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Abstract—The utilization of existing radio signals such as
802.11 (WiFi) for device-free detection of human presence
and movement indoors has garnered significant interest among
researchers in academia and industry. Improving the efficiency
of buildings, particularly in terms of heating and energy costs,
relies on accurately detecting room occupancy. Our approach
uses channel state information (CSI) obtained from commodity
802.11ac hardware as input to machine learning based on One
Class Support Vector Machine (OC-SVM). Unlike other methods
that necessitate extensive learning in environments with and
without human presence, our approach treats human presence
as a novelty. This simplifies the training process, as we only
need to learn from environments without human presence,
specifically empty rooms. Furthermore, since we focus solely
on analyzing the magnitude information of the CSI data, there
is no requirement for intricate sanitization of the phase in-
formation. Experimental results using standard WiFi hardware
demonstrate exceptional performance, with accuracy, sensitivity,
and specificity exceeding 97% in most cases. Furthermore, our
proposed approach is practical, as it incurs minimal overhead
in terms of radio resource usage. Simply capturing CSI data
with a sampling rate of 5 Hz on only a few OFDM subcarriers
from a 5 MHz channel is sufficient.

Index terms— wireless sensing, device-free detection

I. Introduction

The device-free detection of human presence finds applica-

tions in security, healthcare, and smart buildings. Traditional

methods often rely on optical cameras and Passive Infra-

Red (PIR) sensors. However, these technologies have certain

limitations. Cameras require a direct line of sight and raise

privacy concerns. PIR sensors, on the other hand, are unable

to detect static individuals. An alternative approach is to

passively analyze radio signals such as 802.11 WiFi, which

are already extensively deployed in residential and enterprise

areas. This alternative, termed as wireless sensing, offers

several advantages, including accessibility, convenience, and

cost-effectiveness, as existing WiFi infrastructure can be uti-

lized at zero additional cost.

The wireless sensing methods function as follows. When

a wireless signal like WiFi is transmitted from devices such

as smartphones, it travels through various paths to reach the

receiver, such as an access point. These paths can be direct

when there is a line of sight (LOS) between the transmitter

and receiver, or indirect when the signal reflects off walls
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and objects. As a result, the Channel State Information (CSI)

extracted from the received WiFi signal contains valuable

information about the surrounding environment. This infor-

mation can be utilized to conduct device-free WiFi sensing.

There are a variety of wireless sensing applications ranging

from activity detection, such as gesture recognition [1], [2],

localization [3], and fall detection [4]. In these applications,

the utilization of unique signatures that emerge during signal

propagation on the CSI is crucial while activities are being

performed. In the specific case of presence detection, previous

studies have shown that even when a person remains station-

ary, there are alterations in the signal propagation caused by

factors such as breathing [5] or prolonged slight movements.

While known solutions for device-free presence detection

have shown to achieve high accuracy [6], there remains

a need for low-complexity and robust solutions. Presence

detection typically requires training data that encompasses

both the presence and absence of humans in a well-defined

environment. Collecting data for human absence can be rel-

atively straightforward by transmitting radio signals through

an empty room. However, gathering data for human presence

can be challenging as it requires capturing various scenarios,

including static individuals, people in motion, and individuals

in different positions, ideally in all possible locations within

the room. Therefore, by training a classifier solely with data

collected in an empty room, it is possible to reduce the

reliance on the calibration of human presence data collection.

Contributions: We propose an approach for presence de-

tection that involves analyzing CSI data using One Class

Support Vector Machine (OC-SVM). Specifically, we focus

solely on analyzing the magnitude information of the CSI

data. The system is trained using CSI data collected from

empty rooms only. The actual presence detection is based

on novelty detection. Experimental results using commodity

WiFi hardware demonstrate exceptional performance, with

accuracy, sensitivity, and specificity exceeding 97% in most

cases. This high level of performance is achieved by si-

multaneously analyzing the temporal, frequency (OFDM),

and spatial (MIMO) domains of the CSI data. Additionally,

our proposed approach is practical as it imposes minimal

overhead in terms of used radio resources. A sampling rate

of just 5 Hz for CSI data on a few OFDM subcarriers from

a 5 MHz channel is sufficient. Lastly, the use of multiple

antennas enhances the detection performance.



