
Multi-Agent Reinforcement Learning Enabled Link Scheduling for Next Generation
Internet of Things

Yifei Zoua, Haofei Yina, Yanwei Zheng1a, Falko Dresslerb

aSchool of Computer Science and Technology, Shandong University, Qingdao, China
bSchool of Electrical Engineering and Computer Science, TU Berlin, Berlin, Germany

Abstract

In next generation Internet of Things (NG-IoT) networks, numerous pieces of information are aggregated from the user
devices and sensor nodes to the local computing units for further computing to support high-level applications. Those
multitudinous transmission demands have raised new challenges for current link scheduling protocols. The centralized link
scheduling protocols are inappropriate in some large-scale NG-IoT scenarios. The previously distributed link scheduling
uses the randomized transmission scheme to avoid interference, making it hard to utilize the bandwidth resources
fully. The multi-agent machine learning (MAML) technique is a potential approach to finding the most optimal link
scheduling strategy. At the same time, the over-large state space will take a long time for them to approach the
optimal solution, which reduces the practicality of the MAML. To fully utilize the bandwidth resource and improve the
efficiency of link scheduling, this paper studies a multi-agent reinforcement learning enabled link scheduling problem.
Different from the conventional MAML techniques that randomly select a state to do their exploration, in our multi-
agent reinforcement learning algorithm, a good state is firstly obtained within polynomial time steps by executing a
distributed and randomized sub-algorithm. We say a state is good if it is not far from the optimal state. Then, our
multi-agent reinforcement learning scheme starts from the good state and does its exploration with an ε greedy scheme,
which significantly reduces the time steps to get close to the optimal link scheduling strategy. Extensive simulations are
conducted to investigate the performance of our work.

Keywords: multi-agent reinforcement learning, link scheduling, wireless network, Internet of Things network

1. Introduction

With the development of communication technology
and Internet-of-Things (IoT) devices, the Next Generation
Internet of Things (NG-IoT) has changed our life in its
own way[1, 2]. Specifically, NG-IoT connects massive user
devices and sensors to local units with some basic storage
and computing resources (e.g., edge devices in edge com-
puting) via the high-speed 5G/6G networks. So, a series
of applications can be deployed on the units that are close
to the data resource, which is a potential architecture to
provide users with real-time and intelligent services. In the
above framework, the fast transmission of the information
packets is a fundamental issue, which can be formulated
as a link scheduling problem from the view of the network
layer. With an efficient link scheduling algorithm, the fre-
quency and bandwidth resources in NG-IoT can be fully
utilized to deliver the information packets so that the in-
formation can arrive at its destinations within a short time
interval, which strongly supports those time-sensitive ap-
plications in NG-IoT.

Due to its importance and significance, a series of works
have been conducted on link scheduling problems in the
wireless environment. Generally speaking, the previous
link scheduling works can be divided into two categories:

centralized scheduling and distributed scheduling, accord-
ing to their working mode. For centralized algorithms,
such as [3, 4], the global information can be fully uti-
lized to avoid conflicts and interference between links so
that multiple links can be scheduled simultaneously at
the same time. However, the centralized algorithm re-
quires lots of global information, which is difficult to be de-
ployed in large-scale networks. For distributed algorithms,
such as [5, 6], the randomized transmission scheme can be
used to obtain answers that areO(log2 n)-approximate and
O(log n)-approximate to the optimal solution, respectively.
However, due to the stochastic nature of the algorithms,
it is difficult for them to get closer to the optimal solution.

There are also some efficient works that solve the sched-
uling problem with the help of some machine learning
[7, 8, 9] or heuristics techniques [10]. Compared with those
randomized and distributed algorithms, the convergence
property in ML helps the ML-based algorithm gets closer
to the optimal solution for the link scheduling problem.
Thus, the ML-based solutions can potentially have higher
efficiency in delivering the information packets. However,
all the above methods are performed under centralized
conditions, where nodes must have prior global knowledge
during training. No specific training node can have global
information in the distributed premise. Solving the link

Article published in Elsevier Computer Communications 205 (2023) 35-44. (10.1016/j.comcom.2023.04.006)

scheduling problem by machine learning is essentially a
multi-agent learning problem with a competitive relation-
ship. In the multi-agent learning problem, each agent takes
specific actions in its current state and is influenced by the
states and actions of other agents in the environment to re-
ceive certain rewards. In the link scheduling problem, the
mutual influence of multiple agents in this environment is
particularly severe. For example, suppose a link is trans-
mitting data when none of the other links also occupies
the current wireless channel. In that case, the data will
be delivered successfully. The communication will fail if it
is surrounded by other links that are also using the wire-
less channel to transmit data. This phenomenon is also
termed as the contention in the wireless channel. Suppose
we use a single agent to decide whether each link should
be sent at the current moment. In that case, the reward
of that agent will be determined by a combination of its
state, actions, and the state and actions of the surrounding
nodes.

The global states of multi-agent learning methods grow
exponentially with the number of nodes. In NG-IoT, con-
sisting of numerous user devices and sensor nodes, the
number of states will be too large to execute any cen-
tralized ML algorithm. Besides, the exploration of ML
in the over-large state space will come across the follow-
ing challenge. If a small exploration step is used on the
over-large state space, the efficiency of exploration will be
seriously insufficient, and the convergence speed will be
slow or even cannot be converged. When the exploration
step is too large, there will be a large amount of space that
is not fully explored, and it is straightforward to miss the
optimal solution or produce serious oscillations.

To overcome the above challenges that the state space
in multi-agent machine learning is over-large while the ex-
ploration ability of current multi-agent ML techniques is
limited, in this paper, we no longer let our multi-agent
ML algorithm randomly select a state as the initial state,
but use a distributed randomized algorithm to compute
a good state as the starting point of our multi-agent ML.
A good state means that the state of the nodes in multi-
agent ML is not far away from the optimal solution, i.e.,
the exploration space has been limited. Then, we use the
exploration capability of the reinforcement learning algo-
rithm to explore the optimal solution around the good
state. Fig. 1 is an illustration of the difference between
the exploration space using a good state and a randomized
state.

