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ABSTRACT
Trends like softwarization through the usage of flexible Software-
defined Radio (SDR) platforms together with the usage of Machine
Learning (ML) techniques are key enablers for building and run-
ning future high-performance communication networks in a cost-
efficient way. In particular, Reinforcement Learning (RL) becomes
very popular as an agent can explore the environment and adapt its
behavior based on collected observations and reward values. How-
ever, for early deployments there is a pressing need for well-defined
environments so that ML/RL-based algorithms can learn the best
policies. In this paper, we present GrGym, a framework enabling the
design of RL-driven solutions for communication networks based
on the OpenAI Gym toolkit and the GNU Radio SDR platform. The
GrGym framework allows integrating any GNU Radio program as
an environment in the Gym framework by exposing its state and
control knobs for the agent’s learning purposes. Our framework is
generic and can be easily extended to cover various communication
problems. We present an illustrative example, where an IEEE 802.11
transmitter learns to adapt its modulation and coding rate based
on the observed channel conditions.
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1 INTRODUCTION
Modern wireless communication networks, e.g., WiFi or 3GPP LTE,
have evolved into extremely complex and dynamic systems. How-
ever, traditional designs are based on (over-)simplified models of
the environment; hence, they bring only limited performance gains.
This is because they are mostly focused on a single component
(e.g., protocol layer), neglecting the end-to-end and cross-layer

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HotMobile 2021, February 24–26, 2021, Virtual, United Kingdom
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8323-3/21/02. . . $15.00
https://doi.org/10.1145/3446382.3448358

network’s nature. Hence, today we see two major trends in com-
munication networks. First, we see the usage of machine learning
(ML) techniques to improve the efficiency of such networks [9].
This is promising as networks generate a large amount of data
that can be observed and analyzed by ML in order to optimize the
network behavior. Here, techniques like Reinforcement Learning
(RL) are becoming very popular [7, 17]. The second major trend
is softwarization through the usage of flexible Software-defined
Radio (SDR) architectures, which allows quick adaptation to dy-
namic environments and changing application requirements [1].
We strongly believe that such a flexible and adaptive ML-driven
communication system is able to overtake traditionally designed
ones in terms of performance and efficiency. However, in order to
achieve that, ML algorithms require a well-defined environment so
that they can learn the best policies.

Let us take WiFi as an example. The 802.11 standard continues
to develop very quickly and a plethora of new features like HARQ,
multi-link, null-steering, and queue management are expected in
IEEE 802.11be amendment [10]. The following problem arises. Each
corresponding PHY/MAC algorithm needs to be parameterized
which is costly and error-prone due to large configuration space.
Moreover, there are often interactions between PHY/MAC parame-
ters and hence a joint optimization is needed. The goal is not just
increasing the throughput, as there is a variety of KPIs ranging
from efficiency to fairness to latency and to energy consumption,
which need to be optimized depending on the situation.

Furthermore, we believe that the usage of ML techniques in
communication networks is not yet widely used because of several
reasons. First, there is the existence of a knowledge gap. Specifically,
communication technology experts lack ML-related knowledge
and experience and it would be helpful to have a sandbox-like
playground to easily explore ML algorithms and their configura-
tions. Second, there is a lack of training environments. RL requires a
large amount of training, i.e., a high number of interactions with
the environment. The best way is to use real-world network se-
tups or at least testbeds. However, it might be sometimes too time-
consuming and researchers usually lack skills and/or hardware to
setup a testbed, while an exploration (required in RL to learn) in
real network deployments can be unsafe for their operation. Having
a simulated environment would be helpful.

