L(x,Di) via gradient-descent method:
x′ ← x−η·∇xL(x,DB), where η is the local learning rate and
DB is the sampled data in each optimization. The parameter
server then receives trained models from devices and aims to
find a global model x∗′

that minimize the sum of local losses:

x∗′
= argmin

x

N∑
i=1

L(x,Di) (2)

B. Learning Systems

We simulate a learning task in T time steps as in Algo-
rithm 1. The system starts by defining the global parameters
and initializing learning models on clients. At each step, the
scheduler, the clients, and the server take actions sequentially.
Functions in Algorithm 1, line 2 assign computation token
sit and communication tokens cit to client i at time step t to
determine how many batch operations the client performs and
how much of the model can be transmitted at this time step.
Both sit and cit are currently drawn from offline simulation,
which can be extended to using online simulation of mobile
computing systems as well as real traces of computation and
communication. We simplified the modelling of communica-
tion and consider the uplink (from client to server) only. If
needed, the downlink can be modelled in the same way.

Algorithm 1 Learning System Simulation

Input: N,T, η,B,E,D,m // Input parameters: number of
clients, total steps, local learning rate, batch size, epochs
to optimize, dataset distribution, size of model

Output: xg
T

Initialization
Initialize local models xi

0, ∀i ∈ {1, 2, . . . , N}
Set learning parameters: η,B,E on each client
Assign local dataset Di to client i, ∀i ∈ {1, 2, . . . , N}

Optimization
1: for t = 1, . . . , T do
2: ToAggregate ← ∅
3: for i = 1, . . . , N do
4: sit ← sample from computational resource profile
5: cit ← sample from communitation resource profile
6: state, model ← Client[i].step()

7: if state == uploaded then
8: ToAggregate ← ToAggregate ∪ model

9: end if
10: end for
11: Server.step(ToAggregate,t)

12: end for
13: return xg

T ← Server.GlobalModel()

C. System Components

1) Server: The server maintains a global model and re-
ceives model updates from clients. It tracks clients’ informa-
tion, such as the size of their local dataset (LocalDataSize),
the number of batch optimizations performed since their
last update (ClientOwnPrg), and the updating time
(LastUpdateTime) and interval (LastUpdateIntv). In fully
asynchronous setting, the server performs updates of the global
model as soon as it receives an update from clients. The actions
performed by the server are described in Algorithm 2.

At each time step, if model updates are received from
clients, the server first updates the information vectors. We de-
sign the matrix OthersPrg to keep track of peer clients’ con-
tribution to the global model. The entry OthersPrg[i][j]

denotes client j’s contribution in the time interval starting from
client i’s last update to the current time step, and is therefore
incremented when server receives no upload from client i and
client j finishes uploading at the time step. All progress is
measured as the summed batch optimizations performed to
yield the model updates.

Algorithm 2 Server Actions

Information Vectors of Clients
Vectors ∈ R1×N

+ : LastUpdateTime, LastUpdateIntv,

LocalDataSize, ClientOwnPrg

Matrix ∈ RN×N
+ : OthersPrg

All entries initialized as 0

Optimization
Input: t, C, {xi

t,∀i ∈ C}, ProgressV, DataSizeV
// current time step, list of clients that finish uploading,
their model updates, a vector of their performed number
of batch optimizations, a vector of sizes of their datasets.

Output: xg
t

1: for i = 1, . . . , N do
2: if i ∈ C then
3: LastUpdateIntv[i]← t−LastUpdateTime[i]
4: LastUpdateTime[i]← t
5: LocalDataSize[i] ← DataSizeV[i]

6: ClientOwnPrg[i] ← ProgressV[i]

7: else
8: OthersPrg[i][j] += ProgressV[j], ∀j ∈ C
9: end if

10: end for
11: w ← ComputeAggregationWeights(C)
12: xg

t ← (1−
∑

i∈C wi) · xg
t−1 +

∑
i∈C wi · xi

t

13: Distribute xg
t to all clients in C

14: ∀i ∈ C , reset OthersPrg[i]
15: return xg

t

2) Client: Clients are modelled as deterministic finite-
state machines (cf. Algorithm 3). In each time step, a client
performs actions such as training and uploading, or it stays
idle. If one time step starts at the states of distributed or
training, the client i performs sit number of batch optimiza-
tions assigned by the external controller. Once the designated
number of epochs E is reached, the client transitions to the
uploading state, where it can transmit data of size cit+1 in the
next time step. Upon finishing transmission, the client enters
wait mode. The distribution of global model from the server
triggers distributed mode.