The detailed contributions of our paper are listed in
the following:

• To address the problem that the state and action
space becomes over-large for exploration in a multi-
agent machine learning system with numerous learn-
ing agents, which results in a failure of convergence
or a very slow convergence, our work proposes a new
approach in which a good state is firstly computed by
some approximation algorithm within a polynomial

Random State

Good State

Best State

Explore space of random state

Explore space of good state

Figure 1: Good states have less space to explore than random states

time steps as the initial state of the multi-agent ML.
Then, a multi-agent reinforcement learning scheme
is adopted to explore the optimal result based on the
good state. Compared with the previous multi-agent
ML that randomly selects an initial state, our work
indicates that finding a good state as the starting
point can reduce the exploration space and improve
the performance of multi-agent ML on exploration.
We hope that the new framework proposed in this
paper can shed some light on designing multi-agent
machine learning algorithms in some complex spaces.

• For the link scheduling problem under the next gen-
eration of IoT, we first formulate it into a multi-agent
reinforcement learning problem. Then, a distributed
and randomized algorithm is used to compute a good
state for the following ML process. Finally, a multi-
agent reinforcement learning algorithm is proposed,
which starts from a good state and can get close to
the optimal solution efficiently. Compared with the
traditional stochastic algorithm, our link scheduling
algorithm performs better because it can converge to
the optimal solution stably.

The numerical simulations are presented to support our
idea in this paper.

The remaining parts of this paper are organized as fol-
lows. In Section 2, the current work related to wireless link
scheduling is introduced. In Section 3, the network model
and the link scheduling problem are formulated. In Sec-
tion 4, the multi-agent reinforcement learning algorithm is
proposed in detail. In Section 5, extensive simulations are
conducted to verify the algorithm’s performance.

2. Related Work

The link schedule problem is usually transformed into
a special problem of set partitioning. Formally, given a set
L of links, the goal of the algorithm is to find a minimal
division of L such that all links in each set after the division
can complete their transmissions in the same time slice.

Initially, the study of link scheduling problems was of-
ten based on graph models, where the interference of one

2

link to the rest of the links was often reflected in the edge or
point weights in the graph. Related works are [11, 12, 13].
Subsequent studies had found that the graph model is diffi-
cult to model the wireless signal accurately, and the SINR
model was first used in [14] to model the wireless link
scheduling, which can deal more accurately with the effect
on wireless interference on transmission. There are many
subsequent works that also use the SINR model for link
scheduling, and these works can be divided into two cat-
egories of centralized (e.g., [3, 4, 15, 16]) and distributed
(e.g., [5, 6, 17, 18, 19]) algorithms in terms of working
principle. In terms of computational complexity, [3] had
proved that this problem is an NP-hard problem when the
nodes use uniform power.

As for centralized algorithms. In [3], an approximation
algorithm is proposed which maps each link to a unique
[2k, 2k+1] based on the length of the link, and then grids
the deployed region based on the length of each of these
links, and then tries to select as many links as possible in
a grid to complete the scheduling. The time of this algo-
rithm is O(log∆) approximated, where ∆ is the ratio of
the longest link to the shortest link. In [4], an approxima-
tion algorithm is proposed. The algorithm first sorts all
the links by length, selects a smaller link each time, cal-
culates the minimum distance between this link and the
current set of already selected links, and then calculates
whether the current link can be added to the set. The al-
gorithm can achieve an approximate performance of O(1).
Since NG-IoT is often distributed and large-scale, numer-
ous nodes are directly likely to be in relatively independent
environments, which makes it difficult to apply these cen-
tralized algorithms on it.

As for distributed algorithms. In [5], the maximum av-
erage affectance coefficient is introduced to solve the com-
petition problem in random, and nodes use a fixed prob-
ability to send data at each step according to the maxi-
mum average affectance coefficient, and this algorithm is
O(log2 n) asymptotically optimal. In [6], a distributed ap-
proximation algorithm is proposed, where the algorithm
generates log2 n equal probabilities and then lets all links
enumerate any one of the probabilities several times, such
that it can be shown that after the algorithm has finished
running, there is a high probability that all links have fin-
ished scheduling at least once at the location of one of
the probabilities. This algorithm is O(log n) asymptoti-
cally optimal. As mentioned above, most distributed al-
gorithms are used to coordinate the interference between
links by some adaptive stochastic process, but due to the
natural uncertainty of stochastic algorithms, this makes
the algorithms often have low performance and some dis-
tance between them and the optimal solution.

There are also some recent works that solve the link
scheduling problem with machine learning (ML) techniques,
such as [7, 8, 9]. Specifically, In [7], a geometric machine
learning approach is used to solve the high mobility link
scheduling in device-to-device(D2D) networks. The local
graph around each D2D pair is modeled as a point by a

set of regularized Laplace matrices on a Riemann man-
ifold, and then the link scheduling decisions are classi-
fied in a supervised learning manner using the Riemann
metric in a geometric support vector machine approach
In [8], deep reinforcement learning is used to optimize re-
source allocation in software-defined networks by adaptive
bandwidth allocation. In [9], a random forest classifier is
used to control the millimeter wave radar to make opti-
mal link selection by user’s location and quality of ser-
vice requirements. These algorithms solve not the classi-
cal link scheduling problem, but only some specific appli-
cation problems containing the characteristics of the link
scheduling problem. Moreover, these algorithms are not
distributed algorithms, where all training is performed on
the same device, and there is a lack of relevant research on
distributed link scheduling for multi-agent learning.

Numerous studies have investigated the effectiveness
of real-time learning through environmental information
acquisition [20, 21, 22]. This approach has been found
to enhance algorithm performance, including in the con-
text of the multi-agent reinforcement learning we employ.
Multi-agent reinforcement learning (MARL) has gained in-
creasing attention in recent years as a promising approach
to modeling and solving complex problems. In the context
of reinforcement learning, the term “multi-agent” refers to
scenarios where there are two or more independent agents
that interact with the environment and potentially with
each other. These agents’ actions are influenced by the
environment, and they may have varying degrees of coop-
eration or competition with each other [23]. As a result,
MARL has been applied in various settings, ranging from
games and robotics to communication and transportation
systems. For example, some earlier studies have explored
how MARL can help two agents with opposite goals to
compete in a shared environment, while subsequent re-
search has looked at the potential of this approach in ad-
dressing specific challenges in multi-terminal communica-
tion [24, 25, 26, 27]. It is worth noting that in multi-
agent environments, the agents may have diverse options
for their next actions. If we treat the space of all agents
and their possible actions as a single entity, the size of
this space will grow exponentially as the number of agents
increases due to the combination of actions. However, a
large action space can be disastrous for the algorithm’s
solution process, limiting the scalability of the number of
agents to some extent [28].