Contribution: In this paper, we present GrGym, a framework
enabling the design of RL-driven solutions for communication net-
works based on the OpenAI Gym toolkit and the GNU Radio SDR
platform. The GrGym framework allows integrating any GNU Radio
program as an environment in the Gym framework by exposing
its state and control knobs for the agent’s learning purposes. Our
framework is generic and can be easily extended to cover vari-
ous communication problems. We present an illustrative example,
where an IEEE 802.11 transmitter learns to adapt its modulation
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and coding rate based on the observed channel conditions. Our
toolkit is provided to the community as Open Source.1

2 BACKGROUND
2.1 Reinforcement Learning
Reinforcement learning (RL) is one of three basic machine learning
paradigms, alongside supervised and unsupervised learning, and is
being already used in robotics for years as it allows the design of
sophisticated control algorithms [15]. With RL it is no longer nec-
essary to generate large sets of labeled training data before training
can start. Instead, an RL agent interacts with the environment and
reinforces (or inhibits) particular patterns of behavior depending on
the resulting reward (or penalty). In particular, the learning process
is as follows: (1) an agent observes the current state of the environ-
ment, (2) based on the observation and its policy, the agent selects
and executes an action in the environment, (3) the environment, in
turn, returns a reward associated with this specific action in the
particular state, and (4) the agent updates its policy based on the
obtained reward. The way an environment transforms the agent’s
action taken in the current state into the next state and the reward
is unknown. Hence, the agent’s main goal is to learn a policy to
select always the best action and to maximize its cumulated reward.

2.2 OpenAI Gym
OpenAI Gym [6] is a framework for benchmarking RL-based al-
gorithms. It provides a simple and unified API that structures the
interactions between an RL agent and the environment. Specifically,
to integrate an environment to the Gym, its observations, actions,
and rewards have to be represented as structured (e.g., vector or
map) numerical data. This way, the framework was already inter-
faced with a large set of diverse environments in areas ranging
from video games to robotics [6].

An RL agent learns its policy (i.e., the mapping between the
observed states to the best action) by interacting with the environ-
ment through the unified interface. The Gym framework makes
no assumptions about agent implementation. However, due to the
complexity of the learning process and a large observation space,
often RL agents are based on very complex neural networks (NN).
During the learning process, the NN parameters are tuned. In recent
years, the task of developing NNs was simplified by the emergence
of powerful libraries like Keras and Tensorflow. Both can make use
of ML accelerators like GPUs and FPGAs.

2.3 GNU Radio
GNU Radio [5] is an open source software toolkit, which provides a
rich library of signal-processing blocks that can be glued together
for building complex software-defined radios (SDR). With GNU
Radio, a radio system can be built by designing a flow graph (XML
or Python) where the vertices are signal processing blocks (imple-
mented in C++) and the edges represent the data flow between
them. Each signal processing block processes in real-time an infi-
nite stream of data flowing from its input ports to its output ports.
Each block is described by the number of input and output ports as
well as the type of data that flows (e.g., complex numbers). There

1https://github.com/tkn-tub/gr-gym

are special blocks called data sources and sinks. The first has only
output ports whereas the latter only input ports. GNU Radio con-
tains a myriad of sources and sinks allowing read/write from files
or real SDR hardware like USRPs. More than one hundred blocks
are currently provided. Moreover, there are partial/full implemen-
tations of radio technologies like IEEE 802.11[abgp] [3, 4], IEEE
802.15.4 [2], and 3GPP LTE [12]. It is possible to run GNU Radio
programs on either real hardware (e.g., USRP SDR) or loopback
in a fully simulated environment allowing application of channel
propagation models to synthetically generated signals [18].

3 GRGYM – DESIGN PRINCIPLES
The main goal of our work is to facilitate and shorten the time re-
quired for developing novel RL-based communication networking
solutions. We believe that developing RL-driven control algorithms
and training them with the data generated in a simulated environ-
ment is very often more practical (i.e., easier, faster, less expensive,
and safer) in comparison to directly running experiments in the
testbed or real world. From the simulated environment, it should be
easy to switch to testbeds and real deployments without requiring
many changes. Here we believe in the power of SDR platforms like
GNU Radio. Furthermore, thanks to transfer learning, i.e., the ability
to reuse previously acquired learned knowledge in a new (more
complex) system or a real environment, the ML/RL-agent trained in
a simulation can directly interact or be retrained in the real world
much faster than when starting from the scratch [8].

How well the agent copes with the real-world environment de-
pends on the accuracy of the simulation channel models that were
used during training. In GNU Radio, there are lots of simulated
channel models available ranging from very simple ones (e.g., Ad-
ditive White Gaussian Noise, AWGN) to more realistic ones which
take multi-path, mobility, and fast fading into account. Moreover,
the impact of interference can be easily simulated in GNU Radio as
well. Finally, note that our framework is not constrained to RL as
one can use it to obtain observations from the simulation in order
to generate data sets and use them for the offline learning using a
variety of ML algorithms (e.g., supervised learning).

