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Abstract—As the radio spectrum has become the bottleneck re-
source with increasing volume of mobile data and ultra-dense net-
work deployments, it is crucial to use spectrum more flexibly in
time, space, and frequency dimensions. However, higher efficiency
in spectrum usage facilitated by flexible spectrum allocation
comes with a cost, namely the increased complexity of spectrum
monitoring and management. Identifying the transmitters is at
the interest of particularly spectrum enforcement authorities to
ensure that spectrum is used as intended by the legitimate users
of the spectrum. For a scalable, efficient, and highly-accurate
operation, we propose a crowd-sensing based solution where
sensing devices report their measured receive power levels to
a central entity which later fuses the collected information for
localizing an unknown number of transmitters. Our solution,
referred to as DeepTxFinder, leverages deep learning to handle
many sources of uncertainty in the operation environment:
namely number of transmitters, their transmission power lev-
els, and channel conditions (shadowing). Using deep-learning,
DeepTxFinder distinguishes itself from the prior state-of-the art
which requires knowledge of the number and transmission power
of transmitters or require the transmitters to be well separated
in space by tens to hundreds of meters making them ill-suited
for application in expected ultra-dense deployment of small-
cells. Moreover, we propose a tiling-based approach to increase
the scalability of our proposal by reducing the computational
complexity. Our simulation studies show that DeepTxFinder can
provide a high detection accuracy even only by collecting data
from a very small number of sensors. More specifically, with
1 %–2 % sensor density DeepTxFinder can estimate the number
of transmitters and their locations with high probability which
proves that sparse sensing is feasible.

I. INTRODUCTION

One of the promises of the fifth generation of wireless
networks (5G) is the flexibility in spectrum allocation and
use. For example, in sharp contrast to traditional spectrum
allocation in a nation-wide scale and for tens of years, more
dynamic allocation of the spectrum at a finer granularity
and for shorter time periods is considered [1]–[3]. Given
that spectrum has become the bottleneck resource due to
the increasing mobile data volumes and as a consequence
of inefficiency of static spectrum allocation, this flexibility
can facilitate realizing many benefits that 5G is expected to
deliver. For example, private industrial networks can manage
their services with guaranteed performance bounds, without
depending on the traditional wireless network operators, using
the spectrum license acquired for their operation area, e.g., an
automotive factory. Recently in Finland and Sweden, a micro-
operator has started to provide service for industrial private

networks, e.g., shipping ports, using the leased spectrum from
a mobile network operator.

On the other hand, the resulting fragmentation in the
spectrum, both in temporal and spatial domain, leads to
a significant challenge of spectrum management. Both the
network operators and the spectrum enforcement authorities
need to monitor spectrum usage to make sure that the spectrum
is used as intended by the legitimate owners. In addition to
intentional misuse of the spectrum, unintentional violation
of spectrum rights might occur due to misconfigurations or
system bugs. The latter might be experienced even more
frequently due to the increasing trend toward software-defined
radios (SDR) platforms. Current spectrum misuse detection
schemes are laborious, operate reactively based on complaints,
and requires an expert physically being present in the area of
the interest [4]. However, with increasing spectrum flexibility,
providing a scalable, efficient, and highly-accurate misuse
detection scheme is crucial. Our goal in this paper is to develop
a misuse detection scheme possessing these merits.

In this paper, we introduce deep-learning based transmitter
finder, DeepTxFinder for short, which leverages the existing
wireless devices to populate sensing data from the area of the
interest and uses machine learning to predict the transmitters’
locations. The transmitters who are localized and are not
identified as the legitimate ones are then marked as spectrum
misusers. A further closer look might be implemented by the
regulatory body on these transmitter locations, which is out of
scope of this paper. The crowd-sensing approach employed
by DeepTxFinder offers scalability whereas deep learning
approach ensures efficiency and high accuracy even under
sparse spectrum sensing observations, i.e., small number of
sensing devices. Since DeepTxFinder desires to be scalable,
it does not require special hardware on the sensing devices
and uses only received-signal-strength (RSS) information as
the sensing report from a sensing device.

