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Abstract—In this paper, we investigate distributed broadcasting in
dynamic networks, where the topology changes continually over time.
We propose a network model that captures the dynamicity caused by
both churn and mobility of nodes. In contrast to existing work on dynamic
networks, our model defines the dynamicity in terms of localized topo-
logical changes in the vicinity of each node, rather than a global view
of the whole network. Obviously, a local dynamic model suits distributed
algorithms better than a global one. The proposed dynamic model uses
the more realistic SINR model to depict wireless interference, instead of
oversimplified graph-based models adopted in most existing work. We
consider the fundamental communication primitive of global broadcast,
which is to disseminate a message from a source node to the whole
network. Specifically, we present a randomized distributed algorithm
that can accomplish dynamic broadcasting in an asymptotically optimal
running time of O(DT ) with a high probability guarantee, under the
assumption of reasonably constant dynamicity rate, where DT is the
dynamic diameter, a parameter proposed to depict the complexity of
dynamic broadcasting. We believe our local dynamic model can greatly
facilitate distributed algorithm studies in mobile and dynamic wireless
networks.

Index Terms—Dynamic network; SINR model; distributed algorithm;
global broadcast.

1 INTRODUCTION

W IRELESS networks are inherently challenged by
dynamicity, especially with the advent of the

Internet-of-Things and the ubiquity of mobile devices
with communication capabilities. Dynamicity comes in
many disguises, as nodes join, leave, and move around,
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which causes network topology changes that are contin-
uous and unpredictably over time.

Dynamic networks have gained much attention from
different domains. Especially, as the network becomes
large and decentralized, such as for typical applications
in the Internet-of-Things, the study of dynamic net-
works has become popular in the distributed computing
domain. Distributed solutions can inherently tolerate
dynamicity in some sense. In distributed algorithms,
nodes only communicate with their neighbors. If net-
work changes happen in some region of the network,
only a local part of the whole network is affected. The
whole network could function correctly from a global
perspective.

Traditionally, studies in distributed algorithms focus
on stabilizing algorithms that can recover after a network
change. However, the use of such algorithms in realistic
scenarios may be limited, as networks can change con-
tinually, and it is impossible to expect the network even-
tually stops changing. More recent studies, therefore,
turn attention to study computation algorithms whose
correctness and termination even hold in networks that
change continuously. Various dynamic network models
have been proposed, such as the unstructured model
[24], the dual graph model [7], [21], and the T -interval
connectivity model [23]. However, all these models de-
fine the dynamicity from a global view. In other words,
these models define the network change in terms of the
whole network, rather than the network change in the
vicinity of each node. Though this definition is very
helpful for analyzing the complexity of problem solving,
however, on the one hand, as distributed algorithms rely
on local coordination and local communications when
considering the communications between a particular
node with its neighbors, the worst case of the network
change in its local vicinity mapped from the global
network change has to be considered, which usually
results in an overpessimistic estimation of local network
changes. Consequently, it is impossible to devise effi-
cient algorithms even if the local network change is
marginal. On the other hand, defining global network
change cannot fully make use of the power of distributed
algorithms in tolerating dynamicity. Hence, local dy-
namic models, which describe the network change in
the vicinity of nodes, are more suitable for distributed
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algorithm design.
Furthermore, communications in wireless network

suffer from interference and collisions. Most previous
works on distributed algorithm study adopt graph-
based models, in which the interference is defined in
a binary and local way. However, such a definition
manner neglects interference from far-away nodes, as
well as the cumulation and fading features of wireless
interference, which may make the designed algorithms
perform significantly different from analysis. Recently,
a more realistic model, the Signal-to-Interference-plus-
Noise (SINR) model, becomes popular in the algorithmic
domain due to its accuracy in reflecting crucial features
of wireless interference, despite it is challenging for
distributed algorithm design and analysis due to the
global definition approach of interference.

In this work, we propose a local dynamic model that
uses the SINR model to depict wireless interference. It
must be noted that the SINR model defines the signal (as
well as interference) fades with the distance according
to some path-loss exponent. Hence, when depicting the
local network change, it not only needs to reflect the
change on the neighborhood of each particular node,
but also to describe the distance change between the
node and its neighbors. In addition, it is better to define
the local network topology change between nodes as
independent as possible, for the convenient of analyzing
the algorithm performance.

The local dynamic network model we suggest obeys
the above considerations. In particular, the network area
is divided into a grid, ensuring any pair of nodes in each
cell of which are neighbors. Then, in each cell, the local
topology of the nodes is defined based on the distance of
each node with its nearest neighbor in the same cell. The
impact of dynamicity is then depicted by the magnitude
of changing on the local topology of each cell that is
caused by churn (node insertion/deletion) and mobility
of nodes.

Under the proposed dynamic model, we study the
possibility of devising efficient algorithms for basic com-
munication primitives. In particular, we focus on the
problem of network-wide message broadcast, which re-
quires to disseminate a message Ms of a source node s
to the whole network. Broadcast is a fundamental prim-
itive. It can be used to simulate a single-hop network
on top of a multi-hop network, to greatly simplify the
design and analysis of higher-level algorithms. Further-
more, it has been shown that unicast communication has
subtantial problems in highly dynamic networks [5].

Comparison with existing results. To the best of our
knowledge, the dynamic global broadcast (DGB) results
most relevant to our work are proposed in [1], [6], [22],
which require O((1 + n

k∗min{T,τ} ) · n log
3 n), O(n2/ log n),

and O(n log2 n) time steps1 respectively to complete the
DGB task based on their own dynamic models. However,

1. a time step is the time unit for agents in network to trans-
mit/receive one message

it deserves to noting that all the protocols mentioned
above are designed in the graph-based model, which is
not as realistic as the SINR model adopted in our work.
Also, the dynamic models in [1], [6], [22] mainly focus on
the dynamicity of links in the network, but they rarely
consider the dynamicity of nodes. In our dynamic model,
both the dynamicity from links and from nodes are de-
picted. Thus, our model is more comprehensive. Besides,
our technique absolutely differs from the techniques
in [1], [6], [22] for designing algorithms. Specifically,
in [1], [6], [22], all nodes participate in the message dis-
semination. To avoid the flooding phenomenon, nodes
in [1], [22] initially transmit the message with probability
1 and then gradually decrease the transmission proba-
bility. For the message dissemination process in [1], [22],
each node receives the message only when its neighbors
reach a proper contention by adjusting their transmission
probability. Thus, in a dense network, it takes a long
time for one-hop message dissemination in [1], [22]. In
other words, the protocols in [1], [22] may have a trivial
result in dense network. In contrary, by letting each node
transmit with probability lnn

n , the protocol in [6] suits
dense networks well. However, in a sparse network,
e.g., each node has only a constant number of neigh-
bors, it takes O( n

lnn ) time steps to complete one-hop
message dissemination in expectation. Differing from the
previous protocols, our work disseminates the message
by electing a leader in each local area and letting the
leader transmit the message, which is insensitive to the
density of the nodes. In detail, no matter the network
is dense or sparse, it takes O(log n + logRc) time steps
to guarantee a one-hop message dissemination with a
high probability2. Finally, considering a lower bound
O(D+ log n) for DGB in a static network with diameter
D, it can be seen that there is a huge gap between the
time complexity of current results in [1], [6], [22] and
the lower bound O(D + log n). In this work, we present
for a dynamic network, in the proposed comprehensive
model, that it is the diameter of the dynamic network but
no longer the number of nodes n that linearly impacts
the time complexity of DGB, which represents a bigger
step towards the optimal result than previous work.

Our main contributions can be summarized as follows.
• We propose a dynamic network model that is de-

fined from a local view. The dynamicity rate is used
to reflect the magnitude of changing on the local
network topology around each node. The dynamic
model we propose is general enough to model var-
ious dynamic networks. Specially, we are interested
in mobile networks, where the nodes move around
unpredictably.

• We present a randomized distributed algorithm for
dynamic broadcasting. We focus on the hard case
of non-spontaneous broadcasting, where a node can
join the algorithm only after receiving the message.

2. Rc is the transmission range and we say an event occurs with high
probability if it occurs with probability 1−n−c for some constant c > 1
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We use a parameter T to depict the time a link
can keep stable, and propose a parameter, dynamic
diameter DT , to depict the complexity of dynamic
broadcasting. Our algorithm ensures that under the
reasonable constant dynamicity rate, broadcasting
can be accomplished in O(DT ) time with a high
probability guarantee, i.e., with probability 1− n−c

for some constant c > 0. The algorithm achieves
an asymptotically optimal running time when T ∈
Ω(log n), as DT is a natural lower bound for dy-
namic broadcasting. Besides, constant dynamicity
rate restricts the local network change in one round.
The network topology can change significantly after
only a few rounds.