3. Model And Problem Definition

We consider a NG-IoT scenario in which n nodes are
arbitrarily deployed in a two-dimensional Euclidean space.
V is the set of n nodes. For any two nodes i and j, we
use di,j to denote their Euclidean distance. Considering
that the devices in NG-IoT always have their demands on
information transmission, we use the set T to formulate
such a demand. Specifically, if a node i has some infor-
mation packets transmitted to j, we have (i, j) ∈ T , oth-

3

erwise (i, j) /∈ T . Define the size of the set of T to be m.
Assume that from each node there is only one link with
the current node as the sending node. For the case where
the same node has multiple transmission requirements, a
time-division multiplexing model can be used to complete
its required transmissions at different time periods, which
will not be discussed in this paper, in order to simplify our
model and algorithm design.

3.1. Communication Model

The information packets are transmitted via a single
hop wireless channel with physical interference constraint.
All nodes transmit in a half-duplex mode, which means
that a node can only listen to or send messages at one
moment. The data transmitted between nodes is divided
into packets of the same maximum size, so that all nodes
can use the same time for single packet transmission, and
we call the smallest unit of sending a single packet a time
slot. According to the IEEE 802.11 protocol for wireless
communication frames, a single wireless frame can hold a
maximum of pm = 2346 bytes of data. That is, for a data
to be transmitted with a size of K bytes, exactly ⌈ K

pm
⌉

successful communications are required between nodes.
It is assumed that all communication occurs within a

single channel. If there are multiple nodes sending mes-
sages simultaneously at the same moment, then there will
be interference between multiple transmissions. We use
the signal-to-interference-plus-noise ratio (SINR) model to
measure whether the nodes’ communication can be suc-
cessfully proceed under interference when node u sends a
wireless signal to v. Node v can receive messages from u
if and only if :

SINR(u, v) =
P/dαu,v

N +
∑

i∈S/{u} P/d
α
i,v

≥ β (1)

where N,α, β denote the global ambient noise, the signal
fading factor, and an acceptable threshold determined by
the physical device respectively, S is the set of nodes that
sent messages in the same time slot. N is considered as a
fixed constant in this paper. α is related to the environ-
ment in which the node is located and the physical medium
in which the signal propagates, and can be considered as
a constant in a fixed environment. β is also a constant
determined by the hardware of the devices.

All nodes take a uniform power to transmit their infor-
mation packet, which is determined by the transmission
radius of the node. If the transmission radius is R, then
the transmission power P = cNβRα, where c ≥ 1 is a con-
stant that is set with respect to the desired transmission
rate of the network.

For reliable information transfer, any point-to-point
data transfer requires that, in addition to the sender send-
ing data to the receiver, the receiver should send an ac-
knowledge (ACK) frame to the sender to confirm that the
current message has been received. That is, for communi-
cation from node i to j, we consider a transmission suc-
cessful and correctly completed if and only if j successfully

receives the data frame sent by i and i successfully receives
the ACK frame sent by j. Only if the sender success-
fully receives the ACK frame from the sender, the sender
will continue to send the next data frames, otherwise the
sender will assume that the current data frame was not
successfully delivered and repeat the data frame again.

In addition to the basic ability to send and receive mes-
sages, a given node knows the constants needed in com-
munication, including: N,R, α, β, c and n̂, where n̂ is a
constant upper limit for the number of nodes and its value
should be greater than the number of nodes n, and is avail-
able to all nodes.

3.2. Problem Definition

This paper focuses on how to maximize the throughput
of continuous communication tasks and reduce the trans-
mitting delay of nodes, so that more communication band-
width is available between nodes or more nodes can be ac-
commodated to complete the communication with limited
radio frequency resources.

In general, we term the communication requirement
from a node i to a node j as a link, denoted by li,j . Let’s
L be the set of link, and a link li,j ∈ L if and only if
(i, j) ∈ T . The problem is to choose Lt ⊆ L for any time
slots group t, where there are two time slots. For any
li,j ∈ Lt, node i sends the data frame to j in the first time
slot and j sends the ACK frame to i in the second time
slot.

The optimization objective of the current problem is to
maximize the sum of the available communication band-
widths of the nodes and to allow any link to maintain a
relatively constant bandwidth over a continuous period of
time. In other words, the current problem to deal with is
a multi-objective optimization problem where our goal is
to increase the overall bandwidth of the network as much
as possible while keeping the link communication stable.
And we expect to reach a Pareto Optimality solution.

Formally, we use the maximum delay to measure the
stability of network communication. The maximum delay
ltg(x) is defined as the maximum of the maximum delays
of all links within a contiguous set of time slots of length
x, which can be expressed as

ltg(x) = max
(i,j)∈T

lti,j(x) (2)

where lti,j(x) denotes the maximum delay of the link li,j
within a contiguous set of time slots of length x. We de-
fine x time slot groups are numbered as 1, 2, . . . , x. In
the x times of communication, we define the number of
successful link transmissions ns(x) (abbreviated to ns in
the absence of ambiguity) and the time series Ts(x) =
{t1, . . . , tns

} at each successful transmission, where ∀i ∈
[1, ns), ti < ti+1. Thus, the maximum delay of li,j can be
expressed as the following equation:

lti,j(x) =

{
max{t1, x− tsn ,maxi<ns

i=1 ti+1 − ti} ns ≥ 1
x ns = 0

(3)

4

In addition, we use the communication success rate of a
link over time to measure the current bandwidth size of
the network. The success rate of li,j :

sri,j(x) =
ns

x
(4)

In summary, the problem studied in this paper can be
expressed by the following equation:

max(i,j)∈T
sri,j(x)
lti,j(x)

,

s.t.