While there is a few works in the literature based on
crowd-sourced transmitter localization [5]–[9], unfortunately,
their application is limited to very specific, in fact unrealistic,
cases where the transmitters are separated with a significant
distance of tens or hundreds of meters and all the radio
channel characteristics as well as the number of transmitters
and their transmit power values are known at the localization
entity. More generic frameworks such as BigSpec [10], similar
to DeepTxFinder, strive for scalability as spectrum sensors



generate a massive amount of data that has to be processed
in near-real time. The closest works to ours are [11] and [12]
which operate without knowing the number transmitters and
their transmission powers. Our solution differs from these two
works in that we design a deep-learning based approach. To
the best of our knowledge, ours is the first study applying deep
learning for multiple transmitter localization.
DeepTxFinder differs from prior work as follows:
• Data-driven: It takes a data-driven approach to localize an

unknown number of transmitters which can transmit at dif-
ferent power levels and under different radio conditions even
under strong shadowing. In the training phase, the neural
network (NN) needs merely coarse information about chan-
nel propagation, namely the slope of distance-dependent
pathloss. As a result, DeepTxFinder is very robust against
uncertainties in shadowing and transmit power levels.

• Zero knowledge: DeepTxFinder does not require knowl-
edge of the number of transmitters. Moreover, Deep-
TxFinder can distinguish between two transmitters even
if they are very close to each other, e.g., five meters in
our simulations. This is a significant improvement over the
existing solutions such as [5] which can identify multiple
transmitters only if they are separated by at least a few
hundred meters. Note, that a robust operation under such
dense settings is essential given the increasing density of
deployments, e.g., ultra-dense networks.

• Scalability: DeepTxFinder works in very large environ-
ments, which is achieved by the adoption of a state-of-
the-art solution to our problem. Specifically, DeepTxFinder
divides the operation area into spatial tiles and processes
them before fusing together. By tuning the number of tiles,
DeepTxFinder can achieve the desired balance between the
accuracy and its training and run-time complexity.

II. RELATED WORK

RSS-based multiple transmitter localization: To keep sens-
ing process simple, RSS-based crowdsensing schemes require
the sensing entities to report only their perceived received sig-
nal strength values. Examples of this approach are SPLOT [6],
Quasi-EM [5], and several others listed in [7]. SPLOT [6]
identifies an unknown number of spectrum offenders using
crowdsensing by first identifying possible transmitter locations
that correspond to local maxima of spectrum measurements.
As our performance analysis shows SPLOT might lead to high
false alarms in the presence of complex radio propagation
conditions, i.e., shadowing, due to many local maximas raising
the question on the applicability of SPLOT to these cases.
Quasi EM [5] is an iterative approach finding the transmitter
locations with the knowledge of the exact number of transmit-
ters and the transmission power. Ureten et al. [7] present an
overview of single and multiple transmitter localization meth-
ods such as nearest neighbour or Kriging-based interpolation.
Both approaches presented in [7] and Quasi EM [5] assume
that the number of transmitters is known. Moreover, both
approaches require certain transmitter model (e.g., channel
propagation model) and knowledge of this model, e.g., the

transmitters are separated by at least a distance of 300 meters
as these works aim at localizing legacy transmitters which are
base stations of a cellular network.

Similar to our work, [12]–[15] do not assume knowledge
of the number of transmitters. [12] proposes to localize
transmitters based on finding the most-likely hypothesis that
would result in the observed signal distribution. A hypothesis
represents a case where the transmitter is at a specific location
and transmitting with a specific power level. While operating
without channel knowledge is a merit of [12], hypotheses
testing in [12] requires to build a model of all joint-probability
distributions of observations at two different sensors for each
hypothesis. Moreover, the number of hypothesis and thereby
the complexity increases with the increase in number trans-
mitters (exponentially) and considered area (linearly). Finally,
Joneidi et al. [11] propose to use directional antennas for
transmitter localization which requires more expensive sensing
devices and is hard to apply to crowd-sensing environments
due to the need of calibration of the sensing devices.

Spectrum misuse detection: A second line of work to identify
spectrum misuse without localizing the spectrum offenders
suggests using spectrum permits [16], [17]. In this approach
such as Gelato [18], each transmitter embeds a spectrum-use
authorization in its transmitted signal so that the receivers (e.g.,
crowdsourced sensors or a managed infrastructure) decode
the signal and verify the legitimacy of the transmitter. In
case the receivers cannot verify, then the signal is marked
as an illegitimate one. While spectrum permits are supposed
to be for one-time use only, another approach [19], [20] in
this spirit suggests that the spectrum enforcement authority
assigns a unique identity to each transmitter which will be
embedded in every signal the transmitter emits. While these
schemes offer detecting the unauthorized transmitters, they do
not localize the transmitter. Compared to spectrum permits
implemented at physical layer, RSS based transmitter localiza-
tion is lightweight, e.g., requires neither a permit distribution
infrastructure nor permit detection at the sensing devices.