Designing such a framework is challenging. First, GNU Radio
programs need to run in real-time and cannot get paused as it is
possible with pure simulations running in simulation time [11].
So, no computational expensive tasks can be executed within the
agent’s main control loop where the step() function is executed.
However, offloading CPU intensive ML tasks is still feasible, e.g.,
running an ML agent on different machines is possible as there is a
loose coupling between Gym and GNU Radio using inter-process
communication.

4 GRGYM – DETAILED DESCRIPTION
The GrGym architecture is depicted in Figure 1. It consists of the
following major components: GNU Radio and OpenAI Gym. The
main contribution of this work is the design and implementation
of a generic interface between OpenAI Gym and GNU Radio that
allows for seamless integration of those two frameworks. In the
following, we describe our GrGym framework in detail.

https://github.com/tkn-tub/gr-gym
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Figure 1: Architecture of the GrGym framework.

4.1 GNU Radio Side
Any radio transmission system implemented using the Open Source
GNU Radio platform can be used with GrGym. However, the sim-
plest integration is to use a radio program in form of a GNU Radio
Companion (GRC) flow graph. Here, the following modifications
need to be made to expose the data needed to capture the desired RL
observation space and information needed to compute the reward
value. Moreover, the possibility to change values of variables is
needed as a mean to execute RL actions. This is achieved by modify-
ing the GRC file of the radio program to be integrated into GrGym by
adding additional GNU Radio blocks and wiring them accordingly.
GrGym uses inter-process communication (IPC) for communication
with GNU Radio processes, thus, we need the following blocks:

(1) XMLRPC Server: the server is needed for life-cycle manage-
ment of the GNU Radio program by GrGym, i.e., start/stop, and
(remote) execution of RL actions.

(2) * Sink: sink nodes are needed to capture both observations
and reward. GrGym is able to use different IPC mechanisms: named
pipes (files), ZeroMQ, UDP/TCP. The usage depends on whether
GrGym and GNU Radio are co-located or not, i.e., ZeroMQ can be
used if both processes are located on different machines.

4.2 OpenAI Gym Side
The main purpose of the Gym framework is to provide a standard-
ized interface allowing for accessing the state and executing actions
in an environment implemented using GNU Radio. This makes the
RL-agent’s code (Python) environment-independent, which allows
for exchanging the agent’s implementation while keeping the re-
producibility of the environment’s conditions.

4.3 GrGymMiddleware
GrGym takes care of transferring state (i.e., observations, reward)
and control (i.e., actions) between the Gym agent and the network
of nodes running GNU Radio. The middleware consists of two parts:
a generic part and a scenario-specific implementation. The generic
part couples OpenAI Gym with GNU Radio. The scenario-specific
part needs to be provided when adding new GNU Radio environ-
ments to GrGym framework. This is achieved by providing a custom

Python class which derives from GrScenario and implements the
required functions like get_observation_space(). Here, the user
can access all the data exposed by the GNU Radio program using
the GR_Bridge class. Note, that the GrGym middleware transfers
the state and actions as numerical values and it is up to the user to
define their semantics.

4.4 GrGym: Hello World!
In Listing 1, we present an example RL-agent, written in Python,
showing the usage of the GrGym framework. First, the GNU Radio
environment and agent are initialized — lines 4–7. Note that the
creation of the grgym:grenv-v0 environment is achieved using
the standard Gym API. Behind the scenes, the GrGym engine in-
stantiates the scenario class (derived from GrScenario) and starts
the GNU Radio program(s) configured in config.yaml, establishes
several IPC connections (XML-RPC, ZMQ, pipes), and waits for
the environment initialization. At each step, the agent takes the
observation and returns, based on the implemented logic, the next
action to be executed in the environment — lines 9–11. Note, that
the agent class is not provided in the framework and the developers
are free to define them as required. In the example, the simple agent
performs random actions. The execution of the episode terminates
(lines 13–14) when the environment returns done=true, that can
be caused by the end of the GNU Radio program or meeting the
predefined game-over condition.