{
Lt ⊆ L, ∀t ∈ N
x > 1, ∀x ∈ N

(5)

3.3. Notations Table

The Table 1 explains the notations in this paper.

4. Multi-Agent Reinforcement Learning Approach

In this section, we present a multi-agent reinforcement
learning algorithm that solves our defined link scheduling
problem. Firstly, we clearly define the state in our multi-
agent reinforcement learning algorithm. Then, we show
that how to achieve a good state as the initial state of
our multi-agent reinforcement learning algorithm. Finally,
we show that how our multi-agent reinforcement learning
algorithm proceeds.

4.1. Definition of state

As is illustrated in the SINR model, multiple nodes
sending signals at the same time will interfere with each
other, and too much interference will greatly reduce the
success rate of communication. Constraining the number
of sending nodes in the same time slot can effectively re-
duce the interference, so we use the probability p to control
the sending of nodes, that is, for node i in li,j in each time
slot, i transmits with probability p and keep silent with
the rest probability 1− p.

Each node has its different environment for communi-
cation. some nodes have a large number of nodes nearby,
while some have a small number, and the signal strength
will be attenuated with the increase of distance, which
means that the interference generated by the sender seems
to be a “localized” phenomenon. When the number of
nearby nodes is small, this means that even with a rela-
tively high probability p, the receiving node suffers rela-
tively little interference, which improves the communica-
tion efficiency of the link. When the number of nodes is
large, the interference will prevent the nodes from receiv-
ing the signal properly, so it is important to set p smaller
to reduce the global interference and ensure the success
rate of communication. Therefore, the personalized p is
chosen for each node in order to effectively improve global
communication efficiency.

We define that the current communication probability
px used by node x as the current state stx of the node in
the algorithm. Then, S = {st1, . . . , stn} is the global state

of the whole multi-agent reinforcement learning system.
Note that when our algorithm is executed, each node only
knows its own state, and the global state is used only for
better description and analysis. After clearly define the
global state of our multi-agent reinforcement learning, we
can see that the state space exponentially increases when
the number of agents gets larger. If we randomly select a
state to start the exploration, it takes a long time to find
the optimal result. Thus, choosing an appropriate global
state as the initial state for exploration is very important.

For a node, its state domain is a continuous space, i.e.,
p ∈ (R). However, such a change has almost no effect
on the network when the values of the two probabilities
differ by a small amount. So we consider discretizing the
probabilities to some extent, which reduces the number of
states and thus speeds up the convergence. Specifically,
we set a probability sequence P whose size is ds, where
the ith element is defined as pi = 1/(4ci−1

1). In order that
the probability of exploration can be sufficiently small, it
should satisfy: ds > ⌈logc1 n̂⌉, where 1 < c1 ≤ 2 is a con-
stant that determines the sparsity of the chosen probabil-
ities. For example, when c1 = 2 and n̂ = 8, the generated
probability sequence should be 1/4, 1/8, 1/16, 1/32.

ID key(p) value(v)

1 1/4 xxx

2 1/8 xxx

...

node A

node B
node C

Figure 2: Example of weight dictionary

Each node maintains a dictionary of weights, where the
key of the dictionary is each probability value in the above
probability sequence and the value is the estimated value
corresponding to this weight. The current dictionary has
ds elements, which are listed in order of key from largest to
smallest as {p1, p2, . . . , pds}, and the corresponding value
as {v1, v2, . . . , vds}.

4.2. How to achieve a good state

The global state is a permutation of the states of each
node, so the number of global states grows exponentially
with the number of nodes, which means that the algorithm
will have to explore an immense space, which greatly re-
duces the probability to find a good state, thus making the
exploration process take a long time to reach a state that
transmits information efficiently.

In order to find an approximately optimal link schedul-
ing scheme quickly and with high probability to guarantee
that each link can be scheduled once in a certain time,
we use an O(log n)-approximate algorithm to find a good
state as the initial state of our multi-agent reinforcement
learning.

Suppose the current node is u and the target receiver
node is v. The ξ is an independent and uniformly dis-
tributed random variable with values [0, 1], and the func-
tion R(ξ) can sample the current random variable once.

5

Notation items Description

n Number of communication nodes in the network
V The set of communication nodes in the network
di,j The Euclidean distance between node i and node j
T The demands on information transmission of the nodes
N The global ambient noise
α The signal fading factor
β Acceptable threshold determined
R the transmission radius of the nodes
P The Euclidean distance between node i and node j
c Constants related to network transmission rate
li,j Communication requirement from node i to node j
L The set of link
ltg(x) The maximum of the maximum delays of all links within a contiguous set of time slots of length x
lti,j(x) The maximum delay of the link li,j within a contiguous set of time slots of length x
ns(x) or ns The number of successful link transmissions within a contiguous set of time slots of length x
sri,j(x) The success rate of li,j within a contiguous set of time slots of length x

Table 1: Notations

The pseudo-code of the distributed algorithm is shown as
Algorithm 1, where c0 is a parameter used to guarantee a
high probability of success of the algorithm.

Algorithm 1 Initialization algorithm

1: sn = 0, T = {}
2: for p ∈ P do
3: for i ∈ 4

pc0 lnn time slots groups do

4: if R(ξ) < p then
5: Send data in the first time slot
6: Listen to ACK in the second time slot
7: if Listened to the ACK from u then
8: sn := sn + 1
9: T := T ∪ {i}

10: end if
11: else
12: Halt
13: end if
14: end for
15: end for

For node u, at the end of the algorithm run, the algo-
rithm should populate the dictionary of weights based on
the parameters obtained in the algorithm. In the initial-
ization algorithm, the probability pi will run ri =

4
pi
c0 lnn

times, thus, the value corresponding to this probability in
the weighting dictionary should be:

vi =
sru,v(ri)

ltu,v(ri)
(6)

The above algorithm is similar to the one in [6], with
the difference that additional statistics on the parameters
are needed in the current algorithm, and it has been shown
that its algorithm has a high probability of successful com-
pletion. Algorithm 1 can be considered as an extension of
the original algorithm and combined with the analysis of

the original algorithm, in the problem of this paper, the
parameters used in the original algorithm are a subset of
the parameters used in the Algorithm 1, which means that
the current algorithm additionally tries at some probabil-
ities on top of the original algorithm to obtain more ac-
curate probabilistic information. This does not affect the
correctness and approximation of the algorithm.