D. Aggregation Weights

Classic synchronized FL performs a weighted average over
all received updates based on the sizes of clients’ local
datasets, as in FedAvg [9]. When asynchronous FL was firstly
proposed in [6], the aggregation weight is set as a hyper-
parameter to be tuned, while scaled by a function that adapts
the weight w.r.t. the staleness of the updates. The literature
does not agree on the direction of weight adaptation for stale

Algorithm 3 Client i Actions

Initialization
ToUpload, state ← m, initialized
OptimizedEpochs, OptimizedSteps ← 0, 0

Step function when state ∈ {distributed, training}
Input: t, sit

1: for k = {1, . . . , sit} do
2: Take B samples from local dataset and train the model

x← x− η · ∇xL(x,DB)
3: OptimizedEpochs += 1 if dataset iterated
4: OptimizedSteps += 1
5: if OptimizedEpochs ≥ E then
6: state ← uploading

7: ToUpload← m
8: break
9: end if

10: end for

Step function when state == uploading

Input: t, cit
1: ToUpload ← ToUpload − cit
2: if ToUpload ≤ 0 then
3: state ← wait

4: return OptimizedSteps, x (marked as xi
t)

5: end if

updates. To this end, we did experiments with IID data and
varing link status and found that reducing the aggregation
weights for stale updates results in a more stable performance
and faster convergence. Therefore, we follow this direction
and propose three basic types of aggregation weights:

wi
D =

|Di|
∥
〈
|D1|, . . . , |DN |

〉
∥2

wi
P =

P i

∥
〈
OP i,1, . . . , OP i,N , P i

〉
∥2

wi
S =

Qi

∥
〈
Q1, . . . , QN

〉
∥2

,with Qi =

∑
j=1,...,N Intvj

Intvi

(3)

|Di| corresponds to the local data size of client i in Algo-
rithm 2, P i to the ClientOwnPrg of client i, OP i,j to the
OthersPrg[i][j], and Intvi to the LastUpdateIntv of
client i. We interpret Q as quickness, which is computed as the
ratio of summed updating intervals to a client’s own updating
interval. We use the norm of vectors as the denominator
rather than the sum of vector elements because the former
yields larger weights and is beneficial for quicker evolving of
global model. It is possible that multiple weights, computed
for multiple model updates at the same time step as in Line 13
in Algorithm Algorithm 2, sum up to more than 1. In this case,
we divide the weights by their sum to keep the aggregation
stable.

The data size weight wD in our setup follows FedAvg
[9], as it prefers clients with greater importance when testing
accuracy. The progress weight wP assigns greater importance
to updates with more optimization performed, implicitly with
more computing resources spent, which tends to be better-
trained and beneficial to the global model. For staleness weight
wS , we assign small weights to updates with long updating
intervals, so as to avoid model divergence since they are from
clients not frequently synchronized with the server. There are
contradictions among the three weights. For example, for a
client with a large local dataset, the data size weight assigns
its updates greater importance, while the client is also likely
to have longer training time and thus gets smaller weights in
terms of staleness. To this end, by using the average of the
three types of weights, we hope to provide a trade-off among
the three factors. The aggregation weights are deployed only
after the server receives updates from each client for at least
once.

IV. EXPERIMENTS

With functions SetComputationCapacity(t) and
SetLinkStatus(t) in Algorithm 1, we can now experiment
with various application scenarios. Moreover, we also
experiment with different data distribution on devices. The
size of the local dataset, the computational capacity, and the
link throughput have intertwined impacts on the progress and
staleness of model updates. We perform a set of control-
variable experiments to evaluate the performance of the newly
proposed asynchronous learning scheme against FedAvg [9]
and asynchronous FL based on weight attenuation. Synthetic
IID data as in FedProx [7] is used in the following three
groups of experiments. The task is a convex classification task
and has 10 target classes and a 1-dimensional feature space
with length 60. To this end, a single-layer perceptron is used
as the learning model, which suffices to have a satisfactory
local accuracy, with potentially better performance achievable
if more complex learning models are deployed. The loss
function used here is cross entropy loss for the softmax
layer output (the output layer of the perceptron), which is
commonly adopted for classification tasks.