II. RelatedWork

An overview of wireless sensing for detection of human

activity is given by Liu et al. [7]. Accordingly, the major-

ity of proposed applications rely on processing RSSI and

CSI data as techniques like Frequency Modulated Carrier

Wave (FMCW) rely on customized hardware. In contrast to

RSSI-based detection approaches which process CSI data are

powerful as CSI allows to perform very fine-grained channel

measurements (i.e., both amplitude and phase information for

multiple subcarriers). Most approaches found in literature rely

on analyzing amplitude, phase or phase difference to detect

the presence of a human indoors. Nishimori et al. [8] analyzed

the influence of antenna arrangement on the wireless signal

propagation in typical indoor environments and proposed an

intrusion detection system based on processing CSI from

MIMO channels. DeMan [9] is based on the extraction of the

maximum eigenvalues of the covariance matrix from succes-

sive CSI data, which is including both amplitude and phase.

Ding et al. [10] proposed to analyze the phase difference

between adjacent antenna pairs for passive device-free motion

detection. According to Zou et al. [11] the shape similarity

of multiple OFDM subcarriers could be used as a feature

for input to supervised learning like random forest. Wu et

al. [12] proposed the use of learning based on Support Vector

Machine (SVM) for the detection of even a stationary human

through its naturally breathing. They use subtle motion of the

moving chest to register wave like patterns on the received

OFDM signal. Additionally, the phase information of the CSI

data can offer rich information about the variation of the

channel. However due to phase noise in CSI obtained from

commodity hardware, proper preprocessing is needed [13].

III. Background - Channel State Information

A radio signal propagating through the wireless channel

to the receiver through multiple paths experiences several

effects. Reflection on walls or scattering through obstacles

will produce additional copies of the transmitted signal, so-

called multipath components. These different components of

the signal correspond to pulses at the receiver at different

arrival times. The Channel Impulse Response (CIR) is used

to describe these impulses. When assuming a time-invariant

channel the CIR can be denoted as [14]:

h(t) =
N∑

n=0

ane− jφnδ(t − tn) (1)

where an is the amplitude and φn is the phase of the nth

multipath component at the time t and N is the total number of

multipath components and δ(t) is the Dirac delta function. The

sum of amplitude and phase of these multipath components

can result in constructive or destructive interference, which

result in larger or smaller pulses. In the time domain, the

received signal r(t) is the convolution of the transmitted signal

s(t) and the CIR h(t):

r(t) = s(t) ⊗ h(t) (2)
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Fig. 1: Flowgraph of proposed device-free presence detection.

Hence in the frequency domain, the received signal spectrum

R( f ) is the multiplication of the transmitted signal spectrum

S ( f ) and the Channel Frequency Response (CFR) H( f ):

R( f ) = S ( f ) × H( f ) (3)

Using eq. 2 and 3, the CIR can be derived from CFR [14]:

h(t) =
1

Ps
F−1{S ∗( f )R( f )} (4)

where F−1 denotes the inverse Fourier transform, R( f ) is

the Fourier transform of the received signal r(t) and S ∗( f )

is the complex conjugate of the Fourier transform of the

transmitted signal s(t). Here Ps approximates the transmitted

signal power. As each OFDM subcarrier experiences flat

fading the received signal r of a subcarrier operating at the

center frequency f can be described as:

r( f ) = H( f )s + n (5)

where s is the transmitted symbol vector and n is the additive

white Gaussian noise. When using m receive and n transmit

antennas, the MIMO-OFDM channel matrix H for an OFDM

subcarrier centered at frequency f can be described as:

H( f ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
H1,1 . H1,n
...

. . .
...

Hm,1 . Hm,n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (6)

whose complex entries Hi j are the sampled CFR from the

jth transmit to the ith receive antenna. CSI samples can be

estimated at the receiver by using pilot symbols scattered

through the OFDM subcarriers.

IV. System Design

Our device-free presence detection scheme consists of four

major steps (Fig. 1) which are described in this section.

A. Capturing CSI Data
Standard IEEE 802.11 devices are capable of calculating

the CFR from received WiFi frames. Unfortunately, most

chips do not provide this functionality as an API and changes

must be made to the driver, e.g. [15], [16]. In case of Intel

9260 NIC which we used for our prototype (see §V) the

complex CSI data captured from a single WiFi frame has

the dimensions:

Ntx × Nrx × Nsc (7)

where Nrx and Ntx is the number of receive and transmit

antennas respectively. Nsc is the number of OFDM subcarriers

which is dependent from the channel bandwidth, e.g. for a

40 MHz channel it is Nsc = 114.



B. Preprocessing CSI Data

The raw CSI data captured with a sample rate of S Hz must

be preprocessed before it can be passed to ML algorithms.

Our CSI pre-processing pipeline is similar to the one proposed

by Wu et al. [9] except that we only analyze the magnitude

of the CSI data and discard the phase information. This

is beneficial as due to phase noise additional non-trivial

preprocessing of CSI would be needed [13].