III. SYSTEM MODEL

We assume a system as depicted in Figure 1 where a
central node, e.g., located at the regulatory body or at a third-
party service, is responsible of spectrum misuser identification.
Consider M spectrum offenders (transmitters that do not have
the spectrum rights) with unknown locations. We denote their
2D locations by Q = [Q1, Q2, · · · , QM ] where Qi = [xi, yi].
We assume a stationary signal emitted by a misuser for a
period long enough to be identified by spectrum sensing. We
denote the transmission power for a transmitter by P itx. Note
that each transmitter might operate at a different power level.
There are J spectrum sensing devices at locations denoted by
S = [S1, · · · , SJ ] where Sj = [xj , yj ]. We assume that both
the transmitters and the spectrum devices are static during
a single sensing round. Since spectrum sensors are crowd
devices, they can be anywhere in the considered area of
interest. Moreover, we assume that each sensing device is able
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Figure 1. Spectrum monitoring and misuse detection by crowdsourcing.
DeepTxFinder is part of the solution and its goal is to localize the transmitters
according to the sensing data, e.g., received-signal-strength (RSS) measure-
ments, collected from the crowdsensing sensors.

to measure its own location with high accuracy and share it
with DeepTxFinder controller.1

We assume that the inexpensive sensing devices cannot
separate the signal from the transmitters and instead observe
the aggregated signal power from all transmitters. Let us
denote the received signal power at Sj from transmitter i by
Hi,j . The total signal strength received by Sj is equal to

Hj =

M∑
i=1

Hi,j , (1)

where we define Hi,j as

Hi,j = PL(d(i, j)) + xσ, (2)

where d(i, j) represents the euclidean distance between i and
j, PL is the distance-dependent pathloss, and xσ ∼ N(0, σ2)
is a normally distributed shadowing term with variance σ2

which represents shadowing due to obstacles, e.g., trees.
The information collected at the controller is then the

observation vector which is a vector of sensing outcome
labeled with the sensor’s location: H = [< Hj , xj , yj >]. A
transmitter localization scheme denoted by f can be described
as f(H) = Q′ and Q′ = [Q

′

0, · · · , Q
′

k] where Q
′

k denotes the
location of the kth transmitter identified by the localization
scheme. Note that f might not identify all the transmitters
(referred to as misdetection) or might falsely detect the exis-
tence of a transmitter (referred to as false alarms). Comparing
the ground truth Q with the predicted locations Q′, we can
calculate the following metrics [6], [21]:
• Cardinality error (εc): It is the difference between the num-

ber of actual transmitters and the claimed ones independent
of the accuracy of the locations. We report both absolute
values for cardinality error, i.e., εc(Q,Q′) = abs(|Q|−|Q′|)

1For privacy preserving schemes, the sensor locations can include some
noise. We do not consider this option, however we reserve the analysis for a
future work as we believe it is critical to ensure privacy of the sensors.

and the signed cardinality error to have more insights on
false alarms and misdetections.

• False alarm and detection probability: False alarm is the
probability that a transmitter location is a false alarm
calculated as εfa = (|Q| − |Q′|)/|Q′| when |Q′| >
|Q|. Misdetection probability (εmd) is calculated similarly:
εmd = (|Q| − |Q′|)/|Q| when |Q′| 6 |Q|. Note that false
alarms might be more tolerable compared to misdetections.
However, false alarms should be minimized to save from
laborious task of actually spotting the transmitter in the
proximity of the reported locations.

• Localization error (Lerr): It is the minimum error consid-
ering all the possible combinations of mapping between the
actual and predicted locations. The error calculated between
a transmitter’s actual and predicted location is the root mean
squared error of the distance between these two points. The
localization error is then the minimum of the average error
observed over all the mappings. Note that if the number
of detected and actual locations do not match, we take all
permutations of the size equal to the size of the smaller set.