Roadmap: The remainder of this paper is organized
as follows. Sec. 2 outlines the related work and Sec. 3
introduces the network model. The dynamic broadcast
algorithm and its performance analysis are presented
in Sec. 4 and Sec. 5, respectively. Sec. 6 shows the
simulation and the paper is concluded in Sec. 7.

2 RELATED WORK

Distributed algorithm design and analysis has been a
hot topic in wireless distributed computing domain,
due to the popularity of large-scale mobile wireless
networks. Many dynamic models are proposed to reflect
the dynamicity in wireless networks. In [24], Kuhn et al.
proposed the unstructured model, to describe the nodes’
insertions under unit disk setting. Later, this model was
extended to SINR model and bounded independence
graphs in [14] and [26] respectively. The node crash
failures were considered in [4]. Other models mainly
focus on modeling the impact of unreliable links, and
assume the node set to be static. The dual graph model
was introduced in [7], [21]. It defines two graphs on
the same node set, one is composed by reliable links,
and the other is composed by unreliable links. This
model extends the radio network model to the dynamic
case. The T -interval connectivity model given in [23]
models dynamic networks in an adversarial manner,
under the constraint that the network contains a stable
connected spanning subgraph in every interval of T
consecutive rounds. The pairing model, introduced in
[8], [11] assumes that the links in the network constitute
a matching in each round. Considering that the channel
varies with time because of random fading, shadowing
and node mobility, a simple ON-OFF channel model
was introduced in [27]. In this model, the network-
configuration follows a stationary ergodic process with
the stationary distribution, and in each slot the network
controller can only activate a set of non-interfering links.
More recently, Yu et al. [32] proposed a dynamic model
that admits both node and link changes, under the SINR
model. However, this model is not a general one. So it
cannot model various dynamic scenarios. A survey on
dynamic network models is given in [25].

Broadcasting is one of the most extensively studied
communication primitives. In static networks, many
results have been proposed for broadcasting, in both
graph-based models [2], [9], [13], [19], [20] and the SINR
model [10], [17], [18], [28], [30]. For non-spontaneous
broadcasting, under the graph-based model, the best
randomized results are O(D log(n/D) + log2 n) [9], [20]
and O(D+log6 n) [13] without and with collision detec-
tion. Under the SINR model, the best known algorithm
was given in [15], which can accomplish broadcast in
O(D log2 n) rounds.

As for broadcasting in dynamic networks, in [6],
Clementi et al. presented a randomized algorithm that
can solve the broadcast problem in O(n2/ log n) rounds,
under a basic assumption that there exists at least one
stable link between nodes with and without the message.
In the dual graph model, an O(n3/2

√
log n)-time deter-

ministic algorithm and an O(n log2 n)-time randomized
algorithm were given in [22]. In the T -interval connectiv-
ity model, Ahmadi et al. [1] showed that for any T and
τ -oblivious adversary, broadcasting can be accomplished
in O((1+ n

k∗min{T,τ} ) ·n log
3 n), where k is a connectivity

requirement. However, all three works mentioned above
are based on the graph-based model, which is not as
realistic as the SINR model adopted in our work. Also,
their dynamic models focus more on the reliability of
links, but rarely consider the dynamicity of nodes, which
is not as comprehensive as our model.

3 MODEL

We consider a network on a two-dimensional Euclidean
space, where nodes can be placed arbitrarily, possibly in
the worst case. n is a given upper bound on the number
of nodes in the network. Denote by V the set of nodes
in the network. For any two nodes u and v, let d(u, v) be
the Euclidean distance between u and v. Each node has
a unique identifier IDv . The nodes communicate via a
shared channel. The practical uniform power assignment
is assumed, i.e., all nodes have the same transmit power
P .

Communication model It is assumed that nodes in
the network operate synchronously in rounds. A round
consists of a constant number of time units that are used
for nodes to send a message, e.g., a multiple of the
50µs units in IEEE 802.11. Each node is equipped with
a half-duplex transceiver, i.e., in each time unit, a node
can transmit or listen but cannot do both. With this as-
sumption, our algorithm could be implemented in either
network with half-duplex or full-duplex transceiver.

Concurrent transmissions on the shared channel in-
terfere with each other. We use SINR model to depict
the interference. Specifically, in a round, let T be the
set of transmitting nodes. Consider a receiver v and a
transmitter u. Let Iu(v) be the interference v experienced
in this round, with respect to the transmitter u. In the
SINR model, Iu(v) and SINR rate SINR(v, u, T ) are
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defined as follows

Iu(v) =
∑

w∈T \{u}

P · d(w, v)−α;

SINR(v, u, T ) =
P · d(v, u)−α

N + Iu(v)
.

(1)

where the path-loss α is normally between 2 and 6 and
the ambient noise N > 0. If SINR(v, u, T ) ≥ β, then
v can receive the message from u. The threshold β is
determined by hardware and larger than 1.

The transmission range RT of a node v is defined
as the maximal distance at which node u can clearly
receive a message from v when there are no other
nodes transmitting simultaneously. By the condition that
SINR(u, v, T ) ≥ β, RT = (P/βN)1/α. However, nodes
which has a distance very close to RT can only com-
municate when other transmitting nodes are sufficiently
faraway. Then a standard assumption, like that in [3],
[16], [31], [33], [34], is to define a communication range
Rc = (1 − 2ϵ)RT , where the constant ϵ ∈ (0, 0.5) is
a model parameter, to make sure the communication
can tolerate some interference. To make the description
and analysis brief, we normalize the smallest distance
between nodes to equal to 1. Then, the transmission
range Rc can be sufficiently large, which is usually
polynomially bounded by n in reality.

We say two nodes are d-neighbors, if the distance
between them is not larger than d. Two Rc-neighbors
are simply said to be neighbors.

A set of nodes I is called a d-independent set if for
any pair of nodes u, v ∈ I , d(u, v) > d. A set of nodes
S is called a d-dominating set if for each node v, there
exists a node u ∈ S such that d(u, v) ≤ d. A set of nodes
M is called a d-maximal independent set if M is a d-
independent set as well as a d-dominating set.

Dynamicity It is assumed that both churn and mobil-
ity of nodes may occur in the network. We define the
dynamic behaviors in the network in a local view.

The 2-dimensional network area is divided into a grid
G, which consists of square cells of size ϵRc√

2
× ϵRc√

2
. We

assume that point (0, 0) is the grid origin. Each cell
includes its left side without the top endpoint, and
its bottom side without the right endpoint, and does
not include its right and top sides. A cell is given a
coordinate axes (i, j) when its bottom left corner located
at ( ϵRc√

2
∗i, ϵRc√

2
∗j) for (i, j) ∈ Z2, and is denoted as g(i, j).

For a node v locating at position (x, y) on the network,
when i∗ ϵRc√

2
≤ x < (i+1) ϵRc√

2
and j∗ ϵRc√

2
≤ y < (j+1) ϵRc√

2
,

it has the grid coordinate g(i, j).
As the signal fades with distance as defined in the

SINR model, we give an approach to define the local
network topology in a cell that can reflect the distance
between nodes. Consider the network at a time point,
divide the nodes in each cell g into classes {V g

i : i =
0, 1, . . . , log ϵRc}. To be more detailed, for a cell g and a
node v ∈ g, let u be v’s nearest neighbor in g if there
are at least two nodes in g. v is in class V g

i for 0 ≤ i ≤

log ϵRc − 1 if d(u, v) ∈ [2i, 2i+1). If v is the only node in
cell g, v is in class V g

log ϵRc
.

Based on the local topology depiction given above,
we now present our dynamic model. The model admits
both node churns (node arrivals/departures) and node
mobility (move from one cell to another cell). We assume
that the network change occurs at the beginning of every
round.

We define a dynamicity rate to measure the change of
network topology. Consider a period of rounds I . For i ∈
{0, 1, . . . , log ϵRc} and t ∈ I , let V g

i (t) and V̂ g
i (t) denote

the set of active nodes3 in cell g at the beginning and
the end of a round t respectively, and ngi (t) = |V g

i (t)|,
n̂gi (t) = |V̂ g

i (t)|. Then the dynamicity rate λ is defined as

λ = max
t∈I,g∈G,0≤i≤log ϵRc

{|ngi (t+ 1)− n̂gi (t)|/n̂
g
i (t)}.

It can be seen that as the dynamicity rate changes, our
dynamic model can model various dynamic networks.
Furthermore, it is required that when a node joins a new
cell, it needs to stay in the cell for Ω(log n) rounds. This
assumption is necessary, as successfully disseminating
a message needs Ω(log n) rounds to achieve a high
probability guarantee [29].