1 import gym
2 import MyAgent
3
4 env = gym.make('grgym:grenv-v0')
5 env.seed(47)
6 obs = env.reset()
7 agent = MyAgent.Agent()
8
9 while True:
10 action = agent.get_action(obs)
11 obs, reward, done, info = env.step(action)
12
13 if done:
14 break
15
16 env.close()

Listing 1: Example Python program showing the interaction
between an agent and the GNU Radio environment

4.5 Implementation Details
Next, we describe the interactions between the different compo-
nents of GrGym with GNU Radio. Specifically, we show how the
different Gym functions, namely Gym::make(), Gym::reset(), and
Gym::step(action) are implemented. By calling the Gym::make()
function the framework compiles the GRC flow graph and start the
Gnu radio process in case both GrGym and the GRC are located on
the same machine, i.e., executed locally. Next, is the Gym::reset()
function. First, it starts the GNU Radio process in case the GNU
Radio autostart parameter is deactivated. Next, the custom scenario
is reset and both the observation and the action space descriptions
are collected for which internal data structures are created. Finally,
we have the Gym::step(action) function (Figure 2). First, it ex-
ecutes the given action on the GNU Radio program by passing
through the custom scenario class. Second, after waiting step_-
time, the data for reward, done, and info is collected. Note that
the wait time is optional and no waiting happens in case GrGym is
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Figure 2: Implementation of Gym::step(action).

running in eventbased mode where the appearance of a new ob-
servation completes a step. The third operation is also optional and
is needed in case there is no real communication channel between
the GNU Radio processes. Here, the channel is simulated in GNU
Radio and this operation is responsible for changing its parameters,
e.g., changing the SNR value. The last operation is the collection of
the new observation state.

4.6 Typical Workflow
To summarize, the typical workflow consists of six steps:

(1) Setup a network of GNU Radio nodes. It can be simple as
having a single node running a single GNU Radio process or a
distributed system composed of multiple nodes each running a
GNU Radio process.

(2) The GNURadio programs should be described as a GNURadio
Companion (GRC) flow graph. Modify the GRC files by adding
additional GNU Radio blocks (e.g., from GrGym) to get the data
needed to compute observation and reward. Add also blocks needed
for IPC communication with GrGym Python framework, i.e., XML
RPC for both control of life cycle and execution of actions and
ZMQ/file sink blocks for collecting observation and reward data.

(3) Write a specific GrGym scenario class (Python) which de-
rives from framework’s GrScenario base class and implements
all needed functions, e.g., execute_action(). This class maps the
generic framework functions on a specific scenario, e.g., action
number is mapped on the MCS index.

(4) Wiring as defined in config.yaml, i.e., select the scenario
and configuration (e.g., eventbased mode) – cf. Listing 2.

(5) Develop your RL-based agent using available numerical Python
libraries (e.g., Keras), which interacts with the environment using
the standard Gym::step(action) function.

(6) Train the agent and analyze the results.

5 GRGYM EXAMPLE: IEEE 802.11P
As a proof-of-concept, we implemented an IEEE 802.11p communi-
cation scenario in GrGym. We used the GNU Radio implementation
provided by Bloessl et al. [3, 4]. The first step was to analyze the
implementation and to expose as many parameters as possible to

1 grgym_environment:
2 run_local: True # GNU Radio is local or remote
3 timebased: # a step is progress in time
4 step_time: 0.5 # step duration (in s)
5 eventbased: True # if false use time based
6 max_steps_zero_reward: 30 # max steps with no reward
7 grgym_local: # used if grgym_environment.run_local == True
8 compile_and_start_gr: True # disable if remote
9 host: localhost # local GNU Radio process
10 rpc_port: 8080 # GNU Radio RPC port
11 gr_ipc: ZMQ # IPC between grgym and gnuradio
12 gr_grc: benchmark_ieee80211_wifi_loopback_zmq # used GRC flow graph
13 grgym_remote: # if grgym_environment.run_local == False
14 num_nodes: 1
15 node0:
16 name: TX_RX_channel
17 host: 10.0.0.2 # remote GnuRadio process
18 rpc_port: 8080 # RPC port of remote GnuRadio
19 grgym_scenario:
20 scenario_class: benchmark.BenchmarkScenario # used GrGym scenario
21 mcs: 3 # scenario specific arguments