In terms of application effects, the algorithm in [6] can
only achieve O(log n)-asymptotic optimality, and it is dif-
ficult to produce further optimization because of the ran-
domization limitation, however the optimal state found in
this way is only the starting state of the algorithm in this
paper.

4.3. The MARL based on a good state

As is mentioned above, for each node, it already has a
good but not the best state. Then, a ε-greedy reinforce-
ment learning scheme can be used by each node to find
a better solution in multiple iterations. The framework
diagram of the algorithm is shown in Fig. 3.

Period of iteration. A continuous set of time slice groups
d is used as the period of all nodes’ single attempts, i.e., no
node will change the currently selected p within a contin-
uous set of d time slice groups. To guarantee the validity
of the tries during this period, it should satisfy d ≥ 4N .
At the beginning of each iteration, a probability should be
chosen in this iteration, and at the end, the values in the
current dictionary will be updated using the data accumu-
lated in this iteration.

Selection of probabilities. For each individual node, at the
beginning of the iteration, the algorithm has the probabil-
ity of ε to choose a probability currently considered opti-
mal as the sending probability for the current time slice,
and has the probability of 1 − ε to choose any key with

6

 weight
dictionary

d time slot groups d time slot groups d time slot groups d time slot groups... ...

Iterations

Select probability

 weight
dictionary

 weight
dictionary

1 2 ... d Update value

... ...

... ...

node A node B node C

Figure 3: Diagram of our algorithm framework

equal probability in the current weight dictionary. For-
mally, the algorithm has the probability of ε, choosing

p
argmax

|P |
i=1 vi

(7)

and the probability of 1− ε to choose

pDU(1,ds) (8)

where DU(a, b) denotes a discrete uniform distribution in
the interval [a, b] with the existence of a ≤ b and a, b ∈ N.

Update the values in the dictionary. In a round of itera-
tion, a link li,j needs to record the number of successful
link transmissions ns within the time series T = {t1, . . . , tns}
at each successful transmission, where ∀i ∈ [1, ns), ti <
ti+1. If the probability of the current selection is pk, the
weight after updating would be:

v
′

k = γ · vk +
sri,j(d)

lti,j(d)
(9)

where sri,j(d), lti,j(d) is defined in Eq. 4, Eq. 3 respec-
tively and 0 < γ < 1 is the decay coefficient. A larger
decay coefficient can better preserve the historical informa-
tion, which is good for maintaining stability, and a smaller
decay coefficient can better obtain the information of new
iterations, which is good for fast convergence.

5. Simulation Experiments

In this section, a series of simulation experiments are
conducted to evaluate the convergence of our algorithm,
the superiority of the good state, the performance of the
algorithm, and other metrics. The simulation program is
written in C++ programming language, parallel acceler-
ated using the OpenMP library, and runs on a computer
with 32GB of memory, an Intel i9-12900k processor, and
the Windows 11 operating system.

All the links are randomly generated in a square area of
size AL×AL. When generating, first a node is generated as

Parameters Description Value

R Communication radius 25
N Global ambient noise 1
ε Parameter in ε-greedy scheme 0.02
γ Decay coefficient 0.95
lmin Minimum length of link 5
lmax Maximum length of link 20
c Multiplier constant in communi-

cation power
2

d Number of time slice groups in
an iteration

800

c0 Constant in Algorithm 1 2
c1 Common ratio weight dictionary 1.25
m Number of links 100
n̂ Upper limit of nodes 200

Table 2: Default simulation parameter setting

Parameters Description Value

α SINR signal fading pa-
rameter

{2, 4}

β SINR receiving thresh-
old parameter

{1.5, 2.5}

AL Deployment area
length

{100, 200, 400}

Table 3: Parameter settings used in the algorithm convergence ex-
periments

the sender of the link, and then another node is randomly
generated as the receiver in the optional area based on the
minimum length lmin and the maximum length lmax of the
link.

There are some general parameters set in the experi-
ment. As shown in Table 2. In all subsequent cases, the
program is executed with these parameters.

5.1. Convergence of the algorithm

In this part, we study the convergence of our algorithm.
Specifically, we mainly want to investigate whether our al-
gorithm can converge to the optimal value in terms of av-
erage throughput and maximum latency when the SINR
parameters α, β and node density vary. Here, we use Area
Length (AL) to denote the side length of the square area
where the node is deployed. Table 3 is the parameter set-
ting in the current part of the experiment.

The results of the current part of the experiment are
shown in Fig. 4 and Fig. 5. The horizontal axis of the
graph represents the number of iterations of the algorithm.

In Fig. 4, the vertical axis is the average throughput of
all nodes in one round of communication. This figure has
three subplots, each representing a different node density.
The number of links is fixed here, what changes is the size
of the area where the links are deployed. In each subplot

7

0 5000 10000 15000 20000 25000 30000
Number of iterations

0.025

0.030

0.035

0.040

0.045

0.050

0.055

Av
er

ag
e

th
ro

ug
hp

ut

= 2, = 1.5
= 2, = 2.5
= 4, = 1.5
= 4, = 2.5

(a) Area = 100× 100

0 5000 10000 15000 20000 25000 30000
Number of iterations

0.05

0.06

0.07

0.08

0.09

Av
er

ag
e

th
ro

ug
hp

ut

= 2, = 1.5
= 2, = 2.5
= 4, = 1.5
= 4, = 2.5

(b) Area = 200× 200

0 5000 10000 15000 20000 25000 30000
Number of iterations

0.090

0.095

0.100

0.105

0.110

0.115

Av
er

ag
e

th
ro

ug
hp

ut

= 2, = 1.5
= 2, = 2.5
= 4, = 1.5
= 4, = 2.5

(c) Area = 400× 400

Figure 4: Average throughput of the algorithm for different α, β

0 5000 10000 15000 20000 25000 30000
Number of iterations

100

150

200

250

300

M
ax

im
um

 la
te

nc
y

Area = 200 × 200
Area = 400 × 400

(a) β = 1.5

0 5000 10000 15000 20000 25000 30000
Number of iterations

100

150

200

250

300

350

400

450

M
ax

im
um

 la
te

nc
y

Area = 200 × 200
Area = 400 × 400

(b) β = 2.5

Figure 5: Maximum delay of the algorithm with the number of iterations for different β

8

there are four lines for different α, β, representing different
network environments.