For synchronous FL benchmark, we implement FedAvg
with the same external control of computation and commu-
nication, while the server has a fixed round time (40, 60, 80,
or 100) to receive updates and perform model aggregation.

For parameterized asynchronous FL benchmark, we im-
plement the attenuation-based method which decreases the
aggregation weight of model updates w.r.t. staleness:

wi
att = wi

D · (Intvi − tcut)
α (4)

tcut is the hyper-parameter as baseline to determine the stal-
eness of the update, and α is the factor determining the scale
of attenuation. In the following experiments, we use α = 0.9
only and search for a suitable tcut with interval 5, which
is dependent on the computational speed and communication
condition.

Fig. 1: Driving route and uplink throughput of Link Profile 5. The
base station is located at ▲. The height of the base station antenna
is 21 meters above ground level, whereas the vehicle antenna is at
approximately 1.5 meter height, mounted on the vehicle roof. The
test vehicle traversed the double loop shown by the overlay 10 times.

The evaluation is based on test accuracy and convergence
time (defined as the the time step to achieve 85% of the highest
final accuracy in the group of experiments). Local learning
parameters are set as: learning rate η = 0.02, batch size for
optimization: B = 8, number of training epochs per round
E = 40.

A. Dynamic computational resources

In this group of experiments, we set the clients’ local
datasets to be of the same size (240). Communication links are
set to be steady with transmission time being 5 steps. We sim-
ulate 3 scenarios with clients’ computational resources varying
in different ranges. The computation token s is changed every
32 steps. We show the settings and the corresponding results in
Table I. For the first case where computational speed is fixed,
all clients train and upload at identical time. Asynchronous
FL finds an optimal round time for aggregation implicitly and
outperforms all synchronous scenarios. For the second and
third cases, the performances of parameter-less asynchronous
FL are in between of the best and second best synchronous
settings, and close to the best cases of attenuation-based
asynchronous FL where tcut is searched in a range.

B. Dynamic link resources

In this group of experiments, we keep the local samples to
be evenly distributed (240 samples/client) and fix the computa-
tional resource stable at 30 batches/step. We simulate different
communication scenarios by varying the link throughput and
the size of models to be transmitted. Communication tokens of
Profile 1 to 4 are sampled from uniform, poisson, poisson, and
lognormal distributions accordingly. Link profile 5 is extracted
from link measurements collected in a measurement campaign
evaluating uplink throughput as shown in Figure 1 and de-
scribed in detail in [20]. The transmission time distribution in
different link profiles is shown in Figure 2.

The learning results of different communication scenarios
are shown in Table II. Since the server does not distinguish the
training time and uploading time of clients’ updates, longer up-
loading time in this group is comparable to the cases in the last
group where the computation is slow. We see similar results in
Table II, where parameter-less asynchronous FL outperforms
all FedAvg in cases with the most steady communication

0 10 20 30 40 50 60 70
Transmission time (in steps)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pr
ob

ab
ilit

y

Profile index
1
2
3
4
5

Fig. 2: Histogram of transmission time for communication scenarios.

link throughput (profile 5) and therefore stable uploading
interval. For others with varying uploading time, performance
of parameter-less asynchronous FL is further away from the
best performing synchronous FL if the throughput is less stable
(instability rank: profile 4 > profile 3 > profile 2 > profile 1).
Moreover, parameter-less asynchronous FL achieves similar
performances as the optimal case of attenuation-based method.
We note that under different communication conditions, the
optimal setting of tcut in attenuation-based method varies
greatly.

C. Imbalanced data distribution

In this group of experiments, we keep the computation and
communication of clients steady. The computational capacity
is fixed at 30 batches/step and the link throughput is set steady
with fixed transmission time 5 steps. We create distributions of
data samples across devices with different standard deviation.
Moreover, we also set the number of target classes available at
one device from 2 to 10, so as to investigate the effect of class
imbalance. The total number of samples are fixed at 7200.

Table III shows simplified results in the form of the ranking
of parameter-less asynchronous FL compared to synchronous
FL with round time of 40, 60, 80, and 100 and attenuation-
based asynchronous FL with tcut in {30, 35, 40, 45}. The
values range from 1, when parameter-less asynchronous FL
outperforms all other schemes, to 5, when it performs the
worst).