Listing 2: Example GrGym configuration file

Figure 3: IEEE 802.11p flowgraph with additional blocks
needed to expose it as specific scenario in GrGym.

the GrGym framework so that they can be controlled or observed by
RL agents. For ease of use, a standalone configuration was selected.
Here both the IEEE 802.11p transmitter and receiver are imple-
mented in the same GNU-Radio flowchart and are connected by a
simulated radio channel (here AWGN). As there is no test on a real
channel no SDR hardware is needed to run this scenario. However,
to introduce changes in the environment, here due to mobility, the
distance between sender and receiver was varied during execution
resulting in changing receive signal strength. The resulting GNU
Radio flowchart is shown in Figure 3. The modifications and the
additional blocks (marked in red) are needed to compute the reward
as well as to capture the observation provided to the agent.

5.1 Building the Model
To use ML, at first a model is required. For the selected IEEE 802.11p
scenario reward, action, and observation are defined as follows:
• Action: There are many parameters, which can be controlled in
the IEEE 802.11p scenario. Examples include packet size, packet
interval, and transmit power. As a proof-of-concept, we selected
the configuration of the Modulation and Coding Scheme (MCS)
of a packet as action. Note: IEEE 802.11p supports 8 different
MCS values which corresponds to the action space.

• Reward: The reward is set as effective data rate during the last
step. It is computed from the packet success rate during the last
step multiplied by the data rate of the selected MCS.

• Observation: The observation is a vector of either RSSI per
OFDM subcarrier or Signal to Noise Ratio (SNR) per subcarrier
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Figure 4: Framework performance.

of the last received packet – four subcarriers are pilot tones and
at the border of the spectrum there are null tones. As the obser-
vation is measured during the synchronization phase of packet
reception, it is independent of the selected MCS, i.e., action.

5.2 Additional GNU Radio Blocks
To calculate both the reward and observation, the GNU Radio
802.11p flow graph has to expose some state to be monitored by Gr-
Gym. First, knowledge about the packet success rate during the last
step is needed. This is achieved by having a block for parsing the
sequence numbers from the MAC header on both the transmitter
and the receiver side. Second, the measurement of the RSSI or the
SNR values is required. Therefore, an additional block extracts the
data at the first or the first and the second sample of the synchro-
nization word of an IEEE 802.11p packet. The RSSI block returns
the absolute value of the Fast Fourier Transformation (FFT) output.
The SNR block calculates the difference between the FFT value of
the first two samples as noise and the sum of the first two values
as signal. The resulting SNR is the division of signal and noise.

6 EVALUATION
First, as GNU Radio programs need to run in real-time, e.g., when us-
ing SDR systems like USRP, the latency of communication between
the gym agent and the GNU Radio process becomes an important
aspect to be considered when designing RL-based solutions. Second,
we want to understand whether a distributed setup is meaningful,
i.e., RL agent runs on one machine whereas the GNU Radio pro-
cesses run on other machines. Such a configuration is sometimes
needed in order to minimize the impact of the RL agent on the radio
program running in real-time. Moreover, the agent’s machine can
be equipped with special hardware needed to speedup ML compu-
tations, e.g., graphic cards, which is not required for the machines
running GNU Radio. For the experiments, we use the IEEE 802.11p
example scenario described in Section 5. We measured the duration
of a single step for three different configurations:

(1) Both the Gym agent and the GNU Radio process are co-
located on the same machine. For the collection of observation data
a named pipe is used.

(2) Similar to (1), except that ZMQ is used instead of the pipe.
(3) The Gym agent and the GNU radio process are running on two

different machines using ZMQ for IPC. Moreover, both machines
were connected by a rather slow network connection (100Mbit/s).

