
1

BLOWN: A Blockchain Protocol for Single-Hop
Wireless Networks under Adversarial SINR

Minghui Xu, Student Member, IEEE, Feng Zhao, Member, IEEE, Yifei Zou, Chunchi Liu,
Xiuzhen Cheng, Fellow, IEEE, Falko Dressler, Fellow, IEEE

Abstract—Known as a distributed ledger technology (DLT), blockchain has attracted much attention due to its properties such as
decentralization, security, immutability and transparency, and its potential of servicing as an infrastructure for various applications.
Blockchain can empower wireless networks with identity management, data integrity, access control, and high-level security. However,
previous studies on blockchain-enabled wireless networks mostly focus on proposing architectures or building systems with popular
blockchain protocols. Nevertheless, such existing protocols have obvious shortcomings when adopted in wireless networks where
nodes have limited physical resources, fall short of well-established reliable channels, variable bandwidths impacted by environments
or jamming attacks. In this paper, we propose a novel consensus protocol named Proof-of-Channel (PoC) leveraging the natural
properties of wireless communications, and a BLOWN protocol (BLOckchain protocol for Wireless Networks) for wireless networks
under an adversarial SINR model. We formalize BLOWN with the universal composition framework and prove its security properties,
namely persistence and liveness, as well as its strengths in countering against adversarial jamming, double-spending, and Sybil
attacks, which are also demonstrated by extensive simulation studies.

Index Terms—Blockchain; Proof-of-Channel; wireless networks; adversarial SINR; jamming; Sybil attacks.

F

1 INTRODUCTION

D Istributed Ledger Technology (DLT) refers to share,
replicate, and synchronize a digital ledger across a

distributed network without centralized data storage. As a
widely used DLT, blockchain technologies intend to orga-
nize a digital ledger as a chain of blocks to enable remark-
able properties such as decentralization, immutability, and
traceability. Since Bitcoin has emerged as the first open cryp-
tocurrency, blockchain has been envisioned as a promising
technology that can be used in various practical applications
such as finance [1], Internet of Things (IoT) [2], supply chain
[3], and security services [4]. In recent years, the popularity
of 5G and IoT has arisen more problems of managing
devices, sharing information, and carrying on computing
tasks among wireless nodes [5]. Such problems become
even intractable in a wireless network with small-world
and super-dense features [6]. To overcome these challenges,
effort has been made to build secure and trusted comput-
ing environments such as mobile edge computing (MEC)
enabled blockchain [7] and the blockchain empowered 5G
[8] in wireless networks taking advantage of blockchain

M. Xu and X. Cheng are with the School of Computer Science and
Technology, Shandong University, Qingdao, 266510, P. R. China. E-mail:
{mhxu,xzcheng}@sdu.edu.cn; and with the Department of Computer Science,
The George Washington University, Washington, DC 20052 USA. E-mail:
{mhxu,cheng}@gwu.edu.
F. Zhao (Correspondign Author) is with the Guangxi Colleges and
Universities Key Laboratory of Complex System Optimization and Big
Data Processing, Yulin Normal University, Yulin, P.R. China. E-mail:
zhaofeng@guet.edu.cn.
Y. Zou is with the School of Computer Science and Technology, Shandong
University, Qingdao, 266510, P. R. China. E-mail: {yfzou}@sdu.edu.cn.
C. Liu is with the School of Computer Science and Technology, Shandong
University, Qingdao, 266510, P. R. China. E-mail: liuchunchi@sdu.edu.cn.
F. Dressler is with the the School of Electrical Engineering and Computer
Science, TU Berlin, 10587 Berlin, Germany. E-mail: dressler@ccs-labs.org.
Manuscript created June 20, 2020

technologies.
Previous studies on blockchain-enabled wireless net-

works mostly focus on proposing architectures or build-
ing systems on top of popular blockchain protocols that
are previously deployed on the Internet. Such blockchain
protocols make use of consensus algorithms that are based
on either proof of resources or message passing. Proof
of resources based consensus requires users to compete
for proposing blocks by demonstrating their utilization of
physical resources such as energy and storage (e.g. Proof-
of-Work [9]) or virtual resources such as reputation and
weight (e.g., Proof-of-Stake [10]). Message passing based
protocols such as PBFT [11], on the other hand, require
the participants to reach consensus through message ex-
changes. Even though these consensus algorithms perform
well for existing blockchain protocols, they are not suitable
for wireless networks since they are mainly developed for
systems with Internet serving as the underlying network
infrastructure. More specifically, wireless networks fall short
of well-established reliable channels built with physical
wires such as fiber as the Internet does – the open free
air communications are severely impacted by environments
(e.g., interference or contention) resulting in the variable
channel bandwidths; and wireless networks are particularly
vulnerable to jamming attacks. These two barriers make it
very possible for communications to fail, making the tradi-
tional consensus algorithms inapplicable. Such problems are
not sufficiently addressed by existing blockchain protocols,
which motivates our study on blockchain protocols over
wireless.

In this paper, we propose BLOWN, a BLOckchain pro-
tocol for Wireless Networks, to overcome the above chal-
lenges. BLOWN is a two-phase protocol that adopts a new
concept, namely Proof-of-Channel (PoC), to seamlessly inte-

This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version
may no longer be accessible.

ar
X

iv
:2

10
3.

08
36

1v
2

 [
cs

.C
R

]
 1

1
A

pr
 2

02
1

2

grate the procedures of consensus and channel competition.
In PoC, nodes compete for available channels to win the
rights of proposing blocks. Such a design makes probing
the wireless channel conditions part of the consensus proce-
dure, successfully reducing the communication cost while
increasing consensus efficiency and effectiveness. On the
other hand, we consider that an adversary can make adver-
sarial jamming on the nodes but controls no more than 50%
wealth of the network in BLOWN, where wealth is defined
to be the total number of coins held by all users. BLOWN is
a provably secure system that satisfies two formal security
properties: persistence and liveness. Persistence means that
if an honest node proclaims a transaction as stable, other
honest nodes, if queried, either report the same result or
report error messages. Liveness, on the other hand, states
that the transactions originated from the honest nodes can
eventually be added to the blockchain. To prove BLOWN’s
properties, we formally model it with a universally compos-
able (UC) framework and analyze it accordingly. Note that it
is worthy of emphasizing that PoC can be adapted to multi-
hop wireless networks if combined with existing techniques
such as distributed spanner construction [12] or supported
by an adequate routing layer [13].

Our main contributions are summarized as follows.

1) To the best of our knowledge, BLOWN is the
first provably secure protocol that is specifically
designed for wireless networks under a realistic
adversarial SINR model.

2) A novel, general Proof-of-Channel consensus pro-
tocol is proposed in this paper, which leverages
the natural properties of wireless networks such
as broadcast communications and channel compe-
titions.

3) We develop a UC-style protocol for BLOWN and
formally prove BLOWN’s persistence and liveness
properties by showing that it satisfies concrete chain
growth, common prefix, chain quality properties.

4) Finally, extensive simulation studies are conducted
to validate our theoretical analysis.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the most related works on state-of-the-
art blockchain protocols. Section 3 presents our models and
assumptions. In Section 4, the two-phase BLOWN protocol
is explained in detail. Security properties of BLOWN are an-
alyzed in Section 5, which discusses jamming-resistant com-
munications, double-spending attacks, and Sybil attacks. We
report the results of our simulation studies in Section 6 and
conclude this paper in Section 7.

2 RELATED WORK

Blockchain consensus protocols. We classify blockchain
consensus protocols into two categories: proof of resources
(virtual or physical) and message passing, and briefly
overview them in this section. For a more comprehensive
survey we refer the readers to [14].

Proof of physical resources means that users compete
for proposing blocks by demonstrating their utilization of
physical resources. Proof-of-Work (PoW) is of the most

use in blockchain. The most popular example of PoW-
based blockchain is the Bitcoin proposed in 2008, which se-
lects leaders by computational powers (Proof-of-Work) [9].
Ethereum provides the Turning-complete Ethereum Virtual
Machine (EVM) and adopts a modified PoW (with Ethash)
[15]. Alternatives to PoW include Proof-of-Space [16], Proof-
of-Burn (PoB) [17], Proof-of-Elapsed Time (PoET) [18], in
which Proof-of-Space, also known as Proof-of-Capacity or
Proof-of-Storage, refers to consensus nodes competing by
occupied memories or disk spaces, PoB means that a node
can destroy coins to virtually earn mining rights, and PoET,
proposed by Intel, leverages trusted hardware (e.g., SGX) to
determine how long a node has to wait before it is allowed
to generate a block.

In contrast to proof of physical resources, proof of virtual
resources aims to show the utilization of virtual resources
such as reputation, stake, or elaborately defined weight. For
example, Proof of Stake (PoS) was developed to address the
power consumption issue of PoW and it resorts to stakes
as voting rights rather than computational powers. Algo-
rand uses a cryptographic Sortition algorithm to randomly
select a verifiable committee according to stakes [19]. IOHK
created the Ouroboros family in recent years, which adopts
PoS and G.O.D coin tossing to randomly choose a leader
according to stakes [10]. Snow White utilizes an epoch-
based committee which embodies successful block miners
in a specific time period so that all nodes have an identical
view of the committee [20]. In Proof-of-Reputation (PoR),
each node is assigned a reputation [21], and a node can write
blocks only when its reputation meets certain requirements;
thus PoR always comes with incentive mechanisms or eco-
nomic penalty strategies.

In message passing based blockchain protocols, nodes
can perform local computations and broadcast messages
to each other to reach consensus. This method provides
blockchain the robustness to Byzantine failures while en-
suring liveness and safety. In Ripple, a transaction that
receives more than 80% votes from UNL-recorded servers
can step into the next round, and transactions having sur-
vived through the whole RPCA process can be added to
the blockchain [22]. ELASTICO partitions nodes by their
unique identities and a consensus is reached in each shard
based on byzantine agreement protocols [23]. Stellar creates
overlapped shards, also known as quorum slices, leveraging
Federated Byzantine Agreement (FBA) to reach consensus
[24]. Omniledger uses lottery-like RandHound and VRF-
based leader election algorithms to assign validators to each
shard [25]. Other message-passing based protocols utilized
in blockchain include PBFT [11], HoneyBadgerBFT [26],
Tendermint [27], and Hotstuff [28].

Blockchain for Internet of Things. IoT encompasses
devices that are generally connected to a wireless network.
Blockchain has been applied for various IoT applications
such as access management, security enhancement, and pri-
vacy protection. Novo developed a new architecture, which
contains six components, for access management in IoT
based on blockchain [29]. Dorri et al. optimized blockchain
for IoT by introducing a distributed trust model, in which
new blocks proposed by the users with high trust can be free
from complete transaction validation to decrease the trans-
action processing overhead. Feng et al. [30] proposed a radio

3

and computational resource allocation joint optimization
framework for blockchain-enabled mobile edge computing.
In vehicular ad hoc networks, Malik et al. [31] utilized
blockchain to achieve secure key management. Guo et al.
[32] presented a novel endogenous trusted framework for
IoT, which integrates blockchain, software-defined network-
ing, and network function virtualization. Guo et al. [33] con-
structed a blockchain-based authentication system to realize
trusted data sharing among heterogeneous IoT platforms.
In [34], Liu et al. developed a tokoin (token+coin) based
novel framework to provide fine-grained and accountable
access procedure control leveraging blockchain for various
IoT applications. Its unique significance lies in that the fine-
grained access policy can be defined, modified, and revoked
only by the resource owner and the whole access procedure,
not just the access action alone, can be accountably and
securely controlled. In [35], Liu et al. proposed an important
idea of extending trust from on-chain to off-chain making
use of trusted hardware and blockchain to ensure that the
data in digital world is consistent with the truth in physical
world and that any change in physical world should be
reflected instantly by the data change in digital world.