The new asynchronous FL has significant advantages over
synchronous FL when the samples are relatively evenly-
distributed across devices (std = 0, 50, 100) and class imbal-
ance is mild (classes per device = 9, 10). When samples are
evenly distributed (std = 0), asychronous FL finds the optimal
round time for synchronized case implicitly. Moreover, for 49
out of 54 cases evaluating accuracy and 45 out of 54 cases
evaluating convergence speed, the new asynchronous FL ranks
1 or 2, meaning that overall it has superior or comparable
performance to the best performing synchronous FL scheme.

The advantages of parameter-less FL are further con-
firmed when compared with attenuation-based method, with
parameter-less asynchronous FL performs the best in more
than 95% of the cases . We note that due to the imbalance
of data distribution, it is hard to determine a suitable tcut for
attenuation-based method.

TABLE I: Settings and results of experiments with dynamic computational resources.

min max Param.-less Async. FL Sync. FL Attenuation-based Async. FL
s s acc. Tconv round T acc. Tconv tcut acc. Tconv

30 30 884 315 60 0.859 413
[
29, 44

] [
0.884, 0.884

] [
315, 315

]
others ≤ 0.841 ≥ 550 ≤ 24 ≤ 0.876 ≥ 338

20 40 0.875 356
40 0.885 275
60 0.860 405

[
39, 44

] [
0.878, 0.879

] [
367, 378

]
others ≤ 0.844 ≥ 540 ≤ 34 ≤ 0.870 ≥ 376

10 50 0.876 379
40 0.887 281
60 0.859 434

[
34, 44

] [
0.880, 0.894

] [
336, 393

]
others ≤ 0.843 ≥ 559 ≤ 29 ≤ 0.866 ≥ 417

TABLE II: Settings and results of experiments with dynamic link throughput.

Profile Param.-less Async. FL Sync. FL Attenuation-based Async. FL
Index acc. Tconv round T acc. Tconv tcut acc. Tconv

1 0.876 341
40 0.887 292
60 0.859 430 42 0.880 330

others ≤ 0.841 ≥ 574 ≤ 37 ≤ 0.874 ≥ 349

2 0.853 379
60 0.861 316
80 0.841 423 55 0.853 381

others ≤ 0.830 ≥ 529 ≤ 50 ≤ 0.849 ≥ 395

3 0.833 450
80 0.843 365 75 0.835 410

100 0.830 458 70 0.830 446
others ≤ 0.336 ≥ 1920 ≤ 65 ≤ 0.820 ≥ 525

4 0.845 457
60 0.861 334
80 0.841 427

[
55, 65

] [
0.850, 0.856

] [
406, 424

]
others ≤ 0.831 ≥ 532 ≤ 50 ≤ 0.844 ≥ 477

5 0.875 294 60 0.859 361 44 0.876 294
others ≤ 0.841 ≥ 481 ≤ 39 ≤ 0.872 ≥ 288

We also show two sample cases of the evolving accuracy of
different learning algorithms in Figure 3. The horizontal line
is plotted at 85% of the highest achieved accuracy after 1920
time steps. Then the intersection of the horizontal line with
the curves are identified, from which vertical lines are then
drawn to indicate the time reaching convergence. Two sets of
legends are provided, one in descending order of final accuracy
and another in ascending order of convergence time. We note
that parameter-less asynchronous FL shows the best accuracy
and second best convergence speed, while at the same time
experiencing greater fluctuation as general asynchronous FL
during the learning process in case of distribution imbalance.

V. DISCUSSIONS AND CONCLUSION

Our new asynchronous FL algorithm simplifies the process
of deploying FL in an unknown condition by requiring no
environment-related hyper-parameters. It keeps the advantages
of asynchronous FL, collecting information from all clients,
therefore making the global model more inclusive; the disad-
vantage of asynchronous FL is still visible in our solution,
with frequent partial aggregation at the server lacking stabil-
ity, especially when the updates are from non-representative
devices / stale devices. The disadvantages are prominent when
class imbalance is mild but updating intervals vary, and when
class imbalance is extreme and updating intervals are rela-
tively steady. The advantage of asynchronous FL in collecting
more information is prominent in the cases when both class
imbalance and sample imbalance are extreme, where FedAvg
misses important updates from clients whereas asynchronous

TABLE III: Data and label distributions and corresponding ranking
of the performance of parameter-less asynchronous FL.