As hardware we used embedded Intel NUC (i5, 2.3 GHz). GrGym
was used in eventbased mode: a step consists of executing the
action, i.e., sending a single 802.11p packet, and collecting the ob-
servation, i.e., the RSSI vector of the received packet. Figure 4 shows

the step duration for the three configurations. We see that there
is no significant disadvantage of using the ZMQ IPC protocol for
collecting RSSI observations as compared to local named pipes.
This is because the communication delay is mostly determined by
the expensive XML RPC call, which is needed to execute an action.
Moreover, we can see that there is no need to co-locate both the
agent and the radio program on the same machine. In a remote
setup the median step duration only slightly increases, i.e., from
0.9ms to 1.4ms. This confirms that a distributed setup is feasible.

7 CASE STUDY: RL-BASED RATE CONTROL
The goal of the agent is to decide on the MCS to be used for the next
packet transmissions (step) based on the observation of the current
channel condition, which is the absolute signal strength (RSSI) per
OFDM subcarrier. This is a challenging task as the RSSI is uncali-
brated, i.e., level of the noise floor is unknown. Therefore, the agent
needs to learn which MCS to use given the absolute RSSI values re-
ported. We use RL, in particular the Actor-Critic (AC) method [16],
to learn to select the best MCS given observed RSSI. As a reward, we
use the effective throughput, which is defined as the packet success
rate × bitrate. In this case study, the agent had to choose from three
different MCS values, i.e., QPSK 3/4, 16QAM 3/4, and 64QAM 3/4.
The agent pre-processes the raw observation (per OFDM subcar-
rier RSSI) reported by the environment. As the simulated channel
is an AWGN channel on top of distance-dependent pathloss, we
compressed the observation as follows: First, we removed the DC
and null subcarriers. Second, we computed the RSSI mean value,
which is fine as the channel is frequency flat. Third, the mean RSSI
value is normalized into an [0, 1] interval. The corresponding neural
network is shown in Listing 3. In summary, our RL mapping is:

• Observation — mean RSSI normalized into [0, 1] interval,
• Action — set the MCS to be used for the next time slot,
• Reward — effective throughput computed over last step,
• Gameover — if effective throughput was zero during the last
ten time-slots.

1 inputs = layers.Input(shape=(1,))
2 common = layers.Dense(128, activation="relu")(inputs)
3 action = layers.Dense(env.action_space.n, activation="softmax")(common)
4 critic = layers.Dense(1)(common)
5 model = keras.Model(inputs=inputs, outputs=[action, critic])

Listing 3: Neural Network used by Actor Critic method

GrGym was run in standalone mode and the 802.11p GNU Radio
stack was operated in loopback mode, i.e., the channel was simu-
lated in GNU Radio. To simulate mobility, the distance between the
transmitter and receiver was changed randomly every 100ms.

In the beginning, our RL-agent randomly tests different MCS
regardless of the observed RSSI (Figure 5a). Even at very low RSSI,
a high MCS was often selected resulting in a zero reward. Similarly,
at high RSSI low-order MCS are selected resulting in a low reward.
After learning the environment for 570 episodes, the agent perfectly
selects the correct MCS rates (Figure 5b). We see that the agent
learned three different RSSI regions, i.e., one for each MCS. Finally,
we see that the learning is quite fast: after 570 episodes the agent
learns to select the proper MCS (Figure 5c).
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Figure 5: RL-based MCS (rate) control.

Considerations when using a Real Channel
So far our RL agent was trained in an environment with a simu-
lated radio channel, i.e., AWGN on top of a distance-dependent
pathloss model. However, the agent can be also trained in a real
testbed using SDR hardware with a real wireless channel. In such
a configuration the latency introduced by our GrGym framework
becomes an important aspect to be considered as it may lead to
situations where the agent decides on an action based on outdated
observation. In the following, we want to analyze this using our ex-
ample of RL-based rate control. The efficiency of such a closed-loop
rate control depends on two variables: i/ the channel coherence
time 𝑇𝑐 , i.e., the time the channel is not varying and hence having
the same SNR and ii/ the time duration 𝜏obs needed for collecting
the observation (channel SNR) and duration 𝜏act for executing the
action (setting MCS on packet). Note, that𝑇𝑐 depends on the carrier
frequency and the speed of the mobile 𝑣 .