Consensus protocols for wireless networks. Since con-
sensus is the core of blockchain and our study is closely
related to wireless networks, we briefly survey the studies
on consensus protocols for wireless networks. The abstract
MAC layer [36] is one of the earliest models that can
achieve elegant abstraction and precisely capture the fun-
damental guarantees of the low-level network layer per-
formance in wireless networks. Newport provided the first
tight bound for distributed consensus in radio networks
[37]. With the abstract MAC layer, Newport and Robinson
gave a fault-tolerant consensus algorithm that terminates
within O(N3 logN), where N is the unknown network
size [38]. A pioneering work on the implementation of the
abstract MAC layer provides a groundbreaking scheme to
adaptively tune the contention and interference in wireless
channels [39]. Moniz et al. [40] proposed a BFT consensus
protocol allowing k > bN2 c faulty nodes with time com-
plexity of O(N2). They assumed an abstract physical layer
in wireless ad hoc networks and directly used high-level
broadcast primitives. Chockler et al. [41] explored fault-
tolerant consensus with crashed nodes. Their study reveals
the relationship of collision detection and fault-tolerant con-
sensus under a graph-based model. Assuming realistic mes-
sage delays and a graph model, Scutari and Sergio designed
a distributed consensus algorithm for wireless sensor net-
works [42], making use of a network model that considers
the MAC layer with a multipath and frequency-selective
channel. Aysal et al. [43] studied the average consensus
problem with probabilistic broadcasts. They explored the
effect of wireless medium on the consensus process and
extended the non-sum preserving algorithm to accelerate
convergence.

Summary. A common drawback of proof of physical
resources lies in their prohibitively large demands of phys-
ical resources such as high computational power, storage,
energy, or specific hardware, of which devices in wire-
less networks are notoriously limited; on the other hand,
proof of virtual resources might encounter centralization
problems caused by the over-powerful validators or au-

thorities. Additionally, message-passing protocols always
incur a significant amount of message exchanges leading to
non-trivial communication overhead. Most notably, almost
all existing works mentioned above were developed for
the Internet resting on the close medium with sufficient
bandwidth where jamming is not an issue; thus they are
insufficient in addressing problems of limited bandwidths
and jamming attacks arisen from the open nature of wireless
communications. Motivated by these observations, in this
paper we propose BLOWN, a wireless blockchain protocol
that relies on the newly-developed PoC to seamlessly inte-
grate wireless communications with blockchain consensus
while guaranteeing persistence and liveness, the two critical
security properties of blockchain, to counter jamming and
various blockchain-specific attacks.

3 MODELS AND ASSUMPTIONS

Network Model. In this paper, we consider a network with
a set V of N nodes arbitrarily deployed in a communication
space. Such a network could contain a group of manipulated
Unmanned Aerial Vehicles (UAVs) or intelligent robots in
realistic scenarios. A node is equipped with a half-duplex
transceiver that can transmit or receive a message, or sense
the channel, but cannot transmit and receive or transmit and
sense simultaneously. Let d(u, v) be the Euclidean distance
between nodes u and v, DR(v) denote the disk centered at v
with a radius R, and NR(v) denote the set of nodes within
DR(v) including v.

We assume that each node knows the identities, locations
and public keys of all other nodes. We further assume
that each node can generate key pairs and has access to
a secure EUF-CMA digital signature scheme (details of
cryptographical tools employed in this paper are presented
in protocol analysis and simulation sections). Each node
maintains a hash-chain of blocks, and each block contains
multiple transactions. We denote frequently-used notations
of transaction, block, blokchain, chain of block headers by
tx, B, BC , and BH , respectively, and use super/subscript
to attach more specific information. A transaction is mod-
eled as a coin exchange process. We adopt the notion of the
unspent transaction outputs (UTXOs) accounting method.
A UTXO-based account stores coins in a set of UTXOs,
and a UTXO defines an output of a blockchain transaction
that has not been spent. This UTXO model provides a high
level of security since it is convenient to authenticate all
transaction sequences using UTXOs, limiting the risk of
double-spending attacks.

…

phase one phase two

…
𝑟!,!# 𝑟!,$!

# 𝑟%,&⋅$!	
#𝑟%,!#

…
𝑟!,$#

…
𝑟%,)#

k-th epoch

slot one slot two

Fig. 1. Epoch-based execution.

Interference Model. We adopt the Signal-to-
Interference-plus-Noise-Ratio (SINR) wireless network
model, which captures the network interference in a more
realistic and precise manner than a graph-based one [44]. A

4

standard SINR model can be formulated as follows, which
states that a message sent by u is correctly received by v if
and only if

SINR =
S

I +N
≥ β (1)

where S = P · d(u, v)−α is the received signal power
of node v from u, P is the uniform transmit power,
I =

∑
w∈W\{u} P · d(w, v)−α is the interference at v and

W is the set of nodes that transmit in the current round,
N is the ambient noise, α ∈ (2, 6] is the path-loss expo-
nent, and threshold β > 1 is determined by hardware.
To capture a fine-grained noise, we define N = ADV(v),
where ADV(v) is the composite noise generated by the
environment and adversaries. Assume each node uses a
common noise threshold θ, and the distance between any
two nodes is bounded by R0 = (P/βθ)1/α. We further
assume that each node can perform physical carrier sensing.
If at least one neighboring node u of v broadcasts a message,
v would either receive a message or sense a busy channel. At
each slot, a node v may either (a) sense an idle channel (the
measured signal power is lower than θ); (b) receive a mes-
sage (the measured signal power exceeds θ and SINR ≥ β);
or (c) sense a busy channel (the measured signal power
exceeds θ but SINR < β). Let RSS = S + I + N be
the total received signal power at a node. Then when the
node receives a message, the interference plus noise can be
calculated by I +N = RSS − S with a known S [45]–[49].

Epoch-based Execution. As shown in Fig. 1, the BLOWN
protocol is executed in disjoint and consecutive time inter-
vals called epochs, and at each epoch no more than one block
can be generated. Each epoch ek consists of two phases with
each containing multiple rounds. In ek, we denote rk1,i as the
i-th round in phase one and rk2,j as the j-th round in phase
two, with rk1,i consisting of two slots and rk2,j having only
one slot. Besides, ik is the length of phase one and c · ik
is the length of phase two, where c is a variable constant
determined later.

Adversary. We assume that there exists a group of ad-
versaries who can freely join or leave the network, create
identities, or make noises to interfere with any honest node
at any time. For simplicity, the group of adversaries can be
regarded as a powerful adversary A who controls less than
50% wealth of the entire network. A can launch jamming
attacks. To leave a chance for an honest node to communi-
cate, A is ((1− ε), T)-bounded at any time interval of length
T rounds, where T ∈ N and 0 < ε ≤ 1, indicating that the
super adversary can jam nonuniformly at most (1 − ε)T
rounds within T . Each node v maintains a variable Tv ,
which is the estimate of T by v.

In this paper, we say that event E occurs with high prob-
ability (w.h.p.) if for any c ≥ 1, E occurs with probability at
least 1−1/N c, and with moderate probability (w.m.p.) if for
any c ≥ 1, E occurs with probability at least 1 − 1/ logcN .
A summary of all important notations (including the ones
from the BLOWN protocol and the protocol analysis) and
their semantic meanings is provided in Table 1.

4 THE BLOWN PROTOCOL

In this section, we present the two-phase BLOWN protocol.
We first summarize the BLOWN protocol by providing an

TABLE 1
Summary of Notations

Symbol Description
Bk

v block generated by node v in the k-th epoch
BCk

v blockchain locally stored at node v
BHk

v block headers read from BCk
v

P1(P2) phase one (phase two)
V set of all nodes
N network size
c constant used to determine the length of phase two
cv counter variable used to record round information
ik length of P1 of the k-th epoch
tx a transaction
txpv temporary transaction stack of node v
pv v’s probability of sending a message
pV aggregated probability of all nodes
p̂ an upper bound of pv

rk1,i(r
k
2,j) i-th (j-th) round of P1(P2) in the k-th epoch

lv lv ∈ {0, 1, · · · , wv} as the leader counter of v
l0v initial value of lv generated by Sortition()
T time window of the adversary
Tv estimate of T by node v
wv deposit of node v
πv proof created by Sortition()
ε proportion of non-jammed rounds
τ the parameter to determine the hardness of Sortition

overview of BLOWN and its construction primitives, and
then detail the protocol itself.

4.1 Overview and Utilities of BLOWN

In this subsection, we present an overview on BLOWN,
and describe the construction primitives/utilities to more
precisely and concisely illustrate the BLOWN protocol.

4.1.1 An Overview on BLOWN

1. Initialization

Phase 1

Run PoC

Leader confirmation

Is leader confirmed?

Leader election succeeds

Run sendTransaction

4. Block finalization

Finish current epoch

𝑗 < 𝑖!?
(block is not full?)

Yes

No

Phase 2

2. Leader
election

Yes

No

3. Transaction
collection

Goto 𝑃"

Fig. 2. BLOWN protocol overview.

The BLOWN protocol proceeds in epochs, with each con-
structing no more than one block. Specifically, our protocol
has two phases within an epoch, denoted by P1 and P2

as shown in Fig. 2. P1 is responsible for initialization and
leader election while P2 is for transaction collection and
block finalization. In our design, nodes contend by broad-
casting messages on a wireless channel. In response, we
establish a robust jamming-resistant channel by introduc-
ing an adaptive transmission mechanism, confronting back-
ground noise and jamming simultaneously. Such a channel

5

Algorithm 1 Utilities for node v
1: function Sortition(skv , seed, role, τ , wv , W)
2: hv , πv = VRF(skv , seed||role)
3: p = τ/W , lv =LeaderCounter(role, wv , hv , p)
4: return hv, πv, lv
5: function VerifySortition(pkv , hv , πv , seed, role, τ , wv , W ,
lv)

6: if VerifyVRF(pkv , hv , πv , seed||role) = 0 then
7: return 0
8: p = τ/W , l̂v =LeaderCounter(role, wv , hv , p)
9: if l̂v 6= lv then

10: return 0
11: return 1
12: function LeaderCounter(role, wv , hv , p)
13: lv = 0
14: if role is FOLLOWER then
15: return lv
16: if hv

2l
∈
[
0,
∑lv
k=0B(k;wv, p)

]
then

17: return lv
18: lv = 1

19: while hv
2l

/∈
(∑lv−1

k=0 B(k;wv, p),
∑lv
k=0B(k;wv, p)

]
do

20: lv = lv + 1

21: return lv
22: function MSG(rk1,i, lv)
23: m.rk1,i ← rk1,i
24: m.lv ← lv
25: return m
26: function MSGT(tx, rk2,j , lv)
27: mT .tx← tx
28: mT .r

k
2,j ← rk2,j

29: mT .lv ← lv
30: return mT

31: function MSGB(BCkv , Bkv , rk2,j , lv , role, wv , hv , πv , l′v)
32: mB .BH

k
v ← read BHk

v from BCkv
33: mB .B

k
v ← Bkv

34: mB .r
k
2,j ← rk2,j

35: mB .lv ← lv
36: mB .sort← {role, wv, hv, πv, l′v}
37: return mB

38: function Pack(txpv) . Pack txp to form a block
39: return Bkv
40: function Append(BCk−1

v , Bku) . append the new block
41: return BCkv ← BCk−1

v +Bku

is realized by dynamically adjusting the transmission prob-
ability pv of each node v according to its sensed contention
in the network. Concretely, we first adopt the Sortition algo-
rithm to assign v a weight lv based on its account balance.
Sortition ensures that splitting coins to generate massive
identities cannot break our protocol. After initialization, the
protocol starts the process of leader election. We utilize the
nature of contention in a wireless network to design our
proof-of-channel consensus mechanism (PoC). To achieve
usability and efficiency, PoC allows nodes to compete on the
channel right-of-use to obtain opportunities of proposing
blocks rather than rely on extra physical resources or intro-
duce communication overhead. More specifically, upon re-

ceiving a message, lv is decremented. The sole survivor with
non-zero lv at the end of P1 is appointed as the leader. This
essentially integrates leader election and channel contention
into a single process, namely the phase one of BLOWN.
In P2, the leader is responsible for collecting and verifying
transactions, assembling them into a new block, and then
broadcasting the block to the whole network. If the new
block is valid, it is admitted by all honest nodes.

4.1.2 Utilities

Algorithm 1 lists the following frequently used functions
for any node v in BLOWN: Sortition(), VerifySortition(), Lead-
erCounter(), MSG(), MSGT(), MSGB(), Pack(), and Append(). It
also presents the following data structures employed by the
above functions: transaction tx, transaction stack txpv , block
Bkv , block header BHk

v , blockchain BCkv , basic message m,
transaction message mT , and block message mB .