We describe the dimensions of CSI data used as input as:

N × Ntx × Nrx × Nsc (8)

where N is the Number of CSI samples, Nrx is the number

of receive antennas, Ntx is the number of transmit antennas

and Nsc is the number of OFDM subcarriers. As we use

MIMO hardware we introduce an additional spatial domains

represented through the dimensions of Nrx and Ntx. By using

OFDM, the used subcarriers operate at distinct frequencies

and open up sensing through the frequency domain. Lastly,

through the time series of these CSI, temporal changes of the

other two domains can be observed as well.

First, we group our N CSI samples into Nt batches of size

Bt, with each batch resembling a time window of Bt
S s. This

results in the data dimension of our data array X, given by

X = Nt × Bt × Ntx × Nrx × Nsc (9)

Within this time t, we expect a change in the temporal domain

due to a person being present, even when this person is static,

through small scale motion or even breathing [12]. Note, that

Bt is dependent on the CSI sampling rate.

Then we reduce the dimensions by using only f subcarriers,

leaving us with Nsc → Nf subcarriers. We select the f
subcarriers evenly distributed across all Nsc subcarriers which

gives us

Xreduced = Nt × Bt × Ntx × Nrx × Nf (10)

This becomes possible as the subcarrier spacing in 802.11g/ac

is 312.5 kHz which is much smaller than the coherence

bandwidth in a typical indoor environment. Thus, adjacent

subcarriers have a similar progression [6] and a downsampling

is feasible.

Then we combine the dimensions of the receive (Nrx) and

transmit (Ntx) antennas. This gives us

Xreshaped = Nt × Bt × (NrxNtx) × Nf (11)

reducing the dimensional complexity of the array by merging

the spatial domain.

The received signal from different antennas are fed into

different RF chains. These RF chains are not synchronized

and thus the measured CSI will be distorted by the phase

offsets between these RF chains [17]. This would require

sanitation of the phase information which would complicate

the algorithm. We therefore discard the phase information and

instead use the magnitude of our CSI only

Xabs = |Xreshaped| (12)

Afterwards we normalize each grouped batch Bt in respect

to the first CSI sample by element-wise division (Hadamard

division). This gives us

Xnorm = Xabs ÷ xabs
: ,0, : , : (13)

Now the first entry of any batch Bt consists only of a

matrix with the value 1, while the remaining entries of Bt

have a relative value. This is done because the absolute

CSI magnitude is highly dependent on the distance between

transmitter and receiver and the existence of LOS [6]. With

this normalization, we try to remove this environmental

information.

Then we apply a 2D DFT to each grouped, normalized

packet on the temporal and frequency domain to obtain the

Fourier coefficients Xfft from which we take the magnitude

(abs). Moreover, we shift the zero-frequency component to

the center of the spectrum:

Xnorm 2D-DFT−−−−−−→ Xfft fftshift−−−−→ Xfft+shift magnitude−−−−−−−→ |Xfft+shift| (14)

Afterwards, we apply the periodic shift on the 2D DFT output,

so the zero frequency component is in the center of the array.

The difference of the minimum and maximum of the

Fourier coefficients can be too high to achieve good general-

ization. Therefore, we apply log10 (1 + x) to obtain

Xlog = log10 (1 + |Xfft+shift|) (15)

Finally, we cut off the left and right side of the matrix on

the batch dimension Bt to obtain a further reduced data array

Btw with only entries in its central dimension:

Xcrop

: ,i, : , : = Xlog

: ,
Bt−Btw

2
+i, : , :

, i = 0, . . . , Btw (16)

This further reduces the data complexity and is done to

increase the generalization. Because we used the periodic shift

before, the remaining data still contain the most important

information of the transformed Fourier coefficients. This

results in the final dimension format:

Xpreprocessed = Nt × Btw × (NrxNtx) × Nf (17)

C. Presence Detection using OC-SVM

We denote presence detection as a binary classification

problem with:

presence =

⎧⎪⎪⎨⎪⎪⎩
1 ≈ no

−1 ≈ yes
. (18)

We assign presence with the class −1 and the absence of

presence with the class 1. We therefore consider data corre-

sponding to non-presence as regular and data corresponding

to presence as irregular, a novelty.

One-class SVM is an unsupervised algorithm that learns

a decision function for novelty detection by classifying new

data as similar or different to the training set. The data we

use to train this OC-SVM classifier is therefore collected from

the regular class, a room without human presence. Then the



trained OC-SVM model can be tested and evaluated using

unseen data from both classes.