Stable Diameter. To measure the complexity of broad-
cast algorithms, we need to depict the connectivity of the
dynamic network. We here use a concept of stable path
to depict the connectivity.

In particular, given a positive integer T , which is called
the stability parameter, we define a T -stable path from node
u to node v as follows: for a sequence v0 = u, v1, . . . , vk =
v, if there is a sequence I0, I1, . . . Ik−1 of time intervals
with Ii = [bi, ei], such that for each i, ei − bi ≥ T , and
ei − ei−1 ≥ T , nodes vi−1 and vi keep active and being
neighbors during Ii−1, then v0 → v1 → · · · → vk is a T -
stable path. The length of the T -stable path from u to v
is then defined as ∪k−1

i=0 |Ii|. Each link on a T -stable path
is called a stable link.

The stability parameter T depicts the time duration
for two nodes to be connected. Larger T means the
connection between two nodes can be stable for a longer
time. We here consider the case that T ∈ Ω(log n), since
Ω(log n) is the minimum time needed for two nodes to
communicate successfully with high probability [29].

Given the stability parameter T , we define the stable
T -distance DT (u, v) as the minimum length of T -stable
paths between u, v. If there is not any T -stable path con-
necting u, v, then DT (u, v) = ∞. The T -stable diameter of
the network is then defined as DT = maxu,v∈V DT (u, v).
If DT is finite, then the network is called T -stable con-
nected. Clearly, DT is a natural lower bound for dynamic
broadcasting.

Knowledge and Capability of node Each node has
the values of n, Rc, N and an estimation on the SINR

3. Active nodes are those that participate in the algorithm execution.
For non-spontaneous broadcasting, active nodes are those that have
received the message of the source node.
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Fig. 1: Two periods in one round, each of which consists
of a ∗ a slots.

parameters α, β.4 The nodes can acquire location infor-
mation by some services, such as GPS. But physical
carrier sensing is not needed, i.e., nodes cannot detect
whether there are transmissions on the channel if it does
not receive a message. Considering that it is very likely
for some errors to occur in location estimation in reality,
we account for these errors in our model. Without loss
of generality, we assume that for any node, its estimated
location is within ϵ

2Rc from its real location.

4 BROADCAST ALGORITHM

4.1 Algorithm Overview

As defined in the non-spontaneous broadcast problem,
only nodes that possess the message become active.
Basically, the algorithm disseminates the message by
letting an active node locally broadcast the message to its
neighboring inactive nodes. The difficulty in implement-
ing the strategy is that if the active nodes are dense, there
will be heavy contention in a local region, and plenty
of collisions are caused, which hinders the message
dissemination. Hence, we select a set of broadcasters from
active nodes, and only let broadcasters disseminate the
message instead, to accelerate the dissemination process.
To make sure that for each inactive node, if it has
an active neighbor, it can receive the message from a
broadcaster, the broadcasters are selected ensuring:

• The broadcasters constitute a 3
2ϵRc-dominating set

in terms of active nodes, i.e., for each active node,
there exist a broadcaster within distance 3

2ϵRc. In
this case, for each inactive node with a neighboring
active node, there exists at least one broadcaster
within distance (1 + 3

2ϵ)Rc. Hence, if we can make
the broadcasters disseminate the message within
distance (1 + 3ϵ

2 )Rc, the inactive node will get the
message;

• The density of broadcasters is constant bounded,
i.e., there are a constant number of broadcasters
in the neighborhood of each node, such that the
contention is bounded.

With the above strategy, the algorithm execution is
divided into phases, each of which consists of k∗(log n+
logRc) rounds, where k is a constant given in the analy-
sis. There are two periods in each round: the broadcaster
election period and the broadcaster dissemination period,

4. αmin < α < αmax, βmin < β < βmax, and nodes only need to
know αmin, αmax, βmin, and βmax.

Algorithm 1: Broadcast Algorithm for a node v
with color i

Initialization:
1 if v is the source node then
2 statev = A;

3 else
4 statev = I;

In each phase, v does:
5 if v has the message Ms then
6 statev = A;

7 else
8 statev = I;
9 round1 = 0;

10 for k ∗ (log n+ logRc) rounds do
11 slot1 = slot2 = 0;
12 for slot1 < a ∗ a do
13 Broadcaster-election-period(v, i,

slot1,round1);
14 slot1++;

15 for slot2 < a ∗ a do
16 Broadcaster-dissemination-period(v, i,

slot2);
17 slot2++;

18 round1++;

Broadcaster-election-period(v, i, slot1, round1):
19 if statev = A and slot1 = i then
20 transmit a message M with probability p;
21 if received a message M from nodes in the same

cell then
22 statev = S;

23 else
24 keep silent;

25 if round1 = k ∗ (log n+ logRc)− 1 then
26 if statev = A then
27 statev = B;

Broadcaster-dissemination-period(v, i, slot2):
28 if statev = B and slot2 = i then
29 transmit a message Ms;

30 else
31 listen;
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all of which consist of constant slots. The periods in
one round are illustrated in Fig 1. In the broadcaster
election period, active nodes elect broadcasters in each
non-empty cell as desired; and in the broadcaster dis-
semination period, the broadcasters locally broadcast the
message of the source node to (1 + 3ϵ

2 )Rc-neighbors.
To implement the broadcast strategy, in the broad-

caster election period, besides the difficulties in inter-
ference and collision control posed by the global SINR
model, we also need to consider the influence of dy-
namicity of the network on transmissions. The difficulty
mainly comes from mobile nodes, as the states (trans-
mission probability) of these nodes are unknown, which
may cause unpredictable interference and collisions. Sur-
prisingly, we show that with a very simple contention
balancing strategy, the broadcasters can be elected very
efficiently.

Furthermore, to avoid the heavy interference between
nodes in adjacent cells, we use a TDMA-like scheme
to arrange the node transmissions. In particular, we
first color the grid based on the coordinates of cells,
and assign different time for nodes in different cells to
transmit based on the coloring. A cell g with coordinate
(x, y) gets the color color(g) = a∗ (x mod a)+ y mod a,
where a is a constant which will be given later. Notice
that there are totally a∗a colors ({0, 1, . . . , a∗a−1}) used.
A node will get the color of the cell when it moves into
the cell. Because each node can get its coordinates, it can
then know its color after waking up or every moving.
With the above coloring, we then define a TDMA scheme
as follows:

• Each round is divided into 2 ∗ a ∗ a slots, the first
a ∗ a slots for broadcaster election period, and the
next a∗a slots for broadcaster dissemination period;

• Nodes in a cell with color i for i ∈ [0, a∗a−1] execute
the first and the second periods in the i-th slot and
the (a ∗ a+ i)-th slot respectively in each round.

With the above TDMA-scheme, it ensures that in two
periods, nodes in nearby cells will not transmit simul-
taneously, such that the collisions between nearby cells
are avoided. But interference and collisions between
nodes in the same cell and cells with same color cannot
be handled with the TDMA scheme. In the algorithm,
our assumption on dynamicity makes sure that once a
broadcaster is elected, it will not move out of current cell
during the remaining time of the phase. Notice that this
assumption is necessary, as it needs Ω(log n) rounds to
disseminate a message for a node, if we require a high
probability guarantee.

We next describe the algorithm in more detail subse-
quently.

4.2 Detailed Algorithm

The broadcast algorithm is given in Algorithm 1, which
is similar to the leader election scheme in [12]. Compar-
ing with the leader election in single hop static networks

in [12], our dynamic and multi-hop leader election algo-
rithm here is more complex. The setting of parameters
a, k, p can be found in Table 1. As introduced before,
the algorithm execution is divided into phases, and each
phase contains k ∗ (log n + logRc) rounds. Each round
is divided into two periods: broadcaster election period
and broadcaster dissemination period. In each phase,
nodes may stay in four types of states:

• State A means that the node has the message Ms

of the source node. Nodes in state A compete to be-
come the broadcaster in broadcaster election period;

• State I means that the node does not have the
message Ms. Nodes in state I always keeps listening
in current phase;

• State B means that the node is the broadcaster in
it’s cell. Nodes in state B broadcast in broadcaster
dissemination period;

• State S means that the node has the message Ms,
but failed in broadcaster competition of current
phase. Nodes in S will keep silent until the end of
the current phase.