Number of classes per device
2 3 4 5 6 7 8 9 10

Compared with sync. FL with diff. round time
Ranking of final acc.

Dist.
std.

0 1 1 1 1 1 1 1 1 1
50 5 3 2 2 2 1 1 1 1

100 1 1 1 1 1 1 2 1 1
200 2 1 1 1 1 1 1 3 3
300 1 2 1 1 2 2 2 2 3
400 2 1 2 1 2 2 2 2 2

Ranking of convergence speed
0 1 1 1 1 1 1 1 1 1

50 3 3 2 3 3 3 2 1 1
100 3 1 1 2 1 1 1 1 1
200 1 1 1 1 1 1 1 3 3
300 1 2 1 1 1 2 2 2 3
400 1 1 2 1 2 1 2 2 2

Compared with attenuation-based async. FL with diff. tcut
Ranking of final acc.

Dist.
std.

0 1 1 1 1 1 1 1 1 1
50 3 3 1 1 2 1 1 1 1

≥100 1 1 1 1 1 1 1 1 1
Ranking of convergence speed

0 1 1 1 1 1 1 1 1 1
50 2 1 1 1 1 1 1 1 1

100, 200 1 1 1 1 1 1 1 1 1
300 3 1 1 1 1 1 1 1 1
400 1 1 1 1 1 1 1 1 1

0 250 500 750 1000 1250 1500 1750 2000

Time steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
T

es
ti

n
g

a
cc

u
ra

cy

0.686 defined conv. acc.

Ranking of final acc.

0.807 param.-less async.

0.788 sync. RT 60

0.784 async. atten tcut = 35

0.781 async. atten tcut = 40

0.773 sync. RT 40

Ranking of conv. time

583 param.-less async.

677 async. atten tcut = 40

677 sync. RT 40

723 async. atten tcut = 35

759 sync. RT 60

(a) std.= 50, classes per device = 9

0 250 500 750 1000 1250 1500 1750 2000

Time steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

T
es

ti
n

g
a

cc
u

ra
cy 0.521 defined conv. acc.

Ranking of final acc.

0.614 sync. RT 80

0.600 param.-less async.

0.597 sync. RT 60

0.502 async. atten tcut = 30

0.500 async. atten tcut = 40

Ranking of conv. time

816 param.-less async.

825 sync. RT 80

887 sync. RT 60

1920 async. atten tcut = 30

1920 async. atten tcut = 40

(b) std.= 200, classes per device = 2

Fig. 3: Sampled evolving accuracy of different algorithms under
different data distributions

FL receives them all. We also note that for cases when FedAvg
outperforms asynchronous FL, the settings of round time are
different depending on computation and link resources.

To conclude, we identify the cause and effect of hetero-
geneity of device participation in FL. We propose a scheme
that models the heterogeneity and can be extended to various
application scenarios. We conduct a set of experiments to
simulate heterogeneous user contribution and update intervals
and show that the average of the three designed weights
performs well in general application scenarios. The biggest
practical benefit of the new scheme is that it does not re-
quire system information to tune hyper-parameters such as
round time in synchronous FL and benchmark duration in
classic asynchronous FL, while providing better or comparable
performance. Therefore, we see a great potential in terms of
flexibility for practical deployments of the proposed scheme.
Further improvements in convergence speed and accuracy can
be possibly achieved by exploring adaptive progress of users
and dynamic resource management at the server side.

REFERENCES

[1] W. Y. B. Lim, N. C. Luong, D. T. Hoang, et al., “Federated Learning
in Mobile Edge Networks: A Comprehensive Survey,” IEEE Communi-
cations Surveys & Tutorials, vol. 22, no. 3, pp. 2031–2063, 2020.

[2] D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, J. Li, and H. V.
Poor, “Federated Learning for Internet of Things: A Comprehensive
Survey,” IEEE Communications Surveys & Tutorials, vol. 23, no. 3,
pp. 1622–1658, Jul. 2021.

[3] M. K. Abdel-Aziz, C. Perfecto, S. Samarakoon, M. Bennis, and W.
Saad, “Vehicular Cooperative Perception Through Action Branching
and Federated Reinforcement Learning,” arXiv, cs.LG 2012.03414, Dec.
2020.