We transform the input for the classifier in the 2-
dimensional format of nsamples × nfeatures. Because we have

multidimensional data after our preprocessing with the di-

mension format given in equation 17, we flatten our data

dimensions of Btw, (NrxNtx) and Nf into one dimension, which

serves us as the features for the input. So, we denote our input

data for the OC-SVM classifier as:

X = Nt × (BtwNtxNrxNf ) (19)

D. Postprocessing

The OC-SVM could wrongly classify human absence when

in reality the human is simply standing still. This is because

according to [6] a completely static human has only a low

effect on the CSI, making it sometimes indistinguishable from

CSI of an empty room. We therefore added an additional

postprocessing step as suggested by Liu et al. [6] in which

we analyze the last k results from the OC-SVM in order to

perform a majority vote. Hence, the appearance of a human

in a previously empty room is detected after � k
2
�× Bt

S seconds

at the earliest. Note, that our approach might create false

classifications during the transition of presence to no presence
and vice versa, i.e. when a person leaves or enters the room.

With k = 5 we would get at least two false detections during

the transition period. If no such transitions happen, we expect

to increase the overall detection rate.

V. Implementation

We implemented a prototype of our system using commod-

ity hardware. As experimentation platform, we used standard

notebooks equipped with Intel 9260 WiFi NICs. The Intel

9260 is an IEEE 802.11ac wave 2 compliant radio with

2x2 MIMO and channel width of up-to 160 MHz. During

the experiments a pair of such nodes was used to create a

point-to-point communication link. As operating system we

used Ubuntu 18.04 with a patched Linux Kernel to enable

the CSI functionality [18]. We run both the transmitter and

receiver in monitor mode with packet filtering. We implement

our presence detector fully in Python. Specifically, we used

the implementation OneClassSVM of scikit-learn [19] which

is based on the work of Schölkopf et al. [20]. During data

collection the CSI was stored in a database. The actual pres-

ence detection was performed offline. Our code base can be

downloaded from: https://github.com/zubow/ocsvm pd.git.

VI. Evaluation

The proposed approach was evaluated by means of exper-

iments using the prototype described in previous section.

A. Experimental Setup and Data Collection

The experiments were performed within three different

apartment rooms. The location of the two WiFi nodes as

well as furniture is shown in Fig. 2. The transmitter and

receiver inside the rooms a and c didn’t have LOS due
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Fig. 2: Environment: layout of rooms a, b and c.

TABLE I: Used parameters of our presence detection system.

Parameter Value

CSI sampling rate S 100 Hz
No.of CSI samples N 63k
No. of transmit/receive antennas Ntx × Nrx 2 × 2
No. of OFDM subcarriers Nsc 114
No. of time samples per batch Bt 128 (=̂ 1.28 s)
No. of batches Nt 490
No. of downsampled OFDM subcarriers N f 15
No. of downsampled time samples Btw 14
OC-SVM kernel rbf
OC-SVM nu parameter 0.005
OC-SVM gamma parameter 0.01
No. of features nfeatures 840
Majority vote over k 5

to the different heights and position atop of the desk. In

order to collect CSI data we transmitted unicast data packets

with a transmission rate of 100 Hz using BPSK modulation

with a coding rate (FEC) of 1/2 and channel bandwidth of

40 MHz. The experiment was performed in 2.4 GHz band

on channels 1 and 5 GHz band on channel 36. Finally, we

collected CSI under two scenarios: i) empty (human-free)

room and ii) human-present-occupied room. For the latter

scenario the human was walking, standing, and sitting, where

applicable, randomly inside the room. The person alternates

between the above-described actions and performs each action

for an unspecified time duration. The collected CSI datasets

were labeled accordingly. Each collection session lasts for

about 10.5 min, resulting in 63k CSI samples.

B. System Parameters

Table I shows our used system parameters for the detector.

In the preprocessing step we reduced the dimension of (com-

plex) CSI data from 63k×2×2×114 to just 490×14×4×15

of (real) data, which corresponds to a compression of around

99.3%. It is served as features for the input of the OC-SVM.

With the selected parameters the detection of person entering

a room takes place between 3.84 and 6.4 s.

For the training we used the data sets collected from empty

rooms. Afterwards, we tested our trained system by using

the datasets from both empty and occupied rooms. In order

to avoid the repeated use of the same dataset for training

and testing, we resample our training data. Data from each

room (a, b, c) and used radio channel (1, 36) are forming a

data set we use for training and testing. This results in six

different training and test data sets and thus in six trained

models. Although our presence detector was written entirely
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Fig. 3: Performance in 3 rooms (channel 1 and 36).

in Python, training took only ≈ 6 s on a modern PC. This

confirms the low complexity of the proposed approach.