Concretely, we modify the crytographic Sortition algo-
rithm proposed by Algorand [19] to make it suitable for our
BLOWN protocol. The Sortition algorithm is based on a ver-
ifiable random function (VRF), which takes as inputs a pri-
vate key skv , a random seed and a role, and outputs a hash
hv as well as its corresponding proof πv . There are two types
of roles: a FOLLOWER who can only be a follower during an
epoch and a LEADER who is a potential leader. Besides, W is
the accumulated number of coins of all users in the network,
wv is the deposit of node v, lv ∈ {0, 1, · · · , wv} is the
leader counter of the node v, and p = τ

W is the probability
based on which each coin is used to increment the counter
value where τ determines the hardness. The probability
of lv = k follows the binomial distribution B(k;wv, p) =(wv
k

)
pk(1 − p)wv−k with

∑wv
0 B(k;wv, p) = 1. To deter-

mine lv , the LeaderCounter(role, wv , hv , p) divides [0, 1] into
consecutive intervals as I(lv) =

[
0,
∑lv
k=0B(k;wv, p)

]
for

lv = 0 and I(lv) =
(∑lv−1

k=0 B(k;wv, p),
∑lv
k=0B(k;wv, p)

]
for I(lv) ∈ {1, · · · , wv}. If v’s role is FOLLOWER, I(lv) = 0;
otherwise, if the normalized hash hv

2l
(l is the hash length)

falls in the interval I(lv), lv is returned as the value of
the leader counter. The function VerifySortition() intends
to check if hv, πv, lv are valid by calling VerifyVRF() and
recomputing LeaderCounter().

Three functions, namely MSG(), MSGT(), and MSGB(),
generate messages that can respectively be used for
leader election, transaction collection, and block finalization.
Specifically, MSG() creates a basic message m for leader
election in P1, MSGT() produces a message mT embodying
a transaction, which is sent during the transaction collection
process in P2, and MSGB() outputs a message mB which
contains a Bkv generated by the leader v, a BHk

v read from
BCkv , the current value lv of the leader counter, and a
string {role, wv, hv, πv, l′v} used to verify Sortition where
l′v is the original value of the leader counter. To reduce
communication cost, we send BHk

v embodied in mB for
a simplified verification. Finally, Pack(txpv) is adopted to
validate and pack transactions to form a new block, and
Append(BCk−1

v , Bku) appends the new block Bku to the local
blockchain BCk−1

v .

6

4.2 The BLOWN Protocol Specifications
In a nutshell, BLOWN is a two-phase protocol. As shown
respectively in Algorithm 3 and Algorihtm 5, phase P1 is
employed for initialization and leader election while phase
P2 is for transaction collection and block finalization.

4.2.1 Phase P1

Algorithm 2 PoC subroutine
1: if v decides to send a message based on pv then
2: m←MSG(rk1,i, lv), v broadcasts (m,σ)
3: else
4: if channel is idle then
5: pv = min{(1 + γ)pv, p̂}
6: Tv = max{1, Tv − 1}
7: else
8: if v receives a message (m,σ) then
9: pv = (1 + γ)−1pv

10: lv = lv − 1

11: cv = cv + 1
12: if cv ≥ Tv then
13: cv = 1
14: if there is no idle rounds in the past Tv rounds then
15: pv = (1 + γ)−1pv ,
16: Tv = Tv + 2

Algorithm 3 BLOWN P1 protocol
1: . Initialization
2: hv, πv, l

0
v =Sortition(skv , seed||role, τ , wv , W)

3: pv = p̂, cv = 0, Tv = 1, i = 1, lv = l0v
4: . Leader election
5: while TRUE do
6: if lv > 0 then . As a potential leader
7: . slot one of rk1,i
8: run PoC
9: . slot two of rk1,i

10: if v broadcasts a message in slot one then
11: v listens on the channel
12: if v senses an idle channel then
13: Goto P2 with ik = i . run P2 as a leader
14: else
15: m←MSG(rk1,i, lv), and v broadcasts (m,σ)

16: else . As a follower
17: . slot one of rk1,i
18: v listens on the channel to receive a message
19: . slot two of rk1,i
20: if in slot one v receives (m,σ) from u and has
I +N < θ then

21: if v senses an idle channel then
22: v recognize u as the leader
23: Goto P2 with ik = i . run P2 as a follower
24: else
25: m←MSG(rk1,i, lv), and v broadcasts (m,σ)

26: i = i+ 1

Let’s examine the details of the BLOWN P1 protocol.
Lines 2-3 of Algorithm 3 constitute the initialization process.
First, Sortition() takes as inputs skv , seed||role, τ , wv and W

(see Line 2), and outputs hv , πv and l0v , where hv and πv
are respectively a hash and its corresponding proof, and
l0v ∈ {0, 1, · · · , wv} stands for the initial leader counter.
Note that lv > 0 indicates that v remains to be a potential
leader while lv = 0 indicates that v is a follower. Let p̂
be the maximum transmission probability, which can be
initialized to any small number in (0, 1). Since the absence
of followers might lead to a bad case in which all nodes are
potential leaders and simultaneously broadcast messages in
slot one1, we prevent this from occurring by ensuring that
there always exist at least one follower after initialization.
A simple approach to achieving this goal is to artificially
and randomly add followers (with a FOLLOWER rule) to
the network. Second, we set pv = p̂, cv = 0, Tv = 1,
i = 1, lv = l0v (Line 3), where pv is the probability on
which node v decides to send a message, and is upper-
bounded by p̂, cv = 1 is a counter variable used to record
round information, Tv is the estimate of the time window
of the adversary by node v, i is the round counter used in
P1, and lv is the leader counter variable initialized to l0v .
After initialization, P1 proceeds round by round with each
containing two slots, and a node v’s activity at each slot
depends on its role.

Before proceed any further, we need to explain the
PoC subroutine described in Algorithm 2 to adjust lv , pv
and Tv , the leader counter, transmission probability and
adversary’s time window estimate, according to the sensed
channel condition at the first slot of each round in P1.
Specifically, v with lv > 0 (a potential leader) performs
the following actions: it either broadcasts a message (m,σ)
with probability pv (Lines 1-2), where σ is the signature of
m, or senses the channel with probability 1 − pv (Lines 3-
10). One can see that v adapts its pv in a multiplicative
increase or decrease manner by a factor of (1 + γ), where
γ = O(1/(log T + log logN)) is a small number that is
loosely determined byN and T (see the proof of Theorem 3).
Particularly, pv is multiplicatively increased (Line 5) when
the channel is sensed idle or decreased (Line 9) when a
message is received2. Such a mechanism ensures that honest
nodes can cooperatively adjust their transmission probabili-
ties to help reduce contention on the channel. Meanwhile,
we decrease Tv by 1 if the channel is idle (Line 6) as
the estimate of adversary’s time window seems to be too
large when the channel is idle, and decrease lv by 1 if a
neighbor of v successfully broadcasts a message (Line 10)
as the neighbor seems to have a better chance of being the
leader. On the other hand, if the number of rounds in P1

is no less than Tv (Line 12), the estimate of the adversary’s
time window, we further check whether or not there is an
idle round in the past Tv rounds (Line 14), and if not, pv is
decreased (Line 15) and Tv is increased (Line 16) to further
adjust pv and Tv . One can see that a successful broadcast
causes the decrements of the lv values of the receivers. When
lv = 0, v becomes a follower who can only sense the channel
in slot one of the next round.

Now we are back to continue explaining Phase P1 of the

1. Such a bad case only occurs with a small probability, which is less
than p̂n

2. Receving a message indicates the message has a valid signature,
and we do not explicitly present the signature verification process for
conciseness.

7

BLOWN protocol, which contains multiple rounds. At slot
one of each round, if v is a potential leader, which means
lv > 0, v runs the PoC subroutine described in Algorithm 2
(Line 8); otherwise, v listens on the channel for message
reception (Line 18). At slot two of each round, v behaves
according to its actions in slot one. If v as a potential leader
broadcasts a message in slot one and senses an idle channel
in slot two, it can set itself as a leader and goto P2 (Lines 10-
13); otherwise it broadcasts a message in slot two. A follower
v recognizes u as the leader only when v believes u is the
only transmitter in slot one and senses an idle channel in slot
two (Lines 20-23); otherwise v transmits in slot two (Line
25). In Theorem 4, we prove that slot two is capable of letting
the leader and the followers mutually recognize each other.

At the end of P1, there should be only one survivor with
lv > 0, who then becomes the leader. Note that ik denotes
the length of P1, which is used to determine the length of
P2. We will prove in Theorem 4 of Section 5 that Algorithm 3
ensures a successful leader election.

Algorithm 4 sendTransaction subroutine
1: if v decides to send a message based on pv then
2: mT ←MSGT(tx, rk2,j , lv), and v broadcasts (mT , σT)
3: else
4: if channel is idle then
5: pv = min{(1 + γ)pv, p̂}
6: Tv = max{1, Tv − 1}
7: else
8: if receives a message (mT , σT) then
9: pv = (1 + γ)−1pv

10: cv = cv + 1
11: if cv ≥ Tv then
12: cv = 1
13: if there is no idle round in the past Tv rounds then
14: pv = (1 + γ)−1pv ,
15: Tv = Tv + 2

4.2.2 Phase P2

Phase P2 of BLOWN performs transaction collection and
block finalization, as shown in Algorithm 5. It proceeds by
a fixed amount of c · ik rounds where each round contains
only one slot, and c is a constant to directly determine the
length of P2 and indirectly the maximum block size, which
can be adjusted according to specific implementations. We
refer to j as the round counter in P2. If j < c · ik, a
leader selected in P1 should listen to the channel to re-
ceive signed transaction messages, which are recorded in
the stack txpv , while other nodes continuously broadcast
signed transaction messages (Lines 2-8). After c · ik rounds,
the leader serializes all transactions to form a new block
denoted by Bkv ←Pack(txpv), and broadcasts the (mB , σB)
(Lines 12-15). Once receiving a (mB , σB) from u, a node v
should append the new block to its local blockchain only
if σB is valid and VerifySortition (pkv , seed, τ , W , mB .sort)
= 1 (Lines 17-18). Note that the sendTransaction subroutine
presented in Algorithm 4 is employed by P2 to broadcast
transactions and the parameters pv , cv , Tv are utilized to
ensure jamming-resistant communications as they function
in the PoC subroutine shown in Algorithm 2.

Algorithm 5 BLOWN P2 protocol
1: . Transaction collection
2: while j < c · ik do
3: if lv > 0 then . As a leader
4: v listens on the channel to receive a (mT , σT)
5: if receives mT .tx6=⊥ then
6: txpv[j] = mT .tx

7: else . As a follower
8: run sendTransaction
9: j = j + 1

10: . Block finalization
11: if j = c · ik then
12: if lv > 0 then . As a leader
13: Bkv ← Pack(txpv)
14: BCkv ← Append(BCk−1

v , Bkv)
15: mB ← MSGB(BCkv , Bkv , rk2,j , lv , role, wv , hv , πv ,

l0v), and broadcasts (mB , σB)
16: else . As a follower
17: if receives (mB , σB) && VerifySortition (pkv , seed,

τ , W , mB .sort) = 1 then
18: Append(BCk−1

v , mB .B
k
u)

5 PROTOCOL ANALYSIS

Proving security properties of a complex protocol such as
BLOWN is very challenging. Thus we leverage the univer-
sally composable (UC) framework proposed by Canetti et al.
[50]. The UC framework captures the security of a protocol
via emulating an idealized protocol F (often referred to
as an ideal functionality), which satisfies strong security
properties. Then a real protocol π specifying concrete imple-
mentations is said to be secure if it is indistinguishable from
F . The main feature of the UC framework is the universal
composability that allows one to perform analysis on a
complex protocol, whose security properties can be derived
from the security of its components.