Broadcaster Election Period. In this period, inactive
nodes do nothing and active nodes (nodes in state A)
transmit M with probability p to compete for broadcast-
ers. M is a message with competition signal and location
information, and the value of p is given in Table 1. For
any active node v in this period, when v receives M
from other nodes in the same cell, it will join state S,
and keep silent until the end of the current phase. In the
last round of the current phase, if v is still active, then
v becomes a broadcaster in its own cell and move into
state B;

Broadcaster Dissemination Period. In the broadcaster
dissemination period, broadcasters in the same color
transmit message Ms in the same slots as defined in
the TDMA scheme. Transmission message Ms contains
the message of the source node. After this period, it can
be shown that all inactive nodes within (1 + 3ϵ

2 )Rc from
a broadcaster can receive Ms. Hence, after each phase,
the message Ms can be propagated for one hop.

5 ANALYSIS OF THE BROADCAST ALGORITHM

In this section, we analyze the correctness and efficiency
of the broadcast algorithm. The parameter γ, γ1, γ2 and
λ1 are given in the Table 1.

Theorem 1: If the dynamicity rate λ < λ1 and the
stability parameter T ≥ k ∗ (log n + logRc), each node
can get the message of the source node in DT rounds.
Notice that our result has the optimal time complexity,
as any algorithm needs DT time to complete dynamic
broadcast.

We next prove Theorem 1. Basically, we will show
that at the final round of each phase, the broadcasters
constitute a 3ϵ

2 Rc-dominating set with respect to active
nodes. As discussed before, this means that for each
inactive node, if a stable link exists between it and an
active node at the final round of the phase, there exists
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TABLE 1: Parameters in model, algorithm and analysis

Parameter Value Parameter Value
RT (P/βN)1/α Rc (1− ϵ)RT

ϵ ∈ (0, 1) λ ∈ (0, λ1)

p c/(4cmax) c
1−(1−ϵ)α

2α+1β

cmax
48

1−21−α/2 ζ
1−(21−α/2)

2

γ
p(1−p)

8∗(2s+5)2
γ1 1− γ

τ γ2/γ1 > 1 â a− 1− 2
√
2

λ1
γ1+ρ/(1−ρ)

1−ρ

− 1
4ς − 1 > 0

f(α, β) ⌈(
(32∗α−1

α−2
+4)∗β∗(1−ϵ)−α∗(

√
2
ϵ

)α

(1+ ϵ
2
)−α∗(1−ϵ)−α−1

)1/α + 1 + 2
√
2⌉

a
max{f(α, β)},

for αmin < α < αmax, βmin < β < βmax

s ( 3·2α+5·β
(1−(1−ϵ)α)(1−21−α/2)

)
1

1−α/2

γ2 (γ1 + ρ/(1− ρ))(1 + λ)2ς < 1
ς ⌈max{(4τ)/(a1(1− γ2)) + 1, 4τ + 1}⌉
n unknown but sufficiently large

α, β determined by hardware and environment
N determined by environment
P determined by hardware
DT determined by network itself
k sufficiently large constant
ρ sufficiently small constant

a1
the constant hidden behind the Ω notation
in the probability guarantee in Corollary 2

a broadcaster within distance (1+ 3ϵ
2 )Rc. With the TDMA

scheduling of broadcaster’s transmission, it ensures that
at the final round of the phase, each broadcaster can
disseminate the message within distance (1 + 3ϵ

2 )Rc. In
other words, as long as a stable link exists at the final
round of a phase between an inactive node and an active
node, the inactive node will receive the message. By the
condition that stability parameter T ≥ k∗(log n+logRc),
each stable link on the stable path between the source
node and a particular node always be stable at the final
round of a phase. Hence, after DT time, every node can
receive the message.

We first analyze the algorithm execution in a particular
phase. For broadcasters, we have the following result.

Lemma 1: If the dynamicity rate λ < λ1, w.h.p., at
the final round of each phase, exactly one broadcaster
will be elected in each cell where there are active nodes
competing in current phase.

The proof of Lemma 1 is very technical. To make
the proof of the main result clear, we give the proof of
Lemma 1 later in Section 5.1.

Based on the above Lemma 1, we analyze the message
dissemination of broadcasters in the broadcaster dissem-
ination periods in each round.

Lemma 2: At the final round of each phase, when a
broadcaster u locally broadcasts a message, the TDMA
scheme ensures that u can send its message to all nodes
within distance (1 + 3ϵ

2 )Rc.
Proof: Considering the case at the final round of a

phase, we assume that u is in state B, and the cell u stays
has color i. As mentioned before, a cell g with coordinate
(x, y) gets the color color(g) = a∗ (x mod a)+ y mod a,
where a is a constant which will be given later. By

Lemma 1, there is at most one node in each cell joins
state B. By the scheduling of broadcasters’ transmissions,
in the broadcaster dissemination period, u will simul-
taneously transmit with other broadcasters in the cells
with color i. This means that for any two broadcasters
transmitting together, the distance between them is at
least (a − 1 − 2

√
2) ∗ ϵRc√

2
even considering the noise in

location estimation. Let â = a− 1− 2
√
2. In other words,

the simultaneously transmitting broadcasters constitute
a â ∗ ϵRc√

2
-independent set.

Now we consider a node v with d(u, v) ≤ (1 + 3ϵ
2 )Rc,

and prove that v can receive the message when u locally
broadcasts. We divide the whole space into annuluses
{Cb : b ≥ 1}, where Cb denotes the annulus with distance
from v between (b− 1)â ∗ ϵRc√

2
and bâ ∗ ϵRc√

2
. Let B be the

set of simultaneously transmitting broadcasters that are
in state B and located in Cb for b ≥ 2. By the above
analysis, the disks centered at broadcasters in B with
radius â ∗ ϵRc

2
√
2

are disjoint, and these disks are in the
annulus with distance from v between (b − 3

2 )â ∗ ϵRc√
2

and (b + 1
2 )â ∗ ϵRc√

2
. Then we can bound the number of

broadcasters in Bj as follows

|Bj | ≤
π((b+ 1

2 )â ∗
ϵRc√

2
)2 − π((b− 3

2 )â ∗
ϵRc√

2
)2

π(â ∗ ϵRc

2
√
2
)2

≤ 16 ∗ b

(2)

Furthermore, it is easy to get that in C1, the number
of broadcasters that simultaneously transmit with u is at
most 4, and the interference caused by these broadcasters
is at most Ib=1 = 4P ∗ (â ∗ ( ϵRc√

2
))−α. Then we have

SINR(v, u, T )

≥
P ∗ ((1 + 3ϵ

2 ) ∗Rc)
−α

N +
∑∞

b=2 16b ∗ P ∗ ((b− 1)â ∗ ( ϵRc√
2
)−α + Ib=1

≥
P ∗ ((1 + 3ϵ

2 ) ∗Rc)
−α

N + (32 ∗ α−1
α−2 + 4)(P ∗ â−α ∗ ( ϵRc√

2
)−α)

=
βN((1 + 3ϵ

2 )(1− ϵ))−α

N + (32 ∗ α−1
α−2 + 4) ∗Nβ(â ∗ (1− ϵ) ∗ ( ϵ√

2
))−α

≥ β

According to the above, SINR(v, u, T ) ≥ β, v receives
the message from u.

Proof of Theorem 1: We claim that an inactive node
v can receive the message Ms, w.h.p., if its has a stable
link with an active node u. By the definition of a stable
link, the link exists for at least T ≥ k ∗ (log n + logRc)
rounds, which means that a stable link exists on at
least a final round in a phase. We assume that the
stable link between u, v exists on the final round of
phase t. By Lemma 1, after the broadcaster election
period in the final round of phase t, w.h.p., there is a
broadcaster elected in u’s cell. Assume this broadcaster
is w, d(w, u) ≤ 3ϵRc

2 since u and w are in same cell. We
can get d(w, v) ≤ d(w, u) + d(u, v) ≤ (1 + 3ϵ

2 )Rc. Then
by the algorithm, each broadcaster will locally broadcast
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the message Ms during the broadcaster dissemination
period in the final round. And by Lemma 2, when w
locally broadcast, v will receive Ms.

We then consider how long it takes from the beginning
of the algorithm till a node v receives the message. Let
P = {e1, e2, . . . , ed} be the stable path between the source
s and v. By the definition of stable path, the stable links
in P keep stable for T rounds successively. Then based
on above analysis, it can be inductively shown that for
each stable link el = (ul, vl) with 1 ≤ l ≤ d, vl will get the
message Ms after ul becomes active for O(log n+logRc)
rounds, w.h.p. Hence, after at most DT rounds, node v
will receive Ms w.h.p.

Combining all above together, by well tuning the
constant parameters in the algorithm, it can be shown
that after DT rounds, all nodes can receive the message
Ms, w.h.p., which completes the proof.