C. Performance Metrics

Our metrics for evaluation are the accuracy, sensitivity and

specificity. Accuracy is the percentage of correctly classified

results. It shows us the overall performance of a model.

Sensitivity is the percentage of correctly classified presence.

Specificity is the percentage of correctly classified non-

presence. These two metrics will be used to get further insight

on the performance of a model.

D. Detection Accuracy, Sensitivity, Specificity

In our first experiment we analyzed the performance of

our detector in the three different rooms using channel 1

and 36 respectively. Therefore, our detector was learned for

each room and channel independently. As can be seen from

Fig. 3 we achieved very good performance. The accuracy is

ranging from 98.86% up to 100%. The average accuracy is

99.79% for channel 1 and 99.52% for channel 36. Regarding

the capability of our system to detect human absence channel

1 achieved an average sensitivity of 99.72%. This is higher

than the average sensitivity on channel 36 with a score

of 99.51%. On channel 1 and in environment b we only

achieved a sensitivity of 99.17%. A lower human absence

rate of 99.17% and 99.38% was achieved in the environments

b and c on channel 36 respectively. Our system detected

human presence with a rate of 100% on multiple environment-

channel combinations. Only in environment a on channel 1

and b on channel 36 we got a lower specificity of 99.58% and

98.54%. We see that in the smaller environment b our system

achieved the least percentage of correct classifications.

So far, we trained and tested our model independently

for each room and channel configuration. Next, we train a

single model with data from all rooms at once and test with

testing data from each room. Fig. 4 shows the results. The

performance loss compared to Fig. 3 is very small, i.e., at

most a drop of one percentage point. This confirms that

training a single model is sufficient.

E. Impact of Spatial Domain

Next, we want to analyze the gain from having multiple

antennas at the transmitter and receiver, i.e., MIMO. The

impact of that spatial domain is shown in Fig. 5. The best

performance is achieved when using all two transmit and

receive antennas resulting in 4 spatial paths from which the

CSI can be obtained. By lowering the number of antennas,
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we see a dramatic drop in performance. With only a single

spatial domain, i.e., SISO with single TX and RX antenna,

we see for some combination a drop in specificity to only

65%. Also, the accuracy can be low as 82.5%. This confirms

the need to use MIMO systems with 2 or more antennas.

F. Impact of CSI Sampling Rate

Estimating the CSI creates overhead as packets need to

be transmitted which are consuming valuable radio resources

which could be otherwise used for ordinary communication.

Therefore, we want to analyze the impact of CSI sampling

rate of the detection performance. Fig. 6 shows the results.

Both accuracy and specificity are affected by the used CSI

sampling rate whereas the sensitivity stays at the maximum.

Hence there is a tradeoff between overhead and performance

of the detection which has to be taken into account.

G. Impact of Channel Bandwidth

Like the CSI sampling rate the bandwidth used by the prob-

ing packets creates overhead in terms of used radio resources.

Therefore, in Fig. 7 we analyzed its impact. Again, we see

no impact on sensitivity whereas the impact of accuracy and

specificity is visible but small.

H. Impact of Downsampling in Frequency Domain

Here, we analyze the impact of downsampling in frequency

domain Nf , cf. eq. 10. From Fig. 8 we see that optimal
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Fig. 6: Impact of CSI sample rate (trained with data from all

rooms while tested with data from room A, channel=1).
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Fig. 8: Impact of downsampling Nf (trained with data from

all rooms while tested with data from room A, channel=1).

results can be achieved for Nf = 28. However, to keep

the computational overhead low the value can be reduced to

Nf = 8 without significantly affecting the performance of

the detector. However, analyzing just a single subcarrier, i.e.,

Nf = 1, is not sufficient.

I. Impact of Batch Size

Finally, we want to study the impact of the selected batch

size Bt, cf. eq. 9, on the performance. From Fig. 9 we see

that values below 1.2 s for Bt lead to performance degradation

especially in terms of specificity which can drop to just 88%

when using Bt = 16 ms. Hence, we can conclude to have a

tradeoff between the accuracy and latency.

VII. Conclusions

In this paper, we proposed a low-complexity device-free

human presence detection method which utilizes the CSI

provided by commodity 802.11 (WiFi) devices. The key idea

is to utilize OC-SVM for novelty detection, hence requiring

training to be performed in empty rooms only. It is of low-

complexity both in terms of required radio resources, i.e.,

CSI sampling rate and bandwidth, as well as computational

complexity. The proposed approach was prototypically imple-

mented and experimentally evaluated.
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Fig. 9: Impact of batch size Bt (trained with data from all

rooms while tested with data from room A, channel=1).
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