IV. DEEPTXFINDER: DEEP-LEARNING BASED
TRANSMITTER FINDER

In this section, we describe our approach for the localization
of multiple transmitters from the sensing data provided by
the crowdsensing devices. Multiple transmitter localization
becomes challenging for several reasons [6]. First, the num-
ber of transmitters is unknown. Moreover, the transmitters
might transmit with different power levels. The observation
at a sensor will be a superposition of signals from multiple
transmitters where each signal will be affected by different
channel propagation characteristics, i.e., different distance
and shadowing conditions. Since the receivers cannot sepa-
rate these signals, RSS-based multiple transmitter localization
(MTL) becomes a hard problem. However, compared to other
approaches such as time-of-arrival (TOA) or angle-of-arrival
(AOA), RSS-based localization requires neither the knowledge
of the signal structure as in TOA and AOA nor the multiple
antennas as in AOA methods. Therefore, our goal is to
design a low-cost and accurate MTL approach that can locate
an unknown number of transmitters using only the power
measurements provided by the crowd-sensing devices.

More formally, the MTL problem is to determine the
location and transmitter power of existing transmitters using
the observations collected from a set of sensors [14]. Since
there are many uncertainties, we prefer to use a learning-
based approach which can handle the complexities emerging
as a result of the uncertainties in the number and operation
power of transmitters and the channel characteristics between
the transmitters and the sensing devices. In the next section,
we provide more details on the design of DeepTxFinder.

A. Overview of DeepTxFinder

DeepTxFinder relies on supervised learning and takes a two-
step approach as depicted in Figure 2. First, DeepTxFinder
predicts the number of transmitters. Using the output from its



Figure 2. DeepTxFinder architecture: two step approach. First CNN is used
to detect the number of transmitters, while second CNN estimates actual 2D
locations of that many transmitters.

first step, DeepTxFinder predicts the locations of that many
transmitters. For the sake of scalability, DeepTxFinder divides
the operation area into smaller grids, e.g., 1 m× 1 m squares,
and then processes the sensing data (represented in power in
dBm) to map them to the grids. We refer to this sensing
data as sensing matrix with entities ∆ = [∆o,p]m×m where
∆o,p is the receive power in dBm observed in the (o,p)-grid.
Since there may not be any sensing data for some of the
grid cells, DeepTxFinder sets the sensing data for such grids
to a value below the noise floor of the sensing device, e.g.,
−100 dBm. Next, the sensing data is normalized to interval
[0, 1] where 0 represents the cells with missing sensing data:
∆o,p =

∆o,p+100
max∆

.
The sensing matrix is then fed into the first convolutional

neural network (CNN) depicted in Figure 2. The output of
the first CNN is the number of transmitters which is used to
select the respective second CNN. As DeepTxFinder aims at
identifying an unknown number of transmitters, we include in
the second step N +1 many CNNs where N is the maximum
number of transmitters expected to be in the operation area.
Note that one can calculate N by accounting for the transmitter
coverage area at the considered operation spectrum as well
as using some historical data on the number of transmitters
in an area of interest. Each CNN corresponds to a scenario
with a particular number of transmitters, e.g., 0 transmitters
to N transmitters. The input to second CNNs is also the
sensing matrix while the output is a set of two-dimensional
(2D) locations. Comparing the set of these locations with the
ground-truth, i.e., the actual 2D locations of the transmitters,
we assess the accuracy of DeepTxFinder using the metrics
introduced in Section III.

Figure 3 provides a closer look to the design of the CNNs
used in DeepTxFinder. We selected CNNs as they are already
successfully applied to analyzing visual imagery and we
believe our MTL problem is similar. Next, we explain briefly
each layer and the rationale of using that layer:
• Conv2D is the core building block of a CNN. The purpose

is to let the network learn filters that activate when it detects
some specific type of feature at some spatial position in the

Figure 3. DeepTxFinder CNNs.

input, i.e., sensing location with similar receive power value.
• MaxPooling corresponds to a form of non-linear down-

sampling. We use it to account for channel shadowing by
taking maximum from a set of neighboring grids.

• Dropout layer is used typically to reduce overfitting.
• Dense layer is the regular densely-connected NN layer.
• Flatten layer is needed to flatten the input.
As activation functions, we used the softmax and sigmoid
activation functions (cf. Figure 3). Finally, we compile the
developed model with the mean squared error regression loss
as its objective function.