5.1 Proof of Lemma 1
According to the TDMA scheduling scheme in the al-
gorithm, nodes in cells with the same color execute the
broadcaster election process together. Hence, in subse-
quence, we analyze the broadcaster election in cells with
a particular color j for 0 ≤ j < a2.

We first define some notations. Consider a cell g
with color j. Nodes in cell g are divided into classes
{V g

i : i = 0, 1, . . . , log(3ϵRc)} as defined in the model.
Let Vg(r) and V̂g(r) be the set of active nodes in cell g at
the beginning and at the end of a round r respectively.
Define Vi(r) = ∪color(g)=jV

g
i (r), V̂i(r) = ∪color(g)=j V̂

g
i (r),

V<i(r) = ∪i′<iVi′(r), V̂<i(r) = ∪i′<iV̂i′(r), ni(r) = |Vi(r)|,
n<i(r) = |V<i(r)|. And n̂i(r), n̂<i(r), V>i(r) and V̂>i(r)
are defined similarly. Let the dynamicity rate λ = ψ ∗λ1,
where ψ is a constant and 0 < ψ < 1.

Now we consider a phase h for the algorithm execu-
tion of nodes in cell g. To prove Lemma 1, we assume
that at the beginning of the phase, the set of active
nodes in cell g is not empty. By the algorithm, active
nodes will transmit M with constant probability p in
the broadcaster election period of each round in phase
h. Active nodes receiving M joins state S and stop the
competition in the current phase. The nodes that are
still active at the end of the phase become broadcasters.
Hence, equivalently, we only need to show that at the
end of the phase, all sets Vi for i = 0, . . . , log(3ϵRc) − 1
become empty. This means that only one active node left
at the end of the phase, i.e., exactly one broadcaster is
elected in the cell.

For any active node v, let A(v, d) be the set of
active nodes within distance d from v and Ei

t(u) =
A(u, 2t+12i) \ A(u, 2t2i). We say a node is sparse if for
every t ∈ {0, 1, . . . , log(3ϵRc)− 1}, Ei

t(u) ≤ 48 ∗ 2t(α/2+1).
Let Si ⊆ Vi be the largest subset of sparse nodes in Vi
that satisfies for any nodes u, v in Si, d(u, v) ≥ (s+ 2)2i

with s = ( 3·2α+5·β
(1−(1−ϵ)α)(1−21−α/2)

)
1

1−α/2 .
In the following we show that after each round, with

certain moderate probability guarantee, the number of

nodes in Vi for each i ∈ {0, 1, . . . , log(3ϵRc) − 1} will be
reduced by a constant factor. This result is proved in two
steps: first, it is shown that after each round, the size of
Si will be reduced by a constant factor, and then it is
proved that Si contains a constant fraction of nodes of
Vi.

Lemma 3: In each round, for each non-empty set Si,
i ∈ {0, 1, . . . , log(3ϵRc)− 1}, a constant fraction of nodes
in Si can receive a message from their nearest neighbors
and become inactive, with probability of 1− e−Ω(|Si|).

Proof: We consider a node u in Si, and assume that
its nearest neighbor is v. The probability of u listens and
v transmits is p(1−p). Assuming the event that u listens
and v transmits happens, we focus on the interference
u experiences. Let Ti be the set of nearest neighbors of
all nodes in Si. The interference on u can be divided
into two parts: interference from nodes in Si ∪ Ti and
interference from other nodes.

We first bound the interference of the first part, i.e.,
those from nodes in Si ∪ Ti. By the definition of sparse
nodes, any pair of nodes in Si have distance at least (s+
2)2i from each other, and each node in Si has distance
in the range [2i, 2i+1) with its nearest neighbor. Hence,
nodes in (Si ∪ Ti) \ {u, v} have distance at least s ∗ 2i

from u. Thus the interference I1 at u that is from nodes
in (Si ∪ Ti) \ {u, v} is bounded by:

I1 =
∑

t=log s

|Ei
t(u)|

P

(2i2t)α
≤ 48P

2iα
· 1

sα/2−1
· 1

1− 21−α/2
.

(3)
We next bound interference from nodes not in Si ∪Ti.

Define I(v) as the interference at all nodes in Si that is
generated by a node v with v /∈ Si ∪ Ti. Let Isum be the
sum of all I(v), v /∈ Si ∪ Ti. We next upper bound Isum.
Then, it can be obtained that for at least 1

c′ fraction of
nodes in Si , the interference outside from Si ∪ Ti on
them is no larger than c′

|Si| ∗ Isum.
For a node v /∈ Si ∪ Ti, as we have defined, I(v) is

the sum of interference caused by v and on all nodes
in Ei

t(v) ∩ Si over all annuluses. With an area argu-
ment similar with Inequality (2), it can be obtained that
|Ei

t(v) ∩ Si| ≤ 24 ∗ 22t. Then

I(v) =

∞∑
t=0

|Ei
t(v) ∩ Si|

P

(2i2t)α
=

P

2iα

∞∑
t=0

|Ei
t(v) ∩ Si|
2tα

≤ P

2iα

∞∑
t=0

24 ∗ 22t

2tα
=

24P

2iα

∞∑
t=0

1

2t(α−2)

<
24 ∗ P
2iα

(
1

1− 22−α
)

Let cmax = 48
1−21−α/2 then I(v) < cmaxP/2

iα.
Claim 1: Given any constant c, by setting p =

c/(4cmax), with probability 1− e
− c2

24c2max
|Si|, at least half

of nodes in Si experience the interference I2 from nodes
not in Si ∪ Ti no larger than cP/2iα

Proof: Consider a node u ∈ Si. Let I2(u) denote the
interference experienced by u that are caused by nodes
not in Si ∪ Ti. Then we prove the Claim in two cases.
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Case 1. c ≥ cmax.

I2(u) ≤
∞∑
t=0

|Ei
t(u)|

P

(2t2i)α
=

P

2iα

∞∑
t=0

|Ei
t(u)|
2tα

≤ P

2iα

∞∑
t=0

48 ∗ 2t(α/2+1)

2tα
=

48P

2iα

∞∑
t=0

1

2t(α/2−1)

<
48P

2iα
(

1

1− 21−α/2
) ≤ cmaxP/2

iα ≤ cP/2iα

Case 2. c < cmax.
We define a random variable xv

xv =

{
I(v)2iα/(cmaxP ) when node v transmits
0 when node v listens

Then we have

E

[ ∑
v/∈Si∪Ti

xv

]
=

∑
v/∈Si∪Ti

p ∗ I(v)2iα/(cmaxP )

= p
∑

v/∈Si∪Ti

I(v)2iα/(cmaxP )

Considering that |Si|
2 ∗c∗P/2iα ≤

∑
I(v) ≤ |Si|∗cmax∗

P/2iα, we can get (c2/8c2max)|Si| ≤ E
[∑

v/∈Si∪Ti
xv

]
≤

c|Si|/(4cmax). Let µ = E[
∑

v/∈Si∪Ti
(xv)]. Notice that xv ∈

[0, 1), applying the standard Chernoff bound for the set
of independent random variable {xv : v /∈ Si∪Ti}, it can
be obtained that

Pr
( ∑

v/∈Si∪Ti

xv ≥ 2 ∗ (c|Si|/(4cmax))
)
≤ e

− c2

24c2max
|Si|

Thus, with probability at least 1− e
− c2

24c2max
|Si|,

Isum =
∑

v/∈Si∪Ti

I(v) =
∑

v/∈Si∪Ti

xv ∗ cmaxP/2
iα

≤ (2c|Si|/(4cmax)) ∗ cmaxP/2
iα

= c|Si|P/2iα+1

Hence, it is impossible for more than half of nodes in Si

experiencing interference from nodes not in Si∪Ti larger
than cP/2iα.
Considering the interference outside from and inside

from set Si∪Ti, with probability at least 1−e−
c2

24c2max
|Si|,

at least half of nodes in Si experience the interference
no larger than 2cP/2iα, by setting c = 1−(1−ϵ)α

2α+1β . Then u
can receive a message from its nearest neighbor v by the
SINR condition as follows.

SINR(u, v) >
P/2α(i+1)

2cP/2iα +N
≥ β

Combining the assumption that u listens and its near-
est neighbor v transmits, which occurs with probability
p(1 − p), and at least half of nodes in Si can receive
messages from their nearest neighbors, it can be proved
that p(1−p)∗|Si|/2 nodes become inactive in expectation.
Applying Chernoff bound, the Lemma is then proved.

After proving that in each round, a constant fraction
of nodes in Si become inactive, the next step is to prove
that for i ∈ {0, 1, . . . , log(3ϵRc) − 1}, a constant fraction
of nodes in Vi is in Si.