[4] F. Dressler, C. F. Chiasserini, F. H. P. Fitzek, et al., “V-Edge: Virtual
Edge Computing as an Enabler for Novel Microservices and Cooperative
Computing,” IEEE Network, vol. 36, no. 3, pp. 24–31, May 2022.

[5] F. Malandrino and C. F. Chiasserini, “Federated Learning at the Network
Edge: When Not All Nodes Are Created Equal,” IEEE Communications
Magazine, vol. 59, no. 7, pp. 68–73, Jul. 2021.

[6] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous Federated Optimiza-
tion,” arXiv, cs.DC 1903.03934, Mar. 2019.

[7] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” in Conference on
Machine Learning and Systems (MLSys 2020), Austin, TX, Mar. 2020.

[8] H. Jin, N. Yan, and M. Mortazavi, “Simulating Aggregation Algorithms
for Empirical Verification of Resilient and Adaptive Federated Learn-
ing,” in IEEE/ACM International Conference on Big Data Computing,
Applications and Technologies (BDCAT 2020), Leicester, United King-
dom: IEEE, Dec. 2020.

[9] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentral-
ized data,” in International Conference on Artificial Intelligence and
Statistics (AISTATS 2017), Fort Lauderdale, FL: PMLR, Apr. 2017,
pp. 1273–1282.

[10] Z. Qu, K. Lin, J. Kalagnanam, Z. Li, J. Zhou, and Z. Zhou, “Feder-
ated Learning’s Blessing: FedAvg has Linear Speedup,” arXiv, cs.LG
2007.05690, Jul. 2020.

[11] W. Wu, L. He, W. Lin, R. Mao, C. Maple, and S. Jarvis, “SAFA: A
Semi-Asynchronous Protocol for Fast Federated Learning With Low
Overhead,” IEEE Transactions on Computers, vol. 70, no. 5, pp. 655–
668, May 2021.

[12] T. Nishio and R. Yonetani, “Client Selection for Federated Learning
with Heterogeneous Resources in Mobile Edge,” in IEEE International
Conference on Communications (ICC 2019), Shanghai, China: IEEE,
May 2019.

[13] H. Guo, S. Li, B. Li, Y. Ma, and X. Ren, “A New Learning Automata-
Based Pruning Method to Train Deep Neural Networks,” IEEE Internet
of Things Journal, vol. 5, no. 5, pp. 3263–3269, Oct. 2018.

[14] J. Mills, J. Hu, and G. Min, “Communication-Efficient Federated
Learning for Wireless Edge Intelligence in IoT,” IEEE Internet of Things
Journal, vol. 7, no. 7, pp. 5986–5994, Jul. 2020.

[15] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, and D. B. Ananda
Theertha Suresh and, “Federated Learning: Strategies for Improving
Communication Efficiency,” arXiv, cs.LG 1610.05492, Oct. 2016.

[16] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Sparse Bi-
nary Compression: Towards Distributed Deep Learning with minimal
Communication,” in International Joint Conference on Neural Networks
(IJCNN 2019), Budapest, Hungary: IEEE, Jul. 2019.

[17] Z. Wang, Z. Zhang, and J. Wang, “Asynchronous Federated Learning
over Wireless Communication Networks,” in IEEE International Con-
ference on Communications (ICC 2021), Virtual Conference: IEEE, Jun.
2021.

[18] Q. Ma, Y. Xu, H. Xu, Z. Jiang, L. Huang, and H. Huang, “FedSA: A
Semi-Asynchronous Federated Learning Mechanism in Heterogeneous
Edge Computing,” IEEE Journal on Selected Areas in Communications,
vol. 39, no. 12, pp. 3654–3672, Dec. 2021.

[19] A. Imteaj and M. H. Amini, “FedPARL: Client Activity and Resource-
Oriented Lightweight Federated Learning Model for Resource-
Constrained Heterogeneous IoT Environment,” Frontiers in Communi-
cations and Networks, vol. 2, Apr. 2021.

[20] M. Boban, C. Jiao, and M. Gharba, “Measurement-based Evaluation
of Uplink Throughput Prediction,” in 95th IEEE Vehicular Technology
Conference (VTC 2022-Spring), Helsinki, Finland: IEEE, Jun. 2022.