5.1 UC Composition of BLOWN
We formulate two UC-style protocols (or hybrid exper-
iments), which are presented in Fig. 3 and Fig. 4. The
πB[FSIG,FSORT] conducts a hybrid experiment for BLOWN
using an ideal hybrid functionality [FSIG,FSORT] where
FSIG is an ideal digital signature scheme and FSORT is
an ideal functionality, performing three sortition-related
functions as shown in Fig. 5. BLOWN is denoted as
πB[πSIG, πSORT], which implements real protocols πSIG

and πSORT. Besides, πSORT[FVRF] is a protocol that real-
izes sortition-related functionalities, consisting of Leader-
Counter, Sortition, and VerifySortition. These functionali-
ties are consistent with the corresponding ones specified
in Algorithm 1 except that πSORT[FVRF] uses an ideal
functionality FVRF in Sortition and VerifySortition. In con-
trast, Algorithm 1 adopts a realistic VRF implementation.
Let A,Z,S be respectively the adversary, environment,
simulator, whose specific meanings should depend on the
context. We first show that the following lemma 1 holds for
πSORT[FVRF].

Lemma 1. With the same security parameter λ, for each proba-
bilistic polynomial-time (PPT) {A,Z}, it holds that the protocol

8

Protocol πB[FSIG,FSORT]

πB is a protocol run by all nodes interacting with the ideal functionalities FSIG and FSORT.
Initialization: Send (skv , seed, role, τ , wv , W) to FSORT, which returns (hv, πv, l0v). Next, initialize the remaining
local parameters as pv = p̂, cv = 0, Tv = 1, i = 1, lv = l0v .
Leader election: For each round rk1,i of P1 during the k-th epoch, perform the following (1) or (2) according to the
value of lv :

(1) If lv > 0, run PoC in slot one. If broadcasting a message in slot one, listen on the channel in slot two and if
the channel is idle, goto P2 with ik = i at the end of slot two; otherwise, send m ← MSG(rk1,i, lv) to FSIG,
which returns a signed message (m,σ), i.e., (m,σ) is obtained by querying FSIG, then broadcast (m,σ) in
slot two.

(2) If lv = 0, listen on the channel in slot one. If receiving a valid (m,σ) from u with I +N < θ in slot one, and
sensing an idle channel in slot two, recognize u as the leader and goto P2 with ik = i at the end of slot two;
otherwise, generate m ← MSG(rk1,i, lv), send m to FSIG, which returns (m,σ), then broadcast (m,σ) in slot
two. Note that a valid m holds when FSIG returns 1 upon being queried with (m,σ).

Transaction collection: At each round rk2,j , if lv > 0, listen on the channel for a possible signed transaction message
mT , add the transaction to the local stack as txpv[j] = mT .tx if receiving (mT , σT) and FSIG returns 1 when being
queried with (mT , σT). If lv = 0, send mT ←MSGT(tx, rk2,j , lv) to FSIG, which returns a signed message (mT , σT),
then broadcast (mT , σT).
Block finalization: During the round rk2,c·ik , if lv > 0, execute Bkv ← Pack(txpv) and BCkv ← Append(BCk−1

v , Bkv);
then generate mB ← MSGB(BCkv , Bkv , rk2,j , lv , role, wv , hv , πv , l0v) and send it to FSIG, which returns (mB , σB).
If lv = 0, listen on the channel for a possible block message (mB , σB); if receiving a valid (mB , σB), which means
FSIG returns 1 upon being queried with (mB , σB), and FSORT returning 1 upon being queried with (pkv , seed, τ , W ,
mB .sort), execute Append(BCk−1

v , mB .B
k
u).

Fig. 3. The protocol (hybrid experiment) πB[FSIG,FSORT].

Protocol πSORT[FVRF]

LeaderCounter: When activated with input (role, wv , hv , p), first initialize lv = 0. If role is FOLLOWER, output lv = 0

and exit. If role is LEADER, compute hv
2l

; if hv
2l

falls in
[
0,
∑lv
k=0B(k;wv, p)

]
, output lv = 0 and exit; otherwise,

increase lv until it satisfies that hv
2l
∈
(∑lv−1

k=0 B(k;wv, p),
∑lv
k=0B(k;wv, p)

]
, then send lv to v and output lv .

Sortition: When activated with input (skv , seed, role, τ , wv , W), first feed (skv , seed||role) to FVRF, which returns
(hv , πv); then compute p = τ/W and input (role, wv , hv , p) to LeaderCounter, which returns lv ; finally, output
(hv, πv, lv).
VerifySortition: When activated with input (pkv , hv , πv , seed, role, τ , wv , W , lv), first feed (pkv , hv , πv , seed||role)
to FVRF, which returns (pkv , hv , πv , seed||role, f). If f = 0, output FALSE, which means that verification fails; if
f = 1, compute p = τ/W and feed (hv , πv) to LeaderCounter to obtain l̂v . Following that, if l̂v 6= lv , output FALSE;
otherwise output TRUE, which means that verification succeeds.

Fig. 4. The protocol (hybrid experiment) πSORT[FVRF].

πSORT[FVRF] securely realizes FSORT under the FVRF-hybrid
model.

Proof. Let A be an adversary that interacts with the nodes
running πSORT[FVRF] under the FVRF-hybrid model. We
need to construct an ideal simulator S such that the
view of any environment Z of an interaction with A and
πSORT[FVRF] is exactly the same as that of an interaction
with S and FSORT. In our construction, the simulator S
runs AFVRF (under the name of FVRF) and simulates other
possibly involved nodes. Here, the AFVRF who is attacking
the VRF function is identically defined as the one attacking
the ideal functionality FPraosVRF presented in [51]. S is respon-
sible for forwarding messages from Z and AFVRF . Besides,

S performs the following operations:

1) Simulating value and proof generation: When S
receives a message (skv , seed||role) in the ideal
process from FSORT, it simulates for AFVRF

(under
the name of FVRF) the process of generating (Eval-
uated, sid, hv , πv), where sid represents a session id
which is not explicitly presented in this paper for
simplicity. S then forwards (hv , πv) to FSORT.

2) Simulating verification: When S receives a message
(pkv , hv , πv , seed||role) in the ideal process from
FSORT meaning a verificaiton query is received, it
simulates forAFVRF

the process of VRF verification.
Once receiving (Verified, sid, hv , πv , f), S forwards
(pkv , hv , πv , seed||role, f) to FSORT.

9

Functionality FSORT

LeaderCounter: Upon receiving (role, wv , hv , p) from some node v, verify if role is FOLLOWER. If so, send lv = 0 to
v; otherwise, compute hv

2l
. Next if hv

2l
falls in

[
0,
∑lv
k=0B(k;wv, p)

]
, sends lv = 0 to v; otherwise increase lv until it

satisfies that hv
2l
∈
(∑lv−1

k=0 B(k;wv, p),
∑lv
k=0B(k;wv, p)

]
, then send lv to v.

Sortition: Upon receiving (skv , seed, role, τ , wv , W) from some node v, send (skv , seed||role) to the adversary, who
returns (hv , πv).

(1) If there is no entry (skv , seed||role, hv , πv) recorded, record (skv , seed||role, hv , πv); if there is an existing
entry (skv , seed||role, h′v , π′v) that satisfies h′v = hv and π′v = πv , do nothing. Next compute p = τ/W and
send (role, wv , hv , p) to LeaderCounter, which returns lv . Finally, send (hv, πv, lv) to v.

(2) If there is an entry (skv , seed||role, h′v , π′v) recorded but h′v 6= hv or π′v 6= πv , send an error message to v.

VerifySortition: Upon receiving (pkv , hv , πv , seed, role, τ , wv , W , lv), send (pkv , hv , πv , seed||role) to the adversary,
who returns (pkv , hv , πv , seed||role, f).

(1) If f = 0 or there is no entry (skv , seed||role, hv , πv) recorded, send 0 to v, which means that verification fails.
(2) If f = 1 and there is an existing entry (skv , seed||role, hv , πv), compute p = τ/W and send (hv , πv) to

LeaderCounter, which returns l̂v . If l̂v 6= lv , sends 0 to v, i.e., verification fails; otherwise send 1 to v meaning
that verification succeeds.

Fig. 5. The ideal functionality FSORT

It is straightforward to verify that S perfectly simulates
the adversary and other components. That is, for any PPT
{A,Z}, Z cannot distinguish between its interaction with
A and πSORT[FVRF] or S and FSORT. Thus one can draw a
conclusion that πSORT[FVRF] securely realizesFSORT under
the FVRF-hybrid model.

In the setting of [51], the authors elegantly proved that
there exists a realistic implementation of πVRF that can
securely realize the ideal FVRF under the Computational
Diffie-Hellman (CDH) assumption in the random oracle
model. Therefore with such a secure real-world implemen-
tation, our protocol πSORT[πVRF], abbreviated as πSORT, is
computationally indistinguishable from πSORT[FVRF], and
thus securely realizes FSORT according to Lemma 1. Then
for the analysis of the complicated BLOWN protocol, one
can get rid of the repeated reduction proofs by conducting
a hybrid experiment πB[FSIG,FSORT], where FSORT is the
ideal signature scheme presented in [52]. In Section 5.2,
we report the salient features that can be realized by
πB[FSIG,FSORT] with the ideal combinatorial functional-
ities [FSIG,FSORT]. Thus we need to show that the real
BLOWN protocol πB[πSIG, πSORT] (πSIG is a secure EUF-
CMA digital signature scheme) and πB[FSIG,FSORT] are
computationally indistinguishable so that πB[πSIG, πSORT]
can inherit all features of πB[FSIG,FSORT].

Theorem 1. With the same security parameter λ, for each PPT
{A,Z}, it holds that there is a PPT S such that

EXECA,ZπB[πSIG,πSORT] ≈ EXECS,ZπB[FSIG,FSORT], (2)

where "≈" means computationally indistinguishable.

Proof. With a real digital signature protocol πSIG, we obtain
πB[πSIG,FSORT], which is a protocol under the FSORT-
hybrid model. From Lemma 1, one can see that it holds
for each PPT A and Z , the protocol πSORT securely realizes
FSORT. According to the universal composition theorem,

it holds that for any adversary AFVRF
, there exists an

adversary AFSORT
such that for any environment Z , we

have

EXEC
AFVRF

,Z
πB[πSIG,πSORT] ≈ EXEC

AFSORT
,Z

πB[πSIG,FSORT], (3)

Let πB[FSIG,FSORT] be a protocol under the FSIG-
hybrid model with a fixed FSORT. Making use of an EUF-
CMA digital signature scheme πSIG that securely realizes
FSIG, we have

EXEC
AFSIG

,Z
πB[πSIG,FSORT] ≈ EXEC

AF0
,Z

πB[FSIG,FSORT], (4)

where AF0
is a dumb adversary. Combining (3) and

(4), one can construct the simulator S that can run
AFSORT

,AFVRF
,AF0

and forward messages between
the adversary and Z so that Z cannot distinguish
the interactions with πB[πSIG, πSORT] from those with
πB[FSIG,FSORT].

5.2 Persistence and liveness
We first formulate a state machine S with the following four
states: START, LEADER, COMMIT, FINAL.

Definition 1. (START State). The system is in START state
when the following conditions hold: (1) |{v|v ∈ V, lv > 0}| > 1;
(2) the honest nodes that accepted Bk−1

v in the last epoch have
finished initialization.

Definition 2. (LEADER State). The system is in LEADER state
when the following conditions hold: (1) there is a node v with
lv > 0 and ∀u ∈ V \ {v}, lu = 0; (2) j = 0; (3) the size of v’s
transaction stack |txpv| = 0.

Definition 3. (COMMIT State). The system is in COMMIT state
when the following conditions hold: (1) there is a node v with
lv > 0 and ∀u ∈ V \ {v}, lu = 0; (2) 0 < j < c · ik.

Definition 4. (FINAL State). The system is in FINAL state if
one of the following two conditions holds: (1) each honest node v

10

has received a valid mB and accepted the block Bku; (2) honest
nodes did not receive a block in the (c+ 1)ik-th round.

Garay et al. [53] proved that a secure distributed ledger
should satisfy persistence and liveness properties. Let txji
be the j-th transaction of the i-th block (the 0-th block is the
genesis block). We say txji is t-stable when the current block
index is larger than i+ t, where t > 0. Then the persistence
and liveness properties that BLOWN should guarantee can
be defined as follows.