Lemma 4: In a round, for i ∈ {0, 1, . . . , log(3ϵRc) − 1},
if n<i ≤ ζni with ζ = 1−(21−α/2)

2 , then |Si|
|Vi| ≥

1
2(2s+5)2

Proof: We prove the Lemma by showing that a
constant fraction of nodes in Vi are sparse nodes and
a constant fraction of sparse nodes are in Si.

Claim 2: In a round, for i ∈ {0, 1, . . . , log(3ϵRc)− 1}, if
n<i ≤ ζni with ζ = 1−(21−α/2)

2 , then at least half of nodes
in Vi are sparse nodes.

Proof: Define an Excellent Sparse Node u ∈ Vi as
follows: for every t ∈ {0, 1, . . . , log(3ϵRc) − 1}, node u
satisfies that |Ei

t(u) ∩ V≥i| ≤ 24 ∗ 2t(α/2+1) and |Ei
t(u) ∩

V<i| ≤ 24 ∗ 2t(α/2+1). Obviously, an Excellent Sparse
Node must be a sparse node. So the fraction of Excellent
Sparse Nodes in Vi is a lower bound of the fraction
of sparse node in Vi. We next focus on the fraction of
Excellent Sparse Node in Vi.

We first show that the condition |Ei
t(u) ∩ V≥i| ≤ 24 ∗

2t(α/2+1) holds for any node in Vi. Noting that nodes in
V≥i have distance at least 2i with each other, the disks
centered at these nodes and with radii 2i−1 are disjoint.
For any node u ∈ Vi and any annulus Ei

t(u), using an
area argument in the following Eqt.4, the condition can
be proved.

π(2t+12i + 2i−1)2 − π(2t2i − 2i−1)2

π22(i−1)
= 3 ∗ 2t+2 ∗ (2t + 1)

≤ 3 ∗ 22t+3

< 24 ∗ 2t(α/2+1)

(4)
We next consider the condition about |Ei

t(u)∩ V<i| on
node u ∈ Vi. Define Γi

t be the sum of nodes in set Ei
t(u)∩

V<i for each node u in Vi. Then we get

Γi
t =

∑
u∈Vi

|Ei
t(u) ∩ V<i| =

∑
u∈V<i

|Ei
t(u) ∩ Vi|

≤ n<i ∗ 24 ∗ 22t ≤ ζ ∗ ni ∗ 24 ∗ 22t

Based on above, it can be obtained there are at most
ζ ∗ 2t(1−α/2) fraction of nodes in Vi that are not excellent
sparse nodes in annulus Ei

t(u) for each node u ∈ Vi,
otherwise Γi

t > ζ ∗ ni ∗ 24 ∗ 22t. Then we sum up the
number of nodes in each annulus that are not excellent
sparse, to bound the total number of non-excellent sparse
nodes in Vi.

log(3ϵRc)−1∑
t=0

ni ∗ ζ ∗ 2t(1−α/2) = ni ∗ ζ ∗
log(3ϵRc)−1∑

t=0

(21−α/2)t

≤ ni ∗ ζ ∗
1

1− (21−α/2)

=
1

2
ni.

Combining all above together, the Claim is proved.
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Claim 3: For i ∈ {0, 1, . . . , log(3ϵRc) − 1}, at least
1

(2s+5)2 fraction of sparse nodes in Vi are in set Si.
Proof: By the maximality of Si, the disks centered at

nodes in Si with radii (s + 2)2i cover all sparse nodes
in Vi. Furthermore, notice that the distance between any
pair of sparse nodes in Vi is at least 2i. Hence, the disks
with radii 2i−1 that are centered at sparse nodes in Vi
are disjoint. Let Dd

v denote the disk centered at node v
that has radius d.

Now consider a node u ∈ Si, we upper bound the
number of sparse nodes in D

(s+2)2i

u . Let Bu be the set
of sparse nodes in Vi that locate in D

(s+2)2i

u . By above
analysis, the disks {D2i−1

v : v ∈ Bu} are all in the disk
D

((s+2)2i+2i−1)
u . Then using an area argument, we can

bound Bu as follows,

π ∗ ((s+ 2)2i + 2i−1)2

π ∗ (2i−1)2
= (2s+ 5)2.

We sum up the bound on the number of sparse nodes
within distance (s+2)2i of nodes in Si, to get an upper
bound on the total number of sparse nodes in Vi, as
follows, ∑

u∈Si

|Bu| ≤ (2s+ 5)2|Si|, (5)

which completes the proof.
By Claim 2, 3, Lemma 4 can be proved.

The following result is a direct corollary of Lemma 3
and Lemma 4.

Corollary 2: In a round r, for i ∈ {0, 1, . . . , log(3ϵRc)−
1}, if n<i ≤ ζni with ζ = 1−(21−α/2)

2 , with probability
1−eΩ(|Vi|), γ fraction of nodes in Vi will become inactive,
where γ = p(1−p)

8∗(2s+5)2 .
In the above, we have shown that when n<i ≤ ζni,

i ∈ {0, 1, . . . , log(3ϵRc − 1)}, with probability 1− eΩ(|Vi|),
γ fraction of nodes in Vi will become inactive. However,
even we get the reduction ratio γ for Vi, Vi will not
always be reduced for three reasons: first, some new
nodes may join or stop the algorithm execution; second,
the mobility of nodes; third, some active nodes in V<i

may fall into Vi because their nearest neighbors become
inactive. We need to show that even with these unpre-
dictable fluctuations, all Vi for i ∈ {0, 1, . . . , log(3ϵRc)−1}
will be finally reduced to empty in O(log n + logRc)
rounds, i.e, the time in a phase.

Firstly, we divide the running process of algorithm
into consecutive intervals Λi for i = 0, 1, . . .. Each in-
terval consists of ς = max{(4τ)/(a1(1− γ2)) + 1, 4τ + 1}
rounds, as is given in Table 1.

Then, we define a series of vectors as the upper-bound
for each class |Vi|. To be more detailed, we define {mi(t) :
t ≥ 0 and 0 ≤ i ≤ log(3ϵRc) − 1} as follows, and let
m̂i(t+ 1) = γ1mi(t).

∀t ≥ 0 : mi(t) =

{
n/γ1 t ≤ Ti

⌊mi(t− 1) ∗ γ2⌋ t > Ti

Here Ti = i ∗ h and h = ⌈logγ2
ρ⌉.

Define Tc to be the earliest round when all m̂i(Tc) be-
come 0. Then according to the definition, Tc ∈ O(log n+
logRc).

We define random events E(j) for j ≥ 0: E(j) oc-
curs when in some round r, n̂i(r) ≤ mi(j) for all
i ∈ {0, 1, . . . , log(3ϵRc)− 1}. If for any round in interval
Λa, E(j) occurs, we say E(j) always occurs in interval Λa.
Obviously, all |Vi| become empty when E(Tc) occurs. So
in the following, we only need to analyze when E(Tc)
occurs.

Note that E(0) always occurs for any round r, since
for all i ∈ {0, 1, . . . , log(3ϵRc)− 1}, mi(0) = n/γ1 ≥ n̂i(r).
With a general assumption that E(j) always occurs in
interval Λa, we analysis the situations in which E(j +1)
and E(j − 1) occurs via Lemma 5, 6, 7 and 8.

Lemma 5: For interval Λa and Λa+1, if E(j) always
occurs in interval Λa, then E(j) or E(j−1) always occurs
in interval Λa+1.

Proof: We generally assume r and r1 to be any
round in Λa and Λa+1 respectively. If 0 ≤ j ≤ 1,
obviously E(0) occurs at r1; And we consider the case
that j ≥ 2. Since E(j) occurs at round r, then for any
i ∈ {0, 1, . . . , log(3ϵRc)− 1}, n̂i(r) ≤ mi(j), we have

n̂i(r1) ≤ n̂i(r) ∗ (1 + λ)r1−r +

i−1∑
s=0

ngs(r) ∗ (1 + λ)r1−r

≤ n̂i(r) ∗ (1 + λ)2ς +

i−1∑
s=0

ns(r) ∗ (1 + λ)2ς

≤ mi(j) ∗ (1 + λ)2ς +

i−1∑
s=0

ms(j)(1 + λ)2ς

≤ mi(j) ∗ (1 + λ)2ς + (1 + λ)2ς
i−1∑
s=0

ms(j)

(6)

The analysis here is divided into two cases that mi−1 <
n/γ1 and mi−1 = n/γ1. Notice that it is impossible for
mi−1 > n/γ1.