Observing the four curves of the three subplots in Fig.
4, we can see that when α is small, the interference gener-
ated in the environment becomes relatively strong, and the
average throughput at this time is relatively small. Vice
versa, it is rather large. This is consistent with the ac-
tual situation that the signal fading is enhanced when α
is larger, and thus the interference is weakened. When β
is larger, this receiving device is more sensitive to interfer-
ence, so there is a lower average throughput than a smaller
β, which is also consistent with the actual situation. From
the subplots, we can see that our algorithm can improve
the average throughput to some extent and converge when
it reaches relative stability.

Compared with Fig. 4(a),Fig. 4(b), the enhancement
of the reinforcement learning algorithm in Fig. 4(a) is rel-
atively small. This is because, due to the large density
of nodes, the distribution has a high probability of hav-
ing more nodes within the communication radius of the
node. The node is subject to interference located on a
higher magnitude. At this time, the good state found by
the initialization algorithm has been better selected for
the probability of sending. Only a few local links are dis-
tributed more sparsely. The probabilities obtained by the
initialization algorithm have space for further optimiza-
tion, but for the global average throughput, this appears
to be relatively small.

Comparing these three subplots, we can find that the
algorithm can converge using a shorter number of itera-
tions as the link distribution becomes sparse. Fig. 4(a),
4(b), 4(c) reach the optimal value and start converging
at about 20000, 10000 and 8000 iterations, respectively.
This is because, as the interference decreases, the link can
better obtain the evaluation of the current transmission
probability in the global environment rather than the eval-
uation failing due to severe interference. As the links be-
come sparser, the average throughput of a single link be-
comes larger, which is realistic given the limited wireless
resources of a single channel.

In Fig. 5, the vertical axis represents the maximum
value of the maximum delay among all nodes within one
iteration. This part of the experiment was performed when
α = 4 and AL ∈ {200, 400}, and two subplots with differ-
ent β are represented.

Each subplot has two curves indicating the maximum
latency in different network area. As seen from the two
subplots, in the case of relatively sparse link distribution,
the algorithm can effectively reduce the size of the maxi-
mum delay further based on the initialized algorithm maxi-
mum delay and keep it stable after a certain number of iter-
ations. At AL = 200, where the links are relatively dense,
a small amount of data with sudden growth in maximum
latency occurs, such as in Fig. 5(a) at around 6000 iter-
ations, and in Fig. 5(b) at around 17000 iterations. This
is because a localized failure in the reinforcement learn-
ing exploration may heavily impact the behaviors of other

Parameters Description Value

α SINR signal fading pa-
rameter

{2, 4}

β SINR receiving threshold
parameter

{1.5, 2.5}

AL Deployment area length {100, 200}

Table 4: Parameter settings used in good state experiments

nodes in the dense situation.
Through these experiments, we have verified the con-

vergence and effectiveness of our proposed algorithm when
the network parameters vary.

5.2. Effectiveness of good state

As is mentioned in our algorithm design, starting the
exploration from a good state makes our multi-agent rein-
forcement learning quicker to find the optimal solution. In
this part, we will verify the above conclusion by conduct-
ing ablation experiments on the part of the initialization
to find a good state. Suppose the existing initialization
algorithm is not used at the beginning. In this case, the
value is undefined in the weight dictionary of each node,
and all undefined values are considered to be −∞ when
computing the maximum value. In other words, the ex-
ploration randomly starts from a state. TABLE 4 is the
parameter setting in the current part of the experiment.

There are eight subplots in Fig. 6, each with a dif-
ferent deployment environment. There are two curves in
each subplot, which indicate with and without initializa-
tion algorithm. The meanings of the horizontal and verti-
cal coordinates in the figure are the same as those in the
previous part and are not repeated here. Compared with
the algorithm without initialization, the algorithm with
initialization has the following points: (1) the algorithm
using initialization can converge faster, shown in all sub-
plots. (2) It can bring more throughput over a long time
from the beginning of the algorithm, which is evident in
6(f), 6(h). (3) The algorithm with initialization can con-
verge to higher throughput, which is evident in 6(b), 6(f).

Through the above experiments, we can find that in
various environments, the algorithm with initialization con-
verges to the best state more quickly than the algorithm
without initialization, so our choice to use the initializa-
tion algorithm is very meaningful and can achieve great
benefits.

5.3. Performance Analysis

After finding the good state, the reinforcement learning
algorithm can be used to make the chosen communication
probability more justified and further reach a better state,
thus achieving higher throughput and lowering the maxi-
mum latency.

In this part, we study the performance of the rein-
forcement learning algorithm after finding a good state.

9

0 5000 10000 15000 20000 25000 30000
Number of iterations

0.015

0.020

0.025

0.030

0.035

0.040

Av
er

ag
e

th
ro

ug
hp

ut

with initialization
without initialization

(a) α = 2, β = 1.5,AL = 100

0 5000 10000 15000 20000 25000 30000
Number of iterations

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

0.0250

0.0275

0.0300

Av
er

ag
e

th
ro

ug
hp

ut

with initialization
without initialization

(b) α = 2, β = 2.5,AL = 100

0 5000 10000 15000 20000 25000 30000
Number of iterations

0.025

0.030

0.035

0.040

0.045

0.050

0.055

Av
er

ag
e

th
ro

ug
hp

ut

with initialization
without initialization

(c) α = 4, β = 1.5,AL = 100

0 5000 10000 15000 20000 25000 30000
Number of iterations

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

Av
er

ag
e

th
ro

ug
hp

ut

with initialization
without initialization

(d) α = 4, β = 2.5,AL = 100

0 5000 10000 15000 20000 25000 30000
Number of iterations

0.02

0.03

0.04

0.05

0.06

0.07

Av
er

ag
e

th
ro

ug
hp

ut

with initialization
without initialization

(e) α = 2, β = 1.5,AL = 200

0 5000 10000 15000 20000 25000 30000
Number of iterations

0.040

0.042

0.044

0.046

0.048

0.050

Av
er

ag
e

th
ro

ug
hp

ut

with initialization
without initialization

(f) α = 2, β = 2.5,AL = 200

0 5000 10000 15000 20000 25000 30000
Number of iterations

0.02

0.04

0.06

0.08

Av
er

ag
e

th
ro

ug
hp

ut

with initialization
without initialization

(g) α = 4, β = 1.5,AL = 200

0 5000 10000 15000 20000 25000 30000
Number of iterations

0.065

0.070

0.075

0.080

0.085

0.090

Av
er

ag
e

th
ro

ug
hp

ut

with initialization
without initialization

(h) α = 4, β = 2.5,AL = 200

Figure 6: Effect of initialization under different α, β,AL on the variation of the average throughput of the algorithm with the number of
iterations