Definition 5. Persistence and liveness. Persistence states that
if an honest node v proclaims a transaction txji as t-stable, other
honest nodes, if queried, either report the same result or report
error messages. On the other hand, the liveness property states
that if an honest node generates the transaction txji and contends
to broadcast it in phase two, the BLOWN protocol can add it to
the blockchain within finite epochs w.h.p.

Kiayias and Panagiotakos [54] showed that persistence
and liveness can be derived from the following three more
concrete properties: chain growth, common prefix, and
chain quality.

Definition 6 (Chain growth property). Consider two chains
C1, C2 possessed by two honest nodes at the onset of two epochs
e1 < e2 with e2 at least k epochs ahead of e1. It holds that
len(C2) − len(C1) ≥ τ · k, where τ is the speed coefficient with
τ ∈ (0, 1] and k ∈ N.

Definition 7 (Common prefix property). The chains C1, C2
possessed by two honest nodes at the onset of the epoch e1 < e2

satisfy Cdk1 � C2, where k ∈ N and Cdk1 denotes the chain obtained
by removing the last k blocks from C1, and � denotes the prefix
relation.

Definition 8 (Chain quality property). Consider any portion
of length at least l of the chain possessed by an honest party at
the onset of an epoch. The ratio of the blocks originated from the
adversary is at most 1 − µ, where µ ∈ (0, 1] is the chain quality
coefficient.

In the remainder of this section, we prove that
πB[FSIG,FSORT] satisfies chain growth, common prefix,
and chain quality properties, indicating that BLOWN guar-
antees persistence and liveness.

5.2.1 Chain Growth

πB[FSIG,FSORT] meets chain growth as claimed in Theo-
rem 2. We prove Theorem 2 by two steps: 1) each epoch
must be terminated within a finite time (or S never enters
a deadlock); 2) the chain growth property should quantify
the blockchain growing speed such that new blocks are
added to a chain with a speed coefficient τ ∈ (0, 1]. Con-
cretely, we first prove that πB[FSIG,FSORT] ensures robust
communication channels, as without which the protocol
can hardly proceed. With such a communication chan-
nel, πB[FSIG,FSORT] supports a successful leader election,
which provides correctness, efficiency, and practicality. Then
we perform an analysis on the S of BLOWN to end the proof
of Theorem 2.

Theorem 2. It holds for πB[FSIG,FSORT] that each epoch can
terminate in O(cwmaxλ), and there are O(cwmax) transactions

added to the blockchain at each epoch w.h.p., at the speed coefficient
(following Definition 6) τ = 0.5.

To start with, we need to prove Theorem 3, which states
that πB[FSIG,FSORT] can ensure a robust communication
channel. Recall that the distance between any two nodes
is bounded by R0 = (P/βθ)1/α. Therefore for ∀v ∈ V ,
DR0

(v) can cover all the neighbors of node v so that if at
least one node u ∈ NR0

(v) transmits a message, v would
either receive the message or sense a busy channel.

Theorem 3. If NR0
(v) 6= ∅, it holds true for BLOWN that

runing at least F = Ω((T logN)/ε + (logN)4/(γε)2) rounds
leads to at least (1− εβ′)ρe

−ρ
1−p̂F rounds of successful transmis-

sions against any ((1 − ε), T)-bounded adversary w.h.p., where
γ = O(1/(log T + log logN)) and ρ is a constant.

Proof. To prove Theorem 3, we divide DR0
(v) into six sec-

tors of equal angles centered at v, and denote an arbitrary
sector as S. Then we refer to p̄v =

∑
w∈S\{v} pw as the

aggregated transmission probability of the neighbors of v,
and pS denotes the aggregated transmission probability
of all the nodes in S. Lemma 4 can be proved utilizing
Lemma 2 and 3, whose proofs can be found in [55]. We
divide the F into (c logN)/ε consecutive subframes, with
each consisting of c(T + (logN)3/(γ2ε)) rounds.

Lemma 2. Consider any node v in S. If p̄v > 5 − p̂ during all
rounds of a subframe I ′ of I and at the beginning of I ′, Tv ≤

√
F ,

then pv is at most 1/N2 at the end of I ′, w.h.p.

Lemma 3. For any subframe I in F and any initial value of pS
in I there is at least one round in I with pS ≤ 5 w.h.p.

Lemma 4. For any subframe Ik in I , if pS ≤ 5 occurs during
the past subframe Ik−1, pS ≤ 5e2 holds throughout Ik w.m.p.

Proof. Let ptS be the cummulative transmission probability
of nodes in S at round t. Assume the probability that all
nodes in S are not transmitting is q0, the probability that
only one node in S is transmitting is q1, and the probability
that at least two nodes in S are transmitting is q2. Then one
can obtain the upper bound of the expectation of pt+1

S as
follows:

E[pt+1
S] ≤ q0(1 + γ)ptS + q1(1 + γ)−1ptS + q2 · ptS . (5)

This upper bound holds true even if we consider the rounds
when cv > Tv , which decreases pS . Let E2 be the event
when at least two nodes in S transmit. If E2 does not
happen, q2 = 0 and Eq. (5) becomes

E[pt+1
S] =

q0

q0 + q1
(1 + γ)ptS +

q1

q0 + q1
(1 + γ)−1ptS . (6)

If pS > 5, we have q1 ≥ pS · q0 ≥ 5q0. Hence,

E[pt+1
S] ≤ [

(1 + γ)

6
+

5(1 + γ)−1

6
]ptS ≤ (1 + γ)−1/2ptS .

(7)
Considering the case where E2 might happen, one can
rewrite E[pt+1

S] as

E[pt+1
S] ≤ [q2 + (1− q2)(1 + γ)−1/2]ptS . (8)

Since q2 = 1− q0 − q1 < 1− pSe
pS
1−p̂ , we have

E[pt+1
S] ≤ [1− pSe

pS
1−p̂ + (1 + γ)−1/2pSe

pS
1−p̂]ptS . (9)

11

Suppose in the subframe Ik−1 there is a round t with
pS > 5. One can find a time interval I ′ ⊆ Ik−1, which
satisfies 5 < pS < 5e during I ′, pS < 5 just before I ′,
and pS > 5e at the end of I ′. We intend to bound the
probability at which such I ′ happens. Let φ = log1+γ [(1 −
pSe

pS
1−p̂ +(1+γ)−1/2pSe

pS
1−p̂)−1]. Since γ is sufficiently small,

we have φ ∈ (0.5, 1) and E[pt+1
S] ≤ (1 + γ)−φ. On the

other hand, pt+1
S ≤ (1 + γ)ptS ≤ (1 + γ)2φptS . Then let

Xt
S = log(1+γ) p

t
S+
∑t−1
i=0 φk andX0

S = log(1+γ) p
0
S , it is easy

to verify that E[Xt+1
S] = Xt and Xt+1

S ≤ Xt
S + ct+1, where

ct+1 = 3φt. Leveraging the Azuma–Hoeffding Inequality, it
holds that

P [XT
S −X0

S > δ] ≤ e
−δ2

2
∑T
k=1

c2
k , (10)

for δ = 1/γ +
∑T−1
k=0 φk. Therefore

P [log(1+γ) p
T
S/p

0
S > 1/γ] ≤ e

−δ2

2
∑T−1
k=0

(3φk)2 . (11)

Let ψ =
∑T−1
k=0 (φk)2, we have e

−δ2

2
∑T−1
k=0

(3φk)2 = (ψ+1/γ)2

18ψ ≥
1

9γ . Hence,

P [log(1+γ) p
T
S/p

0
S > 1/γ] ≤ e−1/9γ ≤ 1

logcN
, (12)

for any constant c if γ = O(1/(log T + log logN). Note
that log(1+γ) p

T
S/p

0
S > 1/γ indicates pTS/p

0
S > e. Con-

sidering p0
S > 5 at the beginning of a subframe I ′,

P [log(1+γ) p
T
S/p

0
S > 1/γ] is the probability at which the

aggregated probability of the nodes in S exceeds 5e at the
end of I ′. Hence we prove that if pS < 5 holds at the
beginning of Ik−1, pS < 5e holds throughout Ik−1 w.m.p.
Also, it is analogous to prove that if pS < 5e is true at the
beginning of Ik−1, pS < 5e2 holds throughout Ik−1 w.m.p.
Hence, if pS ≤ 5 happens during the past subframe Ik−1,
pS < 5e holds throughout Ik w.m.p. Since pS < 5e holds at
the beginning of Ik, pS < 5e2 holds throughout Ik w.m.p.,
which proves the lemma.

Lemma 5. (1− εβ′)-fraction of subframes in F satisfy pV ≤ ρ
w.h.p, where pV =

∑
v∈V pv is the aggregated probability of all

nodes, and ε, β′, ρ are constants.

Proof. Let us focus on a fixed subframe Ik and its previous
subframe Ik−1. Lemma 3 indicates that there is at least one
round in Ik−1 with pS ≤ 5 w.h.p. Then it follows from
Lemma 4 that if there is at least one round in Ik−1 with
pS ≤ 5, pS < 5e2 holds throughout Ik w.m.p. Define a
subframe I to be good if pS ≤ 5e2 holds throughout I ,
and otherwise I is bad. Then it follows from the Chernoff
bounds that at most εβ′/6 of the subframes in F are bad
w.h.p. Since DR0 consists of six sectors and covers all nodes
in V , there is at least (1−εβ′)-fraction of subframes in which
the aggregated probability pV =

∑
v∈V pv =

∑
v∈NR0

(v) pv
is bounded by ρ = 6 × 5e2 = 30e2, which completes the
proof.

Then, the probability on which there exists one success-
ful transmission is given by∑

v∈V
pv

∏
w∈V \v

(1− pw) ≥
∑
v∈V

pv
∏
w∈V

(1− pw)

≥
∑
v∈V

pv
∏
w∈V

e
−pw
1−p̂

=
∑
v∈V

pve
−pV
1−p̂

= pV e
−pV
1−p̂

≥ ρe
−ρ
1−p̂ .

(13)

With the robust communication guarantee, we next
prove that BLOWN can support a successful leader election,
which is the core of the protocol. Most leader election
algorithms in wireless networks are only responsible for
reaching the state at which one node is the leader and
others are followers. Our algorithm goes one-step further
by ensuring that all nodes have an identical view of the
network after leader election, which is crucial to the our
protocol, as shown in Theorem 4.

Theorem 4. (Successful leader election). Let wmax be the max-
imum weight among all nodes and λ be a constant to be de-
termined. πB[FSIG,FSORT] ensures a successful leader election
while satisfying the following three properties: 1) Correctness:
only one node is left as the leader with a positive lv at the end of
P1; 2) Efficiency: the success of leader election can be achieved
within O(wmaxλ) rounds w.h.p.; 3) Practicality: the leader and
the followers should have the knowledge regarding who is the
leader and at which round the leader is elected.

Proof. We prove the three properties in order. During a
leader election process, all nodes contend for broadcasting
messages in P1 until only one node is left with a positive lv ,
which can always be achieved inevitably. This can be proved
by contradiction. Without loss of generality, we assume that
there are two nodes left with a positive lv . If these two nodes
broadcast messages at the same round, they can not receive
messages from each other simultaneously. Therefore, there
is no chance for two nodes to receive messages in the same
round, and there must be only one node surviving at the
end. One can trivially expand this result to the cases with
3, 4, · · · , N nodes left with positive lv values, thus proving
that the protocol can always lead to the state when only one
node survives as the leader with a positive lv .

To prove the efficiency property, we resort to Theo-
rem 3, which shows that a constant fraction of the rounds
have successful transmissions w.h.p. Concretely, a success-
ful communication should happen once every λ = (1 −
εβ)−1ρ−1e

ρ
1−p̂ rounds on average w.h.p. Then leader elec-

tion can be finished in O(wmaxλ) rounds w.h.p. This indi-
cates that O(1) number of rounds can lead to a successful
leader election and the communication complexity is not
directly related to the network size.

To prove the practicality, we denote Ev as the event
that v broadcasts a message in slot one and senses an idle
channel in slot two. In this case, v would know itself as
the leader. Let pv be the probability that v broadcasts a

12

message in slot one, p(0)
v be the probability that v broadcasts

a message and there is also at least one node u with lu > 0

broadcasting a message in slot one, p(1)
v be the probability

that v broadcasts a message and there exists at least one
node u with lu > 0 sensing the channel in slot one, and p(2)

v

be the probability that v broadcasts a message in slot one
and lu = 0,∀u ∈ V \{v}. Certainly, pv = p

(0)
v + p

(1)
v + p

(2)
v .