Since DeepTxFinder considers a maximum number of trans-
mitters denoted by N , it might result in low accuracy for areas
of interest with many more transmitters. To prevent poor per-
formance and also to increase the scalability of DeepTxFinder
further, DeepTxFinder divides its area into smaller sub-regions
referred to as tiles, e.g., with dimensions 120 m× 120 m.
For each tile, DeepTxFinder executes the above-described
transmitter-localization approach. With the tiling approach,
we can locate the transmitters even in a large area while
keeping the complexity of our deep-learning framework lower
and adjustable through setting the tile dimensions. In the next
section, we introduce this approach.

B. Prediction in very large environments using tiling

For the sake of lower complexity and memory footprint,
we improve our proposal with a tiling-based approach. Rather
than running our supervised-learning model on a very-large
area, we divide the whole area in smaller regions strategically
and run the detection steps introduced earlier in each small
region. Recall that our model has a total of N + 1 CNNs in
Figure 2 which will result in a very complex model for very
large environments. Instead, we keep our model simple by



(a) Full detector with four steps (b) Example output of prediction in large en-
vironments.

Figure 4. (a)DeepTxFinder divides the area of interest into smaller uniform tiles and runs prediction in each tile. After finding the predicted locations,
DeepTxFinder fuses the individual predictions from multiple tiles using a majority voting approach. The predictions identified in the majority of tiles are
added to the final set of predicted locations. (b) Green circle is ground truth, red is predicted location as generated by our approach. The sensor density was
set to 8 %, i.e., there is no sensing data available for locations colored in dark blue.

having smaller tiles, thereby lower N , and apply a four-step
solution.

Figure 4a illustrates the entire approach which consists of
four steps. First, the sensing matrix is split into overlapping
tiles of d×dm. Each tile represents the sensing data in only a
sub-region of the whole operation area and each tile overlaps
with some other tiles. Let assume that the whole operation
area is of dimensions D × Dm. Moreover, let us define the
overlapping area between two tiles as overlap ratio α which
is simply the ratio of the overlapping area to the area of a tile.
Dividing this region into tiles with dimensions of d×dm and
having tiles with an overlap ratio of α, we can calculate the
number of tiles as

ntiles =

(
D − α× d
(1− α)× d

)2

. (3)

Note, that α = 0.5 in the example given in Figure 4b.
Let us represent the estimated transmitter locations in each

tile by Q′t for tile t where t ∈ [1, · · · , ntiles].
Next, DeepTxFinder applies a voting scheme among the

overlapping tiles to eliminate the locations reported by in-
dividual tiles and identify the locations that are reported by
the majority of the tiles. Figure 4b shows an example where
false alarms and true detections are highlighted. Depending on
the reported transmitter location, DeepTxFinder calculates the
number of tiles that should detect this transmitter, e.g., a trans-
mitter at the edges of the operation area should be detected
by at least two tiles while the transmitters at more central
locations must be detected by more tiles. In the detection,
DeepTxFinder uses mean shift clustering using a flat kernel
from the scikit-learn library [22]. For an estimated transmitter
location to be valid, the cluster size must be T − 1, i.e., all
but one of the overlapping clusters has to agree on the same
location where T is the number of tiles covering this location.
With this strict voting rule representing almost a consensus,

we aim at minimizing false alarms to save the resulting waste
of resources of the regulatory body. Additionally, having low
false alarms increases the robustness of DeepTxFinder against
adversaries who might be interested in resulting in too many
false alarms essentially hindering the use of DeepTxFinder.

Figure 4b illustrates this with an example of two tiles.
Note that the position of a transmitter is only reported if the
majority of overlapping tiles decide on similar position. Here
the field of size 360 m× 360 m is split up into 5 × 5 = 25
overlapping tiles. For each tile, the transmitter locations are
estimated independently and finally fused together. From the
figure, we observe that DeepTxFinder can detect most of the
locations accurately. We have only one false negative, i.e.,
there is a transmitter but it was not detected. Moreover, we
have a false positive, i.e., no transmitter but predictor reported
one. Finally, one transmitter was detected but with slightly
incorrect location. Note that increasing the number of tiles
increases the complexity of the overall detection framework
but at the same time can maintain a higher accuracy.