= 2, = 1.5 = 2, = 2.5 = 4, = 1.5 = 4, = 2.5
Parameter Setting

0.00

0.01

0.02

0.03

0.04

0.05

Av
er

ag
e

th
ro

ug
hp

ut

13.8%

14.6%

9.8%

12.5%
RLS
RLLS

(a) Area = 100× 100

= 2, = 1.5 = 2, = 2.5 = 4, = 1.5 = 4, = 2.5
Parameter Setting

0.00

0.02

0.04

0.06

0.08

Av
er

ag
e

th
ro

ug
hp

ut

11.3%

9.6%

10.6% 13.9%RLS
RLLS

(b) Area = 200× 200

= 2, = 1.5 = 2, = 2.5 = 4, = 1.5 = 4, = 2.5
Parameter Setting

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Av
er

ag
e

th
ro

ug
hp

ut

8.4%

7.0%

12.1% 10.6%RLS
RLLS

(c) Area = 400× 400

Figure 7: Performance statistics of average throughput for different α, β,AL

10

= 4, = 1.5
Area = 200 × 200

= 4, = 2.5
Area = 200 × 200

= 4, = 1.5
Area = 400 × 400

= 4, = 2.5
Area = 400 × 400

Parameter Setting

0

50

100

150

200

250
M

ax
im

um
 la

te
nc

y

34.6%

31.9%

13.3% 5.9%

RLS
RLLS

Figure 8: Performance statistics of maximum latency for different
β,AL

We measure how much improvement can be achieved by
continuously iterating and finding a better state compared
to always using the good state.

The average throughput and maximum latency statis-
tics are shown in Fig. 7, Fig. 8, respectively. The method
always using the probability in good state are termed as
the Random Link Scheduling (RLS) and the method use
reinforcement learning to further explore the probability
from the good state is termed as Reinforcement Learn-
ing Link Scheduling (RLRS). The two figures compare the
performance of the above two methods.

It can be observed that reinforcement learning algo-
rithms always deliver performance improvements of 7% to
14% in average throughput. The exact value that can be
improved is related to the layout of the links in the ran-
domly generated network. In some layouts, the good state
found by the initialization algorithm is already close to
the optimal solution, which leads to little room for further
optimization afterwards. In terms of maximum latency,
the algorithm can effectively reduce the latency per link
by a maximum of between 6% and 35%. This can further
ensure the fairness of transmission between links.

Through our experiments, we found that using rein-
forcement learning can indeed improve the throughput and
reduce the latency of communication. The key to achiev-
ing these improvements is the continuous game among the
nodes to find a transmission probability that can improve
the average throughput and reduce the delay without caus-
ing significant interference to other nodes in the network.
In this process, each node continuously adjusts its trans-
mission probability based on the success rates and delays of
its own transmission and other nodes’ transmissions in the
network. The algorithm encourages nodes to use a higher
transmission probability as long as it does not cause signif-
icant interference with other nodes. Ultimately, the algo-
rithm discovers the optimal transmission probability that
maximizes channel utilization, and this is precisely why re-
inforcement learning algorithms are facilitating these im-
provements.

5.4. Experimental conclusions

Through extensive simulation experiments, we verified
the convergence of the algorithm proposed in this paper
and conducted ablation experiments on the initialization
part of the algorithm to illustrate the effectiveness of the
initialization part in the algorithm. After that, we fur-
ther analyzed the algorithm’s performance in the reinforce-
ment learning part and counted the magnitude of the op-
timization in both the average throughput and the max-
imum delay after using the reinforcement learning algo-
rithm. These simulation experiments provide rich data to
support the effectiveness of our proposed algorithm above.

6. Conclusion

This paper studies a link scheduling problem in next
generation Internet of Things networks with multi-agent
reinforcement learning technique. Different from the tra-
ditional stochastic ones that approximate to the optimal
solution with some factors, the machine learning technique
is helpful in finding the most optimal solution. Whereas
the multi-agent reinforcement learning technique cannot
be directly adopted to solve the link scheduling problem
since its state space exponentially increases when the num-
ber of agents gets larger, which results in an unaccept-
able exploring time. To overcome these challenges, in our
multi-agent reinforcement learning algorithm, we first use
a randomized sub-algorithm to obtain a good state within
polynomial time steps. Then, our multi-agent reinforce-
ment learning will do its exploration from the good state.
Numerical simulations are conducted to show that the se-
lection of a good state significantly helps in finding the
most optimal state from the complex state space. Extend-
ing our method to some more complex network scenarios
will be our work in the future.

Acknowledgment

This work was supported in part by the National Nat-
ural Science Foundation of China (NSFC) under Grant
62102232 and Natural Science Foundation of Shandong
province under Grant ZR2021QF064.

References

[1] C. Chen, J. Jiang, Y. Zhou, N. Lv, X. Liang, S. Wan, An edge
intelligence empowered flooding process prediction using inter-
net of things in smart city, Journal of Parallel and Distributed
Computing 165 (2022) 66–78.

[2] J. Gou, L. Sun, B. Yu, S. Wan, W. Ou, Z. Yi, Multi-level
attention-based sample correlations for knowledge distillation,
IEEE Transactions on Industrial Informatics (2022).

[3] O. Goussevskaia, Y. A. Oswald, R. Wattenhofer, Complexity in
geometric sinr, in: Proceedings of the 8th ACM international
symposium on Mobile ad hoc networking and computing, 2007,
pp. 100–109.