If Ev happens, v senses an idle channel in slot two. Then
p

(0)
v = 0 since if u broadcasts a message in slot one, a

follower f senses interference and thus broadcasts an m
in slot two so that v senses interference in slot two, which
contradicts our assumption. Also, p(1)

v = 0 because if there
exists a node u with lu > 0 sensing the channel in slot
one, u has to broadcast a message in slot two which also
contradicts the assumption. Therefore, we obtain the result
that if Ev happens, v can confirm itself as the unique leader.

Correspondingly, we denote Ef as the event that a
follower f recognizes v as the leader when f receives a
message from v and obtains I +N < θ in slot one, then
senses an idle channel in slot two. Let pf be the probability
that f receives a message from v and obtains I +N < θ

in slot one, p(0)
f be the probability that there is at least one

node u ∈ V \{v} with lu > 0 sensing the channel in slot
one, p(1)

v be the probability that v is the unique leader; then
we have pf = p

(0)
f + p

(1)
f . Assume Ev happens, we have

p
(0)
f = 0 since if p(0)

f 6= 0, u has to broadcast a message
in slot two and thus a follower senses interference, which
contradicts our assumption. As a result, Ef indicates that
v is the unique leader. Additionally, the round at which a
successful leader election happens can be found when Ev
and Ef occur simultaneously, which ends the proof of the
third property.

Utilizing Theorem 3 and 4 as intermediate conclusions,
we are finally ready to prove Theorem 2.

Proof. The time between LEADER and COMMIT is fixed to
j = c · ik rounds, where c is an adjustable constant param-
eter according to different implementation scenarios. If the
leader does not broadcast a block in the (c+ 1)ik-th round,
the state transits to the final state since S satisfies the second
condition of a FINAL state. Then S starts the next epoch.
According to Theorem 4, each epoch can be terminated in
O(cwmaxλ) w.h.p., and there should be O(cwmax) transac-
tions added to the blockchain in each epoch w.h.p.

Assume an honest node v generates the transaction txji
and contends to broadcast it in P2. The transaction can
be received by an honest leader with probability at least
p = cwmax/N in each epoch. By applying the Chernoff
bound, we obtain that txji can be added to the blockchain

within n epochs with probability at least 1 − e−
(np−1)2

2 ,
where n is the number of epochs when v broadcasts txji .
The above analysis indicates that S has no chance of staying
at a deadlock in any epoch. Considering the assumption that
honest nodes control more than 50% coins, πB[FSIG,FSORT]
with ideal functionalities [FSIG,FSORT] can ensure a fair
sortition based on the nodes’ coin distribution. Thus, with
probability at least 50%, an honest node can be selected as
a leader to propose a new block. When two chains C1, C2
possessed by two honest nodes at the onset of two epochs

e1 < e2 with e2 at least k epochs ahead of e1, it holds that
len(C2)− len(C1) ≥ τ ·k, where τ = 0.5. This completes the
proof of Theorem 2.

5.2.2 Common Prefix
Theorem 5. πB[FSIG,FSORT] satisfies the common prefix prop-
erty (following Definition 7).

Proof. In πB[FSIG,FSORT] a node can directly append a new
block Bku to its local blockchain only when FSIG and FSORT

answer with 1 when being queried. Therefore, an adversary
who intends to disguise itself as a leader to propose a block
should fail since it cannot break [FSIG and FSORT]. How-
ever, a malicious leader (an adversary who wins the leader
election) can still diverge the global distributed ledger to
cause a ∆-fork defined in Definition 10.

0 1 ⊥ 0 1 1

𝒑𝟏

𝒑𝟐

1

2.1

4 5.1

0

2.2

2.3 5.2

6.1

6.2

Fig. 6. A simple example to illustrate the concepts of string, ∆-fork,
and divergence. Specifically, we have s6 = {0, 1,⊥, 0, 1, 1}, l(p1) = 5,
and l(p2) = 4. The tree presented here is a ∆-fork with ∆ = 1, and
|div(p1, p2)| = 4.

Definition 9 (String). Consider an epoch ek during the execu-
tion of functionality πB[FSIG,FSORT] with adversary A and
environment Z . Let S = {e1, · · · , ek} denote a sequence of
epochs of length k. The string s = {0, 1,⊥}k of S is defined
so that si = 1 if the adversary controls the epoch leader of ei and
broadcasts a block, si = 0 if an honest node controls the epoch
and broadcasts a block, and si =⊥ if no block is broadcast. We
say that the index i is adversarial if si = 1 and honest otherwise.

W.l.o.g., let s0 = 0 for e0 meaning that the genesis block
has an honest index.

Definition 10 (∆-Fork). Let string s = {0, 1,⊥}k of S and ∆
be a non-negative interger. A ∆-fork is a directed, acyclic, rooted
tree F = (V,E) in which the two longest paths p1 and p2 satisfy
|l(p1)− l(p2)| ≤ ∆, where a path p refers to a road from the root
to a leaf and l(p) is the hop-count (length) of the path p.

Definition 11 (Divergence). Denote the divergence of two paths
p1 and p2 in a ∆-Fork as div(p1, p2), which is defined as

div(p1, p2) = max{l(p1), l(p2)} − l(p1 ∩ p2), (14)

where l(p1 ∩ p2) is the legnth of the common path of p1 and p2,
and div(p1, p2) is non-negative.

Lemma 6. The common prefix property is satisfied if and only if
for any pair of paths pi, pj , i 6= j, in a ∆-fork, div(pi, pj) ≤ k.

Proof. For the “only if” direction, we assume that there exits
a path p1, p2 (w.l.o.g., l(p1) > l(p2)) such that div(p1, p2) >
k. That is max{l(p1), l(p2)}−l(p1∩p2) = l(p1)−l(p1∩p2) >

13

k. Let V1 (V2) be the set of honest nodes that store the
distributed ledger as the path p1 (p2). Once querying a
local blockchain, any v1 ∈ V1 (v2 ∈ V2) responds with C1
(C2). Denote the latest point of the common path p1 ∩ p2

as v̂, which is also called a bifurcation point. The path
p
dk
1 that is obtained by truncating the last k vertices of
p1 still covers v̂, which is not the endpoint of p1 since
l(p1) − k > l(p1 ∩ p2). Denote the endpoint of p1 as
end(p1). Then the blocks corresponding to the points from
v̂ to end(p1) are included in Cdk1 , but the block mapped to
end(p

dk
1) is not included in C2, thus violating the common

prefix property. For the “if” direction, assuming that the
common prefix is violated, there exists a pair of ledgers
C1 and C2 for e1 < e2 such that Cdk1 � C2. Mapping
such blockchains to two distinct paths p1, p2, the endpoint
end(p

dk
1) corresponding to the latest block in Cdk1 is not cov-

ered by p2 and comes after v̂. By the definition of divergence,
div(p1, p2) = max{l(p1), l(p2)} − l(p1 ∩ p2) > k.

Here one can define a common prefix violation as the
case when there exit two paths p1, p2 in a ∆-fork with
|div(p1, p2)| > k. To prove Theorem 5, we need to show
that a common prefix violation happens with an extremely
small probability. Generally speaking, ∆ ≤ k, and p1, p2

can be regarded as the respective paths that the honest
nodes and adversary go through. This is based on the
assumption that all honest nodes strictly follow the longest
chain rule, while the adversary focuses on increasing the
length of an illegal chain (e.g., including a double-spend
transaction). Therefore, a common prefix violation can also
be interpreted as a race between honest nodes and the
adversary that lasts for more than k blocks, but their view
paths still follow |l(p1) − l(p2)| ≤ ∆. Let Xi ∈ {±1}
(for i = 1, 2, · · ·) denote a series of independent random
variables for which Pr[Xi = 1] = (1 − ε)/2. Note that
ε ∈ (0, 1) is satisfied in functionality πB[FSIG,FSORsT] since
the adversary controls less than 50% coins and the protocol
adopts a hybrid [FSIG,FSORT] to ensure that the probability
of the adversary being a leader is less than 1/2. Consider
k epochs of the biased walk beginning at the bifurcation
point. The resulting value is tightly concentrated at −εk.
By applying the Chernoff bound, for each k random walk
hitting problem, we have

Pr[Xk < ∆] ≤ e−(1−∆/εk)2εk/2 = e−O(k), (15)

where ∆� k. This indicates that πB[FSIG,FSORT] satisfies
the common prefix property w.h.p., which completes the
proof.

5.2.3 Chain Quality
The chain quality property requires that a certain fraction
of the blocks should satisfy high quality standards (high-
quality blocks are the ones generated absolutely by honest
nodes). Chain quality can be threatened by Sybil attacks
which are particularly harmful in wireless networks [56].
In a Sybil attack, an attacker can behave as many nodes by
illegitimately claiming massive identities or impersonating
others. A successful attacker chosen as a leader can deny to
broadcast a new block or broadcast an invalid block. Since
honest nodes can neither wait for more than c · ik rounds

in P2 nor accept invalid blocks, the attacker cannot hinder
the system from changing from LEADER state to the FINAL
state. However, an attacker can make an epoch wasted with-
out any new block being added to the blockchain, thereby
harming the liveness. Our BLOWN protocol prevents Sybil
attacks and ensures liveness under the assumption that all
malicious nodes control no more than 50% coins of the
entire network.

Consider one epoch. FSORT provides a binomial dis-
tribution as B(k;wv, p) =

(wv
k

)
pk(1 − p)wv−k, which has

a salient property that splitting coins into multiple sub-
users does not give attackers any advantage. In particular,
suppose an attacker splits its account balance wA into
w1
A, w

2
A, · · · , wnA, thus each sub-user has a binomial distri-

bution as Xi
A ∼ B(wiA, p). However, splitting coins does

not increase the sum of the values of the leader counter
controlled by the attacker since (X1

A + X2
A + · · · + Xn

A) ∼
B(w1

A + w2
A + · · · + wnA, p). Also, splitting coins decreases

the maximum of the leader counter of the sub-users, which
makes it harder for a sub-user to survive in P1. Without
loss of generality, suppose each node has an equal value of
balance. Then at each epoch, the probability of a malicious
node being chosen as a leader is no more than 50%.

Theorem 6. Given that the ratio of the adversarial coins α <
1/2, πB[FSIG,FSORT] satisfies the chain quality property with
µ = 1− (1 + δ)α, where δ ∈ (0, 1).

Proof. Let Xi denote the event where the ith epoch has
an adversarial leader. We have E[Xi] ≤ αl. Applying the
Chernoff bound we obtain

Pr[X ≥ (1 + δ)αl] ≤ e−O(l). (16)

Then the probability that the ratio β for the blocks originated
from the adversary is at most (1 + δ)α is given as

Pr[β ≤ (1 + δ)α] = 1− Pr[X ≥ (1 + δ)αl] ≥ 1− e−O(l).
(17)

When l is sufficiently large, β ≤ (1 + δ)α w.h.p. Thus we
complete the proof of the chain quality property with µ =
1− (1 + δ)α. Note that even though µ = 1− (1 + δ)α blocks
can be proposed by the adversary, these blocks only contain
a small fraction of malicious ones (jointly ensured by the
chain growth and common prefix properties).

Therefore we can conclude that πB[FSIG,FSORT] satis-
fies the chain growth, common prefix, and chain quality
properties, thus guaranteeing persistence and liveness. By
applying Theorem 1, BLOWN (i.e., πB[πSIG, πSORT]) natu-
rally ensures persistence and liveness.

6 SIMULATION STUDY

In this section, we implement a simulator to study how
various parameters impact the performance of our BLOWN
protocol. Specifically, in Section 6.1, we analyze the one-
epoch execution of BLOWN to show its correctness and effi-
ciency. Then we present the performance of BLOWN under
various jamming and Sybil attack scenarios in Section 6.2.