If mi−1(j) < n/γ1, ∀s ∈ {0, 1, . . . , i − 1}, ms(j) =
ρms+1(j), and

∑i−1
s=0ms(j) ≤ mi(j)ρ/(1− ρ). Thus,

n̂i(r1) ≤ mi(j) ∗ (1 + λ)2ς + (1 + λ)2ς
i−1∑
s=0

ms(j)

≤ mi(j) ∗ (1 + λ)2ς + (1 + λ)2ςmi(j)ρ/(1− ρ)

=
(1 + λ)2ς

1− ρ
mi(j) =

(1 + λ)2ςγ2
1− ρ

mi(j − 1)

(7)

Since (1+λ)2ςγ2

1−ρ ≤ 1, n̂i(r1) < mi(j − 1) in the case that
mi−1(j) < n/γ1.

If mi−1(j) = n/γ1, we can see that mi(j−1) = mi(j) =
mi−1(j) = n/γ1, then n̂i(r1) ≤ mi(j − 1).

Until then, we get that when j ≥ 2, n̂i(r1) < mi(j− 1)
for all i ∈ {0, 1, . . . , log(3ϵRc) − 1}. And Combined all
above together, the lemma is proved.

Lemma 6: For any round r and r1 in Λa and Λa+1

respectively, if n̂i(r) ≤ m̂i(j+1), then n̂i(r1) ≤ mi(j+1).
Proof: Case 1: if mi(j + 1) = n/γ1, then it is easy to

get n̂i(r1) ≤ mi(j + 1). Case 2: if mi(j + 1) < n/γ1, as
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defined in the model, for each cell g, at the beginning
of round r1, ngi (r1) ≤ (1 + λ)r1−rn̂gi (r). Summing up
ngi (r1) over all cells, we get ni(r1) ≤ (1 + λ)r1−rn̂i(r),
for each i ∈ {0, 1, . . . , log(3ϵRc) − 1}. Also for ∀i ∈
{0, 1, . . . , log(3ϵRc)−1}, ni(r) ≤ m̂i(j+1) ≤ mi(j). Thus,

n̂i(r1) ≤ n̂i(r) ∗ (1 + λ)r1−r +

i−1∑
s=0

ns(r) ∗ (1 + λ)r1−r

≤ m̂i(j + 1) ∗ (1 + λ)r1−r +

i−1∑
s=0

ms(j)(1 + λ)r1−r

≤ mi(j)
γ2

(1 + λ)2ς−r1+r
− (1 + λ)r1−rmi(j)ρ/(1− ρ)

+ (1 + λ)r1−rmi(j)ρ/(1− ρ)

≤ mi(j + 1)

Lemma 7: For any round r and r + 1 in interval Λa,
if E(j) occurs in round r, then with probability at
least 1 − e−Ω(ni(r+1)), n̂i(r + 1) ≤ m̂i(j + 1), where
i ∈ {0, 1, . . . , log(3ϵRc)− 1}.

Proof: The Lemma can be proved in three cases.
Case 1: if ni(r+1) < m̂i(j+1), then n̂i(r+1) ≤ ni(r+

1) ≤ m̂i(j + 1). Case 2: if mi−1(j) = n/γ1, then mi(j) =
n/γ1, m̂i(j + 1) = n. and n̂i(r + 1) ≤ m̂i(j + 1). We next
consider the case that ni(r+1) ≥ m̂j+1(i) and mi−1(j) <
n/γ1.

Since E(j) occurs at r, we know that n̂i(r) ≤ mi(j),
then n̂<i(r) ≤ m<i(j) ≤ mi(j)ρ/(1−ρ). Also considering
that n<i(r + 1) ≤ (1 + λ)n̂<i(r). We get

n<i(r + 1) ≤ (1 + λ)n̂<i(r)

≤ (1 + λ)mi(j)ρ/(1− ρ)

≤ m̂i(j + 1) ∗ (1 + λ)ρ

γ1(1− ρ)

≤ ni(r + 1)
(1 + λ)ρ

γ1(1− ρ)

By setting ρ to be small enough to make sure ρ/(1−ρ) <
γ1ζ/(1 + λ) and γ2 < 1, we obtain n<i(r + 1) < ζni(r +
1) from the above inequality. Then, in round r + 1, by
Corollary 2, with probability 1− e−Ω(ni(r+1)),

n̂i(r + 1) ≤ γ1ni(r + 1) ≤ γ1mj(i) = m̂i(j + 1).

With the above two results, we are going to bound the
probability that E(j + 1) always occurs in interval Λa+1

when E(j) always occurs in interval Λa.
Lemma 8: If E(j) always occurs in Λa, with probability

at least 3/4, E(j + 1) always occurs in Λa+1.
Proof: Combining the assumption that E(j) occurs

in Λa and Lemma 7, we get a result that for each round
r2 except the first round in Λa, it has the probability
at least 1 − e−Ω(ni(r2)) that n̂i(r2) ≤ m̂i(j + 1), where
i ∈ {0, 1, . . . , log(3ϵRc) − 1}. When n̂i(r2) ≤ m̂i(j + 1)
is true for i ∈ {0, 1, . . . , log(3ϵRc) − 1}, from Lemma 6,
E(j + 1) always occurs in Λa+1. Note that the constant
behind the Ω notation in the probability guarantee in

Lemma 7 is the same with that in Corollary 2 and it is
recorded as a1. We also have set ς = ⌈max{(4τ)/(a1(1−
γ2)) + 1, 4τ + 1}⌉ rounds, where τ = γ2/γ1 > 1. Then
for i ∈ {0, 1, . . . , log(3ϵRc)−1}, the probability that n̂i ≤
m̂i(j + 1) never happened in interval Λa is

e−4τn̂i/(1−γ2) ≤ (1− γ2)/(4τ n̂i)

≤ (1− γ2)/(4τm̂i(j + 1))

= (1− γ2)/(4mi(j + 1)).

Applying a union bound on the error probabilities above
for all is, we obtain the probability that at least one n̂i
is always larger than m̂i(j + 1) in interval Λa is at most

log(3ϵRc)−1∑
i=0

(1− γ2)/(4mi(j + 1)) ≤ 1− γ2
4

log(3ϵRc)−1∑
i=0

γ1
n

· γih−(j+1)
2

≤ (1− γ2)γ1

4n ∗ γj+1
2

log(3ϵRc)−1∑
i=0

γih2

≤ (1− γ2)γ1

4n ∗ γj+1
2

· 1

1− γh2

≤ 1

4

Hence, with probability at least 3/4, E(j + 1) always
occurs in Λa+1 when E(j) always occurs in Λa, which
completes the proof.

Lemma 9: E(Tc) occurs within O(log n+logRc) rounds
with high probability.

Proof: Combining what we have known: 1) Tc ∈
O(log n+logRc); 2) E(0) always occurs for any round; 3).
When E(j) always occurs in an interval Λa, which has
constant rounds, in the following Λa+1, with probability
at least 3/4, E(j+1) always occurs and in the rest proba-
bility, which is no more than 1/4, E(j) or E(j−1) always
occurs in Λa+1. It is easy to show that in expectation,
after O(Tc) rounds, E(Tc) occurs. Using Chernoff bound,
the Lemma can be proved.

Now we are ready to prove Lemma 1
Proof of Lemma 1: By setting constant k in the

algorithm to be larger than the constant behind the O
notation in the time bound of O(log n + logRc) given
in Lemma 9, at the final round of a phase, for each
non-empty cell g (a cell with active nodes), all V g

i for
i ∈ {0, 1, . . . , log(3ϵRc) − 1} become empty with high
probability. So by the algorithm, there is exactly one
active node left for each non-empty cell at the final round
of a phase, which completes the proof of lemma 1.

6 SIMULATION

Simulation results for our global broadcast algorithm
in dynamic network are presented in this section. In
reality, the efficiency of global broadcast in a network is
determined by two factors: the diameter of the network
and the time cost for one-hop message dissemination.
Considering that the diameter is an inherent feature for
the network topology and differ for different networks,
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TABLE 2: Parameters in simulation

Parameters Value Parameter Value
n0 [1000, 10000] R 30m
λ [0, 0.3] ϵ 0.25
α {3.0, 4.0} a 9
β {1.5, 2.0} p 0.2

we evaluate the efficiency of our global broadcast algo-
rithm in terms of the time needed for one-hop message
dissemination. Furthermore, we also present a global
broadcast complete ratio, i.e., the ratio of the nodes with
the source message among all nodes in the network,
under different settings. The broadcast ratio can help
learn the speed of global broadcast. Also, a comparison
simulation with existing algorithms and the impact of
SINR parameters for our algorithm performance are also
considered.