V. PERFORMANCE EVALUATION

The objective of our evaluation is twofold: (i) we assess the
accuracy of DeepTxFinder with increasing uncertainty in the
knowledge of the transmitter parameters, (ii) we demonstrate
the feasibility of deep learning based transmitter localization
and compare its performance against the existing model-based
solutions. As benchmark, we use SPLOT [6] for our analysis.
For the sake of fair comparison, we will consider three variants
of SPLOT with three different parameters, SPLOT-1, SPLOT-
2, and SPLOT-10. Here the number represents the threshold
value used by SPLOT for finding the local maximas.

A. Model Training and Testing

We first train our network with a broad range of data col-
lected from our custom-made system-level Python simulator.
We deploy a varying number of transmitters randomly and
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Figure 5. Scenario I: Performance comparison of SPLOT and DeepTxFinder under no shadowing and constant TX power.

0.0
7

0.1
4

0.2
1

0.2
8

0.3
5

0.4
9

0.6
9

1.3
9

2.0
8

3.4
7

4.8
6

6.9
4

Sensor density (percentage)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Lo
ca

liz
at

io
n 

er
ro

r

shadow known txpwr
DeepTxFinder
SPLOT (r=1m)
SPLOT (r=2m)
SPLOT (r=10m)

(a) Localization error.

0.0
7

0.1
4

0.2
1

0.2
8

0.3
5

0.4
9

0.6
9

1.3
9

2.0
8

3.4
7

4.8
6

6.9
4

Sensor density (percentage)

0.2

0.4

0.6

0.8

1.0

De
te

ct
io

n 
pr

ob
ab

ilit
y

shadow known txpwr

DeepTxFinder
SPLOT (r=1m)
SPLOT (r=2m)
SPLOT (r=10m)

(b) Detection probability.

0.0
7

0.1
4

0.2
1

0.2
8

0.3
5

0.4
9

0.6
9

1.3
9

2.0
8

3.4
7

4.8
6

6.9
4

Sensor density (percentage)

-4.0

-2.0

0.0

2.0

4.0

6.0

8.0

10.0

Ca
rd

in
al

ity
 e

rro
r

shadow known txpwr

DeepTxFinder
SPLOT (r=1m)
SPLOT (r=2m)
SPLOT (r=10m)

(c) Cardinality error.

Figure 6. Scenario II: Performance comparison of SPLOT and DeepTxFinder under shadowing and known transmission power.
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Figure 7. Scenario IV: Performance comparison of SPLOT and DeepTxFinder under shadowing and unknown transmission power.

also consider a wide range of scenarios where the density of
sensing devices (θ) varies from very low to very high, e.g.,
every grid cell has at least one sensing device.

As channel model, we have used spatial correlated shad-
owing in which two sensing devices within the correlation
distance of each other experience similar shadowing condi-
tions [23]. As operation frequency, we consider 900 MHz band
and channel bandwidth of 20 MHz. We vary the shadowing
parameter σ from 0 dBm–10 dBm. Briefly, our training takes
the following parameters as input to generate the sensing
matrix: (i) number of transmitters, (ii) transmitter power, (iii)
number of sensing devices, (iv) shadowing parameter, (v)
shadowing correlation parameter. We labeled each data with

the actual number of transmitters (for the first step in Figure 2)
and actual locations of the transmitters (for the second step
in Figure 2). As our data, we collected 105 samples of the
sensing matrix. We used 70 % for training and the rest for
testing (validation).

B. Scenarios

To test the performance of DeepTxFinder in a wide range
of settings, we consider the following scenarios:

• Scenario-I [no shadowing]: This scenario represents
the simplest case where the channel pathloss is fully
deterministic, i.e., depends exclusively on the distance
(σ = 0dB). Moreover, the transmitter power is constant



for all transmitters and DeepTxFinder is aware of the
transmitter power level.

• Scenario II [shadowing]: This scenario considers a more
realistic case where the signal propagation experiences
shadowing (where σ = 5dB). However, the transmitter
power is constant for all transmitters and DeepTxFinder
is aware of the transmitter power level.

• Scenario III [shadowing, unknown Ptx]: This scenario
represents a more challenging case where the channel has
shadowing (with σ = 5dB) and the transmitter power is
not constant, i.e., uniformly distributed between 0 dBm–
10 dBm.