In our simulation, we use the crypto library of golang3

and adopt ed25519 for digital signatures, with 64-byte pri-
vate key, 32-byte public key, and 64-byte signature. Public

3. https://github.com/golang/crypto

14

keys are broadcast to all nodes on the preset of our simula-
tions. Besides, The Sortition algorithm is implemented with
the VRF provided by CONIKS4. We employ two types of
2-dimensional planes of size d × d units, where d = 10 or
d =

√
N with N known as the network size. Nodes are

randomly generated and distributed in the plane and no
two nodes can have the same coordinates. The unit for an
epoch length is round. If not stated otherwise, we adopt the
following parameters α = 4, β = 2, θ = 2, P = βθ(

√
2d)α,

p̂ = 0.1, T = 60, ε = 0.3, γ = 0.1, wv = 20, τ = W/2, and
c = 10. Besides, nodes are uniformly distributed and the
percentage of the Sybil nodes is 0% by default. Without loss
of generality, all parameter values are chosen carefully to
reflect various real-world cases, but not to aim to optimize
the performance. All the experiments are performed under
a CentOS 7 operating system running on a machine with an
Intel Xeon 3.4 GHz CPU, 120 GB RAM and 1 TB SATA Hard
Drive. All the reported results are the average of 100 runs,
unless stated otherwise.

6.1 Correctness and Efficiency

0 600 1200 1800 2400

Number of rounds

0

5

10

15

A
g

g
re

g
a

te
d

 p
ro

b
a

b
il

it
y

0

6000

12000

T
h

ro
u

g
h

p
u

t
(T

P
S

)

Throughput

Aggregated probability

border of P1 and P2

Fig. 7. Aggregated probability and throughput vs. number of rounds,
to demonstrate the convergence behavior, where density = 1, d =
10, N = 100, and nodes are uniformly distributed.

One-Epoch Execution. We denote by |txpt| the number
of transactions received by the leader within t = i + j
rounds, with i and j respectively being the number of
rounds in P1 and P2. Given that the unit slot time for IEEE
802.11 is set to be 50µs, we have throughput as

Throughput =
|txpt|

i× 100µs+ j × 50µs
(18)

since rk1,i has two slots while rk2,j has only one slot. Fig. 7
presents a typical example to illustrate the convergence of
the aggregated probability pV =

∑
v∈V pv and throughput

during one-epoch execution, where pV = N × p̂ = 10 in
the outset. There is a gray dash borderline distinguishing
P1 and P2. Since BLOWN can rapidly adjust the initial
parameters by multiplicatively increasing or deceasing pv ,
pV adapts rapidly to reduce the noise in the channel to help
achieve successful communications. Therefore, it only takes
206 rounds (corresponding to 0.206s in a real-world setting)
to complete P1. Such a quick adaptation contributes to the
throughput of the entire protocol. In P2, nodes all become

4. https://github.com/coniks-sys/coniks-
go/tree/master/crypto/vrf

active to broadcast transactions enabling pV to grow. The
leader collects transactions from the 207th to the 2265th
round, and a block is finalized at the 2266th round. Note
that pV and throughput respectively converge to 5399 TPS
and 9.37, which are mean values calculated from the last
500 rounds. Besides, we evaluate cryptographic overhead
(in ms, an average of 1000 repeated trials), including the
overhead of signing a transaction (0.09 ms), verifying a
transaction [0.21 ms], signing a block (1.20 ms), confirming
a block (930.14 ms), Sortition(3.02 ms), and VerifySorti-
tion(4.57 ms).

Network Size. Next we simulate the performance as
a function of the network size (or N), where nodes are
scattered in the plane of size d =

√
N ×

√
N following a

uniform or Gauss distribution. As shown in Fig. 8(a), the
epoch length slowly increases with a larger N with both
uniform and Gauss distributions, which also means that the
leader election costs more time for a larger N . On the other
hand, throughput decreases with a larger N since the added
nodes lead to heavier contention. However, because of the
resiliency of our jamming resistant channel, throughput can
converge to about 6000 TPS and 2000 TPS for the uniform
and Gauss distribution, respectively. Compared with the
uniform distribution, Gauss distribution always has a larger
epoch length and lower throughput since denser nodes
centrally aggregate, leading to stronger contention.

Network Density. We also investigate how the network
density impacts on the performance of the BLOWN proto-
col. Nodes are uniformly distributed in a 10× 10 plane, and
density = 0.2, 0, 3, · · · , 2. As shown in Fig. 8(b), the epoch
length slowly increases from the 1867 to the 2464 rounds,
with the density rising tenfold. The throughput decreases
for larger density and approximately converges to 6000 TPS.

6.2 Jamming Attacks and Sybil Attacks
Jamming Attacks. Here we present our protocol’s perfor-
mance when confronting jammers who can choose different
strategies with the constraint of (1 − ε)T . We consider two
types of jammers: random jammers that can randomly jam
(1 − ε)T rounds at any interval of length T and bursty
jammers who would jam (1 − ε)T consecutive rounds at
any interval of length T . We test the epoch length and
throughput when ε = 0.1, 0.15, · · · , 0.5, with a higher ε
implying a lower attack frequency. The results are demon-
strated in Fig. 9(a), which indicate that the epoch length
decreases with the increasing ε due to the lower frequency
of jamming attacks. Besides, ε does not significantly impact
the throughput for both kinds of jammers. The epoch length
increases faster with lower ε considering random jammers,
indicating that random jammers are more powerful than
bursty ones in BLOWN. This is because the introduction of
Tv makes it easier to address continuous heavy contentions.

Sybil Attacks. In a Sybil attack, an attacker can control
massive malicious nodes that compete for being a leader
but refuse to collect transactions and propose blocks. In this
circumstance, the epoch with a malicious leader would be
abandoned so that there is no valid block to be accepted
within such an epoch. Even though we already show in
our protocol analysis that BLOWN can defend against Sybil
attackers who control less than 50% wealth of the entire net-
work, such attackers can harm the liveness of our protocol.

15

0 50 100 150 200 250 300 350 400

Network size (number of nodes)

0

4000

8000

E
p

o
c
h

 l
e
n

g
th

 (
ro

u
n

d
s
)

0

6000

12000

T
h

ro
u

g
h

p
u

t
(T

P
S

)

Epoch length (Uniform)

Throughput (Uniform)

Epoch length (Gauss)

Throughput (Gauss)

(a) Epoch length and throughput vs. the network size N , where
density = 1, d =

√
N ×

√
N .

0 0.5 1 1.5 2

Density

0

4000

8000

E
p

o
c
h

 l
e
n

g
th

 (
ro

u
n

d
s
)

0

6000

12000

T
h

ro
u

g
h

p
u

t
(T

P
S

)

Epoch length

Throughput

(b) Epoch length and throughput vs. the density, where d =
10, N = 100.

Fig. 8. The performance of BLOWN vs. network size (in a uniform or Gauss distribution) and density.

0.1 0.2 0.3 0.4 0.5

0

4000

8000

E
p

o
c
h

 l
e
n

g
th

 (
ro

u
n

d
s
)

0

6000

12000

T
h

ro
u

g
h

p
u

t
(T

P
S

)

Epoch length (Random)

Throughput (Random)

Epoch length (Bursty)

Throughput (Bursty)

(a) Epoch length and throughput vs. ε, where density = 1, d =
10, N = 100.

0% 20% 40%

Percentage of Sybil nodes

0

4000

8000

E
p

o
c
h

 l
e
n

g
th

 (
ro

u
n

d
s
)

0

6000

12000

T
h

ro
u

g
h

p
u

t
(T

P
S

)

Epoch length

Throughput

(b) Epoch length and throughput with the percentage of Sybil
nodes, where density = 1, d = 10, and N = 100.

Fig. 9. The performance of BLOWN when confronting jamming attacks (random jammers or bursty jammers) and Sybil attacks.

In Fig. 9(b), the percentage of Sybil nodes does not impact
the epoch length since Sybil nodes are not absent from
competing in the leader election. However, the throughput
has an evident linear decline for a larger percentage of Sybil
nodes. Compared to the setting without Sybil nodes, 50%N
Sybil nodes would decrease the throughput by 49.90%.

7 CONCLUSION AND FUTURE RESEARCH

In this paper, we propose a 2-phase blockchain protocol,
namely BLOWN. BLOWN establishes a jamming-resistant
communication channel and combines the Sortition algo-
rithm and our newly proposed PoC consensus algorithm for
efficient and secure leader election. Besides, BLOWN pre-
vents double-spending attacks and Sybil attacks. Analysis
and simulation results demonstrate the efficiency, effective-
ness, and security properties of the BLOWN protocol. In our
future research, we will investigate the multi-hop version of
BLOWN, as well as the Byzantine fault-tolerant BLOWN
in wireless ad hoc or fading channel settings. Also, it is
neccessary to explore how practical attacks such as eclipse
attacks, nothing-at-stake attacks, selfish-mining attacks can
be mitigated by our protocol.

ACKNOWLEDGMENT

This study was partially supported by the National Nat-
ural Science Foundation of China under Grants 61771289,

61871466, 61832012, and 61672321, the Key Science and
Technology Project of Guangxi under Grant AB19110044,
and the US National Science Foundation under grants IIS-
1741279 and CNS-1704397.

REFERENCES

[1] A. Tapscott and D. Tapscott, “How blockchain is changing fi-
nance,” Harvard Business Review, vol. 1, no. 9, pp. 2–5, 2017.

[2] M. S. Ali, M. Vecchio, M. Pincheira, K. Dolui, F. Antonelli, and
M. H. Rehmani, “Applications of blockchains in the internet of
things: A comprehensive survey,” IEEE Communications Surveys &
Tutorials, vol. 21, no. 2, pp. 1676–1717, 2018.

[3] K. Korpela, J. Hallikas, and T. Dahlberg, “Digital supply chain
transformation toward blockchain integration,” in proceedings of
the 50th Hawaii international conference on system sciences, 2017.

[4] T. Salman, M. Zolanvari, A. Erbad, R. Jain, and M. Samaka,
“Security services using blockchains: A state of the art survey,”
IEEE Communications Surveys & Tutorials, vol. 21, no. 1, pp. 858–
880, 2018.

[5] B. Soret, K. I. Pedersen, N. T. Jørgensen, and V. Fernández-López,
“Interference coordination for dense wireless networks,” IEEE
Communications Magazine, vol. 53, no. 1, pp. 102–109, 2015.

[6] W. Cheng, J. Yu, F. Zhao, and X. Cheng, “Ssdnet: Small-world
super-dense device-to-device wireless networks,” IEEE Network,
vol. 32, no. 1, pp. 186–192, 2017.

[7] Z. Xiong, Y. Zhang, D. Niyato, P. Wang, and Z. Han, “When
mobile blockchain meets edge computing,” IEEE Communications
Magazine, vol. 56, no. 8, pp. 33–39, 2018.

[8] Y. Dai, D. Xu, S. Maharjan, Z. Chen, Q. He, and Y. Zhang,
“Blockchain and deep reinforcement learning empowered intel-
ligent 5g beyond,” IEEE Network, vol. 33, no. 3, pp. 10–17, 2019.

16

[9] S. Nakamoto et al., “Bitcoin: A
peer-to-peer electronic cash system,”
https://downloads.coindesk.com/research/whitepapers/bitcoin.pdf,
White Paper, 2008.

[10] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros:
A provably secure proof-of-stake blockchain protocol,” in Annual
International Cryptology Conference. Springer, 2017, pp. 357–388.

[11] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in
OSDI, vol. 99, no. 1999, 1999, pp. 173–186.

[12] D. Yu, L. Ning, Y. Zou, J. Yu, X. Cheng, and F. C. Lau, “Distributed
spanner construction with physical interference: constant stretch
and linear sparseness,” IEEE/ACM Transactions on Networking,
vol. 25, no. 4, pp. 2138–2151, 2017.

[13] B. Awerbuch, D. Holmer, C. Nita-Rotaru, and H. Rubens, “An on-
demand secure routing protocol resilient to byzantine failures,” in
Proceedings of the 1st ACM workshop on Wireless security, 2002, pp.
21–30.