Parameter and dynamicity setting. In the simulation,
n0 nodes, which includes an active node with source
message and n0 − 1 inactive nodes, are randomly dis-
tributed in a network with area of 300m × 300m. Each
node has the uniform transmission range 30m. Tab. 2
presents all the parameters in simulation. By giving
values of n0, the network area, and the transmission
range, we have the average number of neighbors for
nodes within the transmission range increase from 30 to
300, i.e., the simulated network gradually changes from
a sparse network to a dense one. Also, the setting of 30m
for the transmission range in a 300m×300m network area
makes sure that the diameter of the network is at least
15, which is enough to simulate a multi-hop network.
For the dynamicity of nodes in the network, when the
dynamicity rate is satisfied, each node has a probability
to leave/join the network. Since the movement of nodes
from point A to B can be regarded as nodes leaving the
network from point A and then joining the network at
point B, the dynamicity in our simulation covers leaving,
movement of nodes, and joining of new nodes.

Our whole simulation is written as a C++ program
with multiple functions, some of which are from the
C++ standard library while some are our own creations.
Fig. 2 illustrates the flow chart of our simulation. Over
20 runs of the simulation have been carried out for
each reported result. All experiments are conducted on a
Linux machine with Intel Xeon CPU E5-2670@2.60GHz
and 64 GB main memory, implemented in C++ and
compiled by the GCC compiler.

6.1 Algorithm performance in dynamic networks

Time for one-hop message dissemination. In each
phase, our global broadcast algorithm completes a one-
hop message dissemination. In this process leaders will
be elected out from active nodes, and disseminate the
source message for one hop. The inactive nodes become
active when receiving the source message. Observing all
one-hop message dissemination in the simulation, we
figure out and show the average and maximum number

of rounds used for one-hop message dissemination in
Fig. 3 (1) and (2) respectively. In Fig. 3, the x-axes and
y-axes represent the number of nodes initially in the
network and the number of rounds the algorithm has ex-
ecuted respectively. Fig. 3 (1) depicts the average number
of rounds needed for one-hop message dissemination
under different dynamicity rate λ. When λ is larger, the
dynamicity in the network gets heavier. In Fig. 3 (1), we
can see that the average number of rounds increases first
and keeps stable when the number of nodes get larger.

It can be known that with a larger λ, it requires
more time to complete one-hop message dissemination.
As shown in Fig. 3 (1), when λ ≤ 0.057, the average
number of rounds for one-hop message dissemination
is always smaller than 30, and the average number of
rounds rapidly increase in the dynamic scenarios of
λ = 0.059 and λ = 0.061, which indicates that the largest
dynamicity rate our algorithm can efficiently handle is
between 0.057 and 0.059. Fig. 3 (2) illustrates a similar
results on the maximum number of rounds for one-hop
message dissemination.

Broadcast complete ratio. Fig. 4 depicts the broadcast
complete ratio as the algorithm executes, in which the x-
axes represents the number of rounds the algorithm has
executed and the y-axes represents the ratio. In Fig. 4
(1), where n0 = 2000 and λ = 0.010, 0.030, 0.050, 0.055,
the broadcast complete ratio increases from 0 to 1. It can
be seen that for broadcast processes with two different
λ, the ratio in the case with a larger λ is larger first
and then becomes smaller later, which means that the
broadcast process with a larger λ goes faster at the
beginning and gradually becomes slower than that with
a smaller λ. According to our observation, this phe-
nomenon is caused by the dynamicity of network. One
the one hand, dynamicity in a network takes challenge
to the stable connections between nodes, but on the
other the dynamicity facilitates the global broadcast since
nodes with source message can move around to deliver
source message. At the beginning, the positive impact
of dynamicity is larger, so the broadcast process with
larger λ goes faster. Gradually when the number of
nodes without source message become small, the stable
connections from nodes with source message to those
without source message become important, and hence
the negative impact of dynamicity matters more. Fig. 4
(2)-(4) provide the broadcast complete ratio in the cases
of n0 = 4000, 6000, 8000 respectively, from which similar
conclusion can be obtained.

Comparison with existing algorithms. In the sim-
ulation, we also compare our work with two existing
dynamic global broadcast protocols in [1] and [6], named
DGB-1 and DGB-2, respectively. In [1], the execution
of DGB-1 is divided into successive phases, each of
which consists of Ω(log3 n) rounds. In each phase, the
nodes that received a message in last phase decrease
their transmission probability from 1 to 1

log∗ n . In [6],
nodes that hold the message in DGB-2 always transmit
with the probability lnn/n in each round. We compare
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Fig. 2: Flow chart of our simulation
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Fig. 3: Time for one-hop message dissemination when
dynamicity rate various

our dynamic global broadcast protocol, named DGB-3,
with protocols DGB-1 and DGB-2 mentioned above. The
comparison results are given in Fig. 5, in which the x-
axes and the y-axes represent the number of nodes in
network and the average/maximal time for one hop
message dissemination respectively. Specifically, in Fig 5
(1), where n0 varies from 1000 to 10000 and λ = 0.02, we
can see that (1) the average time for one hop M.D. used
by DGB-3 approximately increases from 300 to 1600, and
gradually becomes stable, (2) DGB-1/DGB-2 have some
trivial results when the network is dense/sparse, and
(3) our algorithm DGB-3 has better performances than
DBG-1 and DGB-2.
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Fig. 4: Broadcast complete ratio in different dynamicity
rates



14 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. , NO. , 2018

2000 4000 6000 8000 10000

Number of nodes

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

A
v

er
ag

e 
ti

m
e 

fo
r 

o
n

e 
h

o
p

 M
.D

. 
/ 

sl
o

ts

DGB-1

DGB-2

DGB-3

(1). λ = 0.020

2000 4000 6000 8000 10000

Number of nodes

1000

2000

3000

4000

5000

6000

7000

M
ax

im
al

 t
im

e 
fo

r 
o

n
e 

h
o

p
 M

.D
. 

/ 
sl

o
ts

DGB-1

DGB-2

DGB-3

(2). λ = 0.020

2000 4000 6000 8000 10000

Number of nodes

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

A
v

er
ag

e 
ti

m
e 

fo
r 

o
n

e 
h

o
p

 M
.D

. 
/ 

sl
o

ts

DGB-1

DGB-2

DGB-3

(3). λ = 0.040

2000 4000 6000 8000 10000

Number of nodes

1000

2000

3000

4000

5000

6000

7000

M
ax

im
al

 t
im

e 
fo

r 
o

n
e 

h
o

p
 M

.D
. 

/ 
sl

o
ts

DGB-1

DGB-2

DGB-3

(4). λ = 0.040

Fig. 5: Time for one-hop message dissemination in vari-
ous dynamic global broadcast protocols
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Fig. 6: Time for one-hop message dissemination in dif-
ferent SINR parameters

6.2 Impact of SINR parameters
WLOG fixing λ = 0.050, we investigate the impact of
SINR parameters on our global broadcast algorithm in
Fig. 6, where the average/maximum number rounds for
one-hop message dissemination is given under different
α and β. It can be seen that when α and β vary, the
average/maximum rounds used for one-hop message
dissemination is almost the same. So, our global broad-
cast algorithm is insensitive to SINR parameters.

6.3 Summary
In the simulation, our algorithm can complete a global
broadcast task under a constant dynamicity rate. Con-
sidering that the dynamicity rate is with respect to
the dynamicity in every round, although the dynamic
rate is not very large, the dynamicity can be significant

after only a few rounds. The global broadcast algorithm
with time complexity of O(DT ) is believed to be very
efficient in reality since simulation results indicate that
the constant hidden behind the big O notation is smaller
than 30. Also, our algorithm is insensitive to the SINR
parameters.

7 CONCLUSION

In this paper, we have studied the problem of broad-
casting a single message in dynamic networks. We pro-
posed a dynamic model based on a local view, which is
more suitable for distributed algorithm design. Our local
model adopts the realistic SINR model for wireless inter-
ference. Under the local dynamic model, we presented a
distributed algorithm that can accomplish global broad-
cast in O(DT ) time with a high probability guarantee,
under the constraint of constant dynamicity rate, where
DT is the dynamic diameter proposed for depicting the
complexity of dynamic broadcasting. The algorithm can
be shown to be asymptotically optimal, by the natural
lower bound of DT for dynamic broadcasting.

The complexity of implementing other fundamental
communication primitives under the proposed local dy-
namic model, such as aggregation, local broadcast, and
multiple-message broadcast deserves further investiga-
tion. Furthermore, it is also significant to re-visit our
algorithm in a jamming scenario, since jamming is a
common phenomenon in wireless networks and our
algorithm currently relies on reliable communication
channels.
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