[4] B. Huang, J. Yu, D. Yu, C. Ma, Sinr based maximum link
scheduling with uniform power in wireless sensor networks, KSII
Transactions on Internet and Information Systems (TIIS) 8 (11)
(2014) 4050–4067.

11

[5] T. Kesselheim, B. Vöcking, Distributed contention resolution in
wireless networks, in: International Symposium on Distributed
Computing, Springer, 2010, pp. 163–178.

[6] M. M. Halldórsson, P. Mitra, Nearly optimal bounds for dis-
tributed wireless scheduling in the sinr model, Distributed Com-
puting 29 (2) (2016) 77–88.

[7] R. Shelim, A. S. Ibrahim, Geometric machine learning over rie-
mannian manifolds for wireless link scheduling, IEEE Access 10
(2022) 22854–22864.

[8] W.-x. Liu, J. Lu, J. Cai, Y. Zhu, S. Ling, Q. Chen, Drl-plink:
Deep reinforcement learning with private link approach for mix-
flow scheduling in software-defined data-center networks, IEEE
Transactions on Network and Service Management (2021).

[9] C. Tatino, N. Pappas, I. Malanchini, L. Ewe, D. Yuan, Learning-
based link scheduling in millimeter-wave multi-connectivity sce-
narios, in: ICC 2020-2020 IEEE International Conference on
Communications (ICC), IEEE, 2020, pp. 1–6.

[10] D. Yang, K. Gong, J. Ren, W. Zhang, W. Wu, H. Zhang, Tc-
flow: Chain flow scheduling for advanced industrial applications
in time-sensitive networks, IEEE Network 36 (2) (2022) 16–24.

[11] G. Sharma, R. R. Mazumdar, N. B. Shroff, On the complex-
ity of scheduling in wireless networks, in: Proceedings of the
12th annual international conference on Mobile computing and
networking, 2006, pp. 227–238.

[12] L. Jiang, D. Shah, J. Shin, J. Walrand, Distributed random ac-
cess algorithm: scheduling and congestion control, IEEE Trans-
actions on Information Theory 56 (12) (2010) 6182–6207.

[13] C. Joo, X. Lin, N. B. Shroff, Understanding the capacity region
of the greedy maximal scheduling algorithm in multihop wire-
less networks, IEEE/ACM Transactions on Networking 17 (4)
(2009) 1132–1145.

[14] T. Moscibroda, R. Wattenhofer, The complexity of connectivity
in wireless networks, in: INFOCOM 2006: 25th Annual Joint
Conference of the IEEE Computer and Communications Soci-
eties, Barcelona, Spain, 2006.

[15] J. Yu, B. Huang, X. Cheng, M. Atiquzzaman, Shortest link
scheduling algorithms in wireless networks under the sinr model,
IEEE Transactions on Vehicular Technology 66 (3) (2016) 2643–
2657.

[16] T. Kesselheim, A constant-factor approximation for wireless ca-
pacity maximization with power control in the sinr model, in:
Proceedings of the twenty-second annual ACM-SIAM sympo-
sium on discrete algorithms, SIAM, 2011, pp. 1549–1559.

[17] M. Andrews, M. Dinitz, Maximizing capacity in arbitrary wire-
less networks in the sinr model: Complexity and game theory,
in: IEEE INFOCOM 2009, IEEE, 2009, pp. 1332–1340.

[18] D. Qian, D. Zheng, J. Zhang, N. B. Shroff, C. Joo, Distributed
csma algorithms for link scheduling in multihop mimo net-
works under sinr model, IEEE/ACM Transactions on Network-
ing 21 (3) (2012) 746–759.

[19] A. Fanghänel, S. Geulen, M. Hoefer, B. Vöcking, Online ca-
pacity maximization in wireless networks, in: Proceedings of
the twenty-second annual ACM symposium on Parallelism in
algorithms and architectures, 2010, pp. 92–99.

[20] Q. Hu, S. Wang, Z. Xiong, X. Cheng, Nothing wasted: Full con-
tribution enforcement in federated edge learning, IEEE Trans-
actions on Mobile Computing (2021).

[21] C. Wang, Q. Hu, D. Yu, X. Cheng, Online learning for failure-
aware edge backup of service function chains with the minimum
latency, arXiv preprint arXiv:2201.06884 (2022).

[22] C. Peng, Q. Hu, Z. Wang, R. W. Liu, Z. Xiong, Online learn-
ing based fast-convergent and energy-efficient device selection
in federated edge learning, IEEE Internet of Things Journal
(2022).

[23] K. Zhang, Z. Yang, T. Başar, Multi-agent reinforcement learn-
ing: A selective overview of theories and algorithms, Handbook
of reinforcement learning and control (2021) 321–384.

[24] M. L. Littman, Markov games as a framework for multi-agent
reinforcement learning, in: Machine learning proceedings 1994,
Elsevier, 1994, pp. 157–163.

[25] J. Choi, S. Oh, R. Horowitz, Distributed learning and coopera-

tive control for multi-agent systems, Automatica 45 (12) (2009)
2802–2814.

[26] J. Cortes, S. Martinez, T. Karatas, F. Bullo, Coverage control
for mobile sensing networks, IEEE Transactions on robotics and
Automation 20 (2) (2004) 243–255.

[27] D. Kim, S. Moon, D. Hostallero, W. J. Kang, T. Lee, K. Son,
Y. Yi, Learning to schedule communication in multi-agent re-
inforcement learning, arXiv preprint arXiv:1902.01554 (2019).

[28] P. Hernandez-Leal, B. Kartal, M. E. Taylor, A survey and cri-
tique of multiagent deep reinforcement learning, Autonomous
Agents and Multi-Agent Systems 33 (6) (2019) 750–797.

12

	Introduction
	Related Work
	Model And Problem Definition
	Communication Model
	Problem Definition
	Notations Table

	Multi-Agent Reinforcement Learning Approach
	Definition of state
	How to achieve a good state
	The MARL based on a good state

	Simulation Experiments
	Convergence of the algorithm
	Effectiveness of good state
	Performance Analysis
	Experimental conclusions

	Conclusion