C. Results

We first evaluate the impact of increasing sensing device
density (θ) under the aforementioned scenarios. Figure 5
shows the localization error in meters, detection probability,
and cardinality error for DeepTxFinder and the three versions
of SPLOT for Scenario I wherein the transmitter power is
constant for all transmitters and the pathloss is deterministic.
In Figure 5a, we observe that both DeepTxFinder and SPLOT
benefit from increasing sensor density in terms of lower
localization error. Second, both schemes can converge to
acceptable localization errors in the order of a few meters with
only 1 %–2 % sensor density which proves that sparse sensing
is feasible. Third, we observe that SPLOT has very high
accuracy for all settings which is lower than DeepTxFinder.
However, a closer look to Figures 5b and 5c shows us that
SPLOT has low detection probability and misses most of
the transmitters. On the other hand, DeepTxFinder can miss
only one or two transmitters when sensor density is between
0.35 to 1.39. When θ > 1.39, DeepTxFinder detects all
transmitters without false alarms as the cardinality error is zero
for DeepTxFinder. Finally, the best configuration for SPLOT
is r = 10m if we target a trade-off between localization
error and detection probability. Despite its higher localization
error in this operation regime in comparison to SPLOT with
r = 10m, under sufficient sensor density, we believe that
DeepTxFinder offers a more reliable approach than the state-
of-the-art at the expense of a slight increase, e.g., 3 m, in
localization error.

When we consider shadowing as in Scenario II, SPLOT
starts to have higher localization error but also higher detection
probability as shown in Figures 6a and 6b. Meanwhile, per-
formance of DeepTxFinder remains almost the same showing
its robustness against different environment conditions and
thereby its feasibility in a wide range of settings. SPLOT with
r = 10m still provides the best trade-off between localization
error and detection probability in this scenario as others result
in a very high positive cardinality error, i.e., high false alarms.
The high cardinality error is due to the existence of many
local maximas under shadowing and SPLOT considering local
maximas as possible transmitter locations. Initially, under
lower sensor density, SPLOT variants cannot detect some of
the transmitters due to sparse sensor observations. But, with
increasing sensor density, SPLOT-variants with r = 1 and
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r = 2 start to give frequent false alarms, which is undesirable
as it will lead to waste of human expert labor.

Finally, Figure 7 confirms our earlier conclusions. In this
case, we observe that DeepTxFinder maintains a lower detec-
tion probability if the transmitter power is randomly distributed
between 0 dB–10 dB. In earlier scenarios, DeepTxFinder could
achieve 100 % detection probability whereas in Scenario III it
converges to 90 %. In this considered setting with θ > 1.39,
SPLOT-10’s detection probability is around 80 %, while its
localization error is 4 m lower than that of DeepTxFinder.

Finally, we assess the running time of DeepTxFinder. Fig-
ure 8 shows the execution time of DeepTxFinder for different
field sizes on state-of-the-art machines: i) Intel i5 (3.5GHz
from 2013), ii) Intel Xeon CPU E5-2640 v4 with 2.40GHz,
20 cores, 250 GByte RAM and iii) same as ii) but with graphic
card (GPU) support: Tesla P100, 12 GB RAM. We clearly see
the speedup with GPU.

VI. CONCLUSIONS

With increasing flexibility of radio spectrum use, there is
an increasing need for identifying the source of transmissions
and localizing them to prevent illegitimate spectrum use. While
crowdsensing the spectrum offers scalability, it is not always
possible to have a dense sensor setup. Hence, in this work, our
focus was on transmitter localization under sparse spectrum
sensing observations. To cope with the uncertainty in the
number of transmitters and their transmission power levels,
we have proposed a deep learning based solution to localize
an unknown number of transmitters. Comparing our work
against the state-of-the-art [6], we observe that DeepTxFinder
works well even in environments with strong shadowing and
unknown transmission power of the source to be localized.
This is in contrast to the benchmark which is sensitive to
changes in the environment. Moreover, our proposal does
not result in high false alarms, which is essential to avoid
waste of expert labour (e.g., officers at the regulatory body)
to inspect the source of the transmission. As future work,
we plan to extend our approach so that it can estimate the
transmission power of the localized transmitters. Moreover,
we plan to evaluate the impact of tile sizes on the localization
performance and running time.
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