For our analysis we consider 802.11a PHY with values for 𝑇𝑐
provided by Jung et al. [14] while assuming a block fading channel
model, i.e., the channel is changing i.i.d. (randomly) every 𝑇𝑐 , and
the set of available MCS is large so that after each𝑇𝑐 a different MCS
has to be selected which represents a worst case analysis. Using our
results from Section 6 we set 𝜏 = 𝜏obs + 𝜏act to 0.9ms and 1.4ms for
the local and remote GrGym configuration respectively. Now we can
define the miss ratio𝑀 which represents the percentage of time the
incorrect MCS is selected as:𝑀 = 𝜏/𝑇𝑐 . Table 1 shows the results
for𝑀 for different 𝑣 and GrGym configuration.

From the results we can see that for static and low-speed scenar-
ios the average miss ratio is small, i.e., only 3.5-5.5% of the time the
incorrect MCS is selected due to outdated observation and delayed
execution of actions. However, in environments with moderate
speed, e.g., 5m/s = 18 km/h, and remote GrGym configuration the
𝑀 increases significantly. Here 1 out of 4 packets will be trans-
mitted on possibly wrong MCS. We can conclude that the latency
introduced by the GrGym framework needs to be taken into account
when designing wireless RL solutions.

𝑣 [m/s] 𝑇𝑐 [ms] 𝑀 (%, 𝑙𝑜𝑐𝑎𝑙) 𝑀 (%, 𝑟𝑒𝑚𝑜𝑡𝑒)
1 25.4 3.54 5.51
2 12.7 7.09 11.03
3 8.5 10.63 16.54
4 6.3 14.18 22.06
5 5.1 17.72 27.57

Table 1: Coherence time vs. miss ratio.

8 RELATEDWORK
In the RL community, the concept of a gym has gained much atten-
tion after being proposed by Brockman et al. [6] within the OpenAI
project. Since then, gyms have been used well beyond robotics [20].
For example, Vinitsky et al. [19] used road traffic simulations as a
gym environment. It enables research of road traffic control and
aims to provide benchmarks for relevant traffic situations that can
be handled using RL agents. Moreover, Hein et al. [13] published
an industrial benchmark allowing studying the performance of RL
algorithms applied to different real-world industry control prob-
lems. Recently, we published ns3-gym [11], which allows using
a simulated communication network like WiFi or LTE as a gym
environment so that RL agents could control the behavior of net-
work protocols. This was achieved by providing an extension to
the ns3 network simulator. Now, GNU Radio has to process sample
streams in real-time, whereas the ns3 simulator is event-based and
much easier to integrate with the gym concept. O’Shea and West
[18] also covers applications of ML to the radio signal processing
domain. They proposed to use GNU Radio as an enabler to cre-
ate good datasets for model learning by simply using the already
existing processing blocks. However, the interaction with the ML
framework was done only in postprocessing mode.

9 CONCLUSIONS
We presented the GrGym toolkit that simplifies the usage of Rein-
forcement Learning (RL) for solving problems in the area of com-
munication networks. In particular, we interconnected the OpenAI
Gym with the GNU Radio framework. Our Open Source framework
is generic: It can be used by the research community to tackle a
variety of communication and networking problems using an RL
approach. We plan to provide custom scenario implementations for
technologies like IEEE 802.15.4 and LTE. Moreover, we envision
to set up a global leaderboard allowing researchers to share and
compare their results for various environments.

As future work, we plan to address the limitations of GrGym like
the framework latency which adversely impacts both the agent’s
learning as well as the inference phase. The former can be partially
solved by using simulated or emulated channels because GrGym has
the possibility to control the evolution of the channel. Here the
framework latency is not an issue and only increases the learning
time. The inference phase can be accelerated by directly using the
agent with its trained neural network in GNU Radio using the C++
interface of ML libraries like Tensorflow. We plan to provide soft-
ware support to make this transition easy. Finally, the framework
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latency itself can be improved by using shared memory for IPC
between the GNU Radio processes and our Python framework.

Finally, we want to evolve the framework beyond just parameter
learning for a pre-selected radio flowgraph. Instead, the RL/ML
agent learns itself to build the best flowgraph from a repository of
available radio components.
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