[14] Y. Xiao, N. Zhang, W. Lou, and Y. T. Hou, “A survey of distributed
consensus protocols for blockchain networks,” IEEE Commun.
Surv. Tutorials, vol. 22, no. 2, pp. 1432–1465, 2020. [Online].
Available: https://doi.org/10.1109/COMST.2020.2969706

[15] G. Wood et al., “Ethereum: A secure decentralised generalised
transaction ledger,” Ethereum project yellow paper, vol. 151, pp. 1–32,
2014.

[16] S. Dziembowski, S. Faust, V. Kolmogorov, and K. Pietrzak, “Proofs
of space,” in Annual Cryptology Conference. Springer, 2015, pp.
585–605.

[17] B. Wiki. Proof of burn. [Online]. Available: https://en.bitcoin.it/
wiki/Proof_of_burn

[18] Hyperledger. [Online]. Available: https://www.hyperledger.org/
[19] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich,

“Algorand: Scaling byzantine agreements for cryptocurrencies,”
in Proceedings of the 26th Symposium on Operating Systems Principles,
2017, pp. 51–68.

[20] I. Bentov, R. Pass, and E. Shi, “Snow white: Provably secure proofs
of stake.” IACR Cryptology ePrint Archive, vol. 2016, p. 919, 2016.

[21] A. Miller, A. Juels, E. Shi, B. Parno, and J. Katz, “Permacoin:
Repurposing bitcoin work for data preservation,” in 2014 IEEE
Symposium on Security and Privacy. IEEE, 2014, pp. 475–490.

[22] D. Schwartz, N. Youngs, A. Britto et al., “The ripple protocol
consensus algorithm,” Ripple Labs Inc White Paper, vol. 5, 2014.

[23] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and
P. Saxena, “A secure sharding protocol for open blockchains,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2016, pp. 17–30.

[24] Stellar. [Online]. Available: https://www.stellar.org/[Accessed:
2019-09-27]

[25] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford, “Omniledger: A secure, scale-out, decentralized ledger via
sharding,” in 2018 IEEE Symposium on Security and Privacy (SP).
IEEE, 2018, pp. 583–598.

[26] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey
badger of bft protocols,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, 2016, pp. 31–
42.

[27] J. Kwon, “Tendermint: Consensus without mining,” Draft v. 0.6,
fall, vol. 1, p. 11, 2014.

[28] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham,
“Hotstuff: Bft consensus with linearity and responsiveness,” in
Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing, 2019, pp. 347–356.

[29] O. Novo, “Blockchain meets iot: An architecture for scalable access
management in iot,” IEEE Internet of Things Journal, vol. 5, no. 2,
pp. 1184–1195, 2018.

[30] J. Feng, F. R. Yu, Q. Pei, J. Du, and L. Zhu, “Joint optimization
of radio and computational resources allocation in blockchain-
enabled mobile edge computing systems,” IEEE Transactions on
Wireless Communications, 2020.

[31] N. Malik, P. Nanda, X. He, and R. P. Liu, “Vehicular networks
with security and trust management solutions: proposed secured
message exchange via blockchain technology,” Wirel. Networks,
vol. 26, no. 6, pp. 4207–4226, 2020. [Online]. Available:
https://doi.org/10.1007/s11276-020-02325-z

[32] S. Guo, Y. Qi, P. Yu, S. Xu, and F. Qi, “When network operation
meets blockchain: An artificial-intelligence-driven customization
service for trusted virtual resources of iot,” IEEE Network, vol. 34,
no. 5, pp. 46–53, 2020.

[33] S. Guo, X. Hu, S. Guo, X. Qiu, and F. Qi, “Blockchain meets edge
computing: A distributed and trusted authentication system,”
IEEE Transactions on Industrial Informatics, vol. 16, no. 3, pp. 1972–
1983, 2019.

[34] C. Liu, M. Xu, H. Guo, X. Cheng, Y. Xiao, D. Yu, B. Gong,
A. Yerukhimovich, S. Wang, and W. Lv, “Tokoin: A coin-based
accountable access control scheme for the internet of things,” IEEE
Transactions on Mobile Computing, 2021.

[35] C. Liu, H. Guo, M. Xu, S. Wang, D. Yu, J. Yu, and X. Cheng,
“Extending on-chain trust to off-chain – a trustworthy vaccine
shipping example,” IEEE Transactions on Computers, 2021.

[36] F. Kuhn, N. Lynch, and C. Newport, “The abstract mac layer,” in
International Symposium on Distributed Computing. Springer, 2009,
pp. 48–62.

[37] C. Newport, “Consensus with an abstract mac layer,” in Pro-
ceedings of the 2014 ACM symposium on Principles of distributed
computing, 2014, pp. 66–75.

[38] C. Newport and P. Robinson, “Fault-tolerant consensus with an
abstract mac layer,” arXiv preprint arXiv:1810.02848, 2018.

[39] D. Yu, Y. Zhang, Y. Huang, H. Jin, J. Yu, and Q.-S. Hua, “Exact
implementation of abstract mac layer via carrier sensing,” in
IEEE INFOCOM 2018-IEEE Conference on Computer Communica-
tions. IEEE, 2018, pp. 1196–1204.

[40] H. Moniz, N. F. Neves, and M. Correia, “Byzantine fault-tolerant
consensus in wireless ad hoc networks,” IEEE Transactions on
Mobile Computing, vol. 12, no. 12, pp. 2441–2454, 2012.

[41] G. Chockler, M. Demirbas, S. Gilbert, C. Newport, and T. Nolte,
“Consensus and collision detectors in wireless ad hoc networks,”
in Proceedings of the twenty-fourth annual ACM symposium on Prin-
ciples of distributed computing, 2005, pp. 197–206.

[42] G. Scutari and S. Barbarossa, “Distributed consensus over wireless
sensor networks affected by multipath fading,” IEEE Transactions
on Signal Processing, vol. 56, no. 8, pp. 4100–4106, 2008.

[43] T. C. Aysal, A. D. Sarwate, and A. G. Dimakis, “Reaching consen-
sus in wireless networks with probabilistic broadcast,” in 2009
47th Annual Allerton Conference on Communication, Control, and
Computing (Allerton). IEEE, 2009, pp. 732–739.

[44] D. Yu, Y. Zou, M. Xu, Y. Xu, Y. Zhang, B. Gong, and X. Xing,
“Competitive age of information in dynamic iot networks,” IEEE
Internet of Things Journal, 2020.

[45] J. C. Ikuno, S. Pendl, M. Šimko, and M. Rupp, “Accurate sinr
estimation model for system level simulation of lte networks,” in
2012 IEEE International Conference on Communications (ICC). IEEE,
2012, pp. 1471–1475.

[46] Y. Zhao, J. Wu, and S. Lu, “Efficient sinr estimating with accuracy
control in large scale cognitive radio networks,” in 2011 IEEE 17th
International Conference on Parallel and Distributed Systems. IEEE,
2011, pp. 549–556.

[47] K. J. Olszewski, “Sinr measurement method for ofdm communi-
cations systems,” Aug. 21 2007, uS Patent 7,260,054.

[48] D. R. Jeske and A. Sampath, “Method of estimating a signal-to-
interference+ noise ratio (sinr),” Feb. 27 2007, uS Patent 7,184,497.

[49] A. Abu-Dayya, “Determining sinr in a communications system,”
Nov. 23 1999, uS Patent 5,991,273.

[50] R. Canetti, “Universally composable security: a new paradigm for
cryptographic protocols,” in Proceedings 42nd IEEE Symposium on
Foundations of Computer Science, 2001, pp. 136–145.

[51] B. David, P. Gaži, A. Kiayias, and A. Russell, “Ouroboros
praos: An adaptively-secure, semi-synchronous proof-of-stake
blockchain,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 2018, pp. 66–98.

[52] R. Canetti, “Universally composable signature, certification, and
authentication,” in Proceedings. 17th IEEE Computer Security Foun-
dations Workshop, 2004., 2004, pp. 219–233.

[53] J. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone
protocol: Analysis and applications,” in Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques.
Springer, 2015, pp. 281–310.

[54] A. Kiayias and G. Panagiotakos, “Speed-security tradeoffs in
blockchain protocols.” IACR Cryptol. ePrint Arch., vol. 2015, p.
1019, 2015.

[55] A. Richa, C. Scheideler, S. Schmid, and J. Zhang, “A jamming-
resistant mac protocol for multi-hop wireless networks,” in Inter-
national Symposium on Distributed Computing. Springer, 2010, pp.
179–193.

[56] J. Newsome, E. Shi, D. Song, and A. Perrig, “The sybil attack
in sensor networks: analysis & defenses,” in Third international

https://doi.org/10.1109/COMST.2020.2969706
https://en.bitcoin.it/wiki/Proof_of_burn
https://en.bitcoin.it/wiki/Proof_of_burn
https://www.hyperledger.org/
https://www.stellar.org/ [Accessed: 2019-09-27]
https://www.stellar.org/ [Accessed: 2019-09-27]
https://doi.org/10.1007/s11276-020-02325-z

17

symposium on information processing in sensor networks, 2004. IPSN
2004. IEEE, 2004, pp. 259–268.

8 APPENDIX

Lemma 7. (Chernoff Bound). Given a set of independent bi-
nary random variables X1, X2, · · · , Xn, let X =

∑n
1 Xi

and µ =
∑n

1 pi, where Xi = 1 with probability pi. If
E
[∏

i∈S Xi ≤
∏
i∈S qi

]
, where S ⊆ {0, 1, · · · , n}, then it holds

for any δ > 0 that

Pr[X ≥ (1 + δ)µ] ≤ e−
δ2µ

2(1+δ/3b) .

If E
[∏

i∈S Xi ≥
∏
i∈S qi

]
, where S ⊆ {0, 1, · · · , n}, then for

any δ ∈ (0, 1], we have

Pr[X ≤ (1− δ)µ] ≤ e−
δ2µ
2 .

Lemma 8. (Azuma–Hoeffding Inequality). Suppose Xk (k =
0, 1, · · ·) is a martingale (or super-martingale) and |Xk −
Xk−1| ≤ ck. Then for all positive integers N and δ > 0, we
have

P [XN −X0 > δ] ≤ e
−δ2

2
∑N
k=1

c2
k .

Lemma 9. (Impacts of α, β in SINR on BLOWN’s properties).
The SINR model formulated by Eq. (1) has two coefficients,
namely α (path-loss exponent) and β (noise threshold). We say
that Theorem 5 holds for α ∈ (αmin, αmax), β ∈ (βmin, βmax),
which indicates that nodes can have various α and β.

Proof. To prove this lemma, we need to show that with
α ∈ (αmin, αmax) and β ∈ (βmin, βmax), πB[FSIG,FSORT]
satisfies persistence and liveness. This is equivalent to show-
ing that with α ∈ (αmin, αmax) and β ∈ (βmin, βmax),
πB[FSIG,FSORT] satisfies the chain growth, common prefix,
and chain quality properties. In Section 5.2, the chain growth
property is the first one to be proved and it affects the
correctness of the other two properties. Also, the distribu-
tions of α and β only affect the chain quality property.
Thus we need to show that Lemma 2, 3, 4, and 5 hold
for α ∈ (αmin, αmax) and β ∈ (βmin, βmax). First of all,
it is straightforward to verify that Lemma 2 and 3 hold
for any constant α ∈ {αmin, αmax}. For Lemma 4, α and
β only affect the length of the subframe Ik. However, for
each value of α ∈ (αmin, αmax) and β ∈ (βmin, βmax), we
can adapt γ = O(1/(log T + log logN) to make Eq. (12)
hold. Therefore, Lemma 4 still holds in this case. If Lemma 3
holds, Lemma 5 holds, which completes the proof.

	1 Introduction
	2 Related Work
	3 Models and Assumptions
	4 The BLOWN protocol
	4.1 Overview and Utilities of BLOWN
	4.1.1 An Overview on BLOWN
	4.1.2 Utilities

	4.2 The BLOWN Protocol Specifications
	4.2.1 Phase P1
	4.2.2 Phase P2

	5 Protocol Analysis
	5.1 UC Composition of BLOWN
	5.2 Persistence and liveness
	5.2.1 Chain Growth
	5.2.2 Common Prefix
	5.2.3 Chain Quality

	6 Simulation Study
	6.1 Correctness and Efficiency
	6.2 Jamming Attacks and Sybil Attacks

	7 Conclusion and Future Research
	References
	8 Appendix

