Literature Database Entry


Hesham El-Sayed and Moumena Chaqfeh, "Exploiting Mobile Edge Computing for Enhancing Vehicular Applications in Smart Cities," Sensors, vol. 19 (5), pp. 1073, January 2019.


Mobile edge computing (MEC) has been recently proposed to bring computing capabilities closer to mobile endpoints, with the aim of providing low latency and real-time access to network information via applications and services. Several attempts have been made to integrate MEC in intelligent transportation systems (ITS), including new architectures, communication frameworks, deployment strategies and applications. In this paper, we explore existing architecture proposals for integrating MEC in vehicular environments, which would allow the evolution of the next generation ITS in smart cities. Moreover, we classify the desired applications into four major categories. We rely on a MEC architecture with three layers to propose a data dissemination protocol, which can be utilized by traffic safety and travel convenience applications in vehicular networks. Furthermore, we provide a simulation-based prototype to evaluate the performance of our protocol. Simulation results show that our proposed protocol can significantly improve the performance of data dissemination in terms of data delivery, communication overhead and delay. In addition, we highlight challenges and open issues to integrate MEC in vehicular networking environments for further research.

Quick access

Original Version DOI (at publishers web site)
BibTeX BibTeX


Hesham El-Sayed
Moumena Chaqfeh

BibTeX reference

    author = {El-Sayed, Hesham and Chaqfeh, Moumena},
    doi = {10.3390/s19051073},
    journal = {Sensors},
    month = {1},
    number = {5},
    pages = {1073},
    publisher = {Multidisciplinary Digital Publishing Institute},
    title = {{Exploiting Mobile Edge Computing for Enhancing Vehicular Applications in Smart Cities}},
    volume = {19},
    year = {2019},

Copyright notice

Links to final or draft versions of papers are presented here to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted or distributed for commercial purposes without the explicit permission of the copyright holder.

The following applies to all papers listed above that have IEEE copyrights: Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

The following applies to all papers listed above that are in submission to IEEE conference/workshop proceedings or journals: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.

The following applies to all papers listed above that have ACM copyrights: ACM COPYRIGHT NOTICE. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or

The following applies to all SpringerLink papers listed above that have Springer Science+Business Media copyrights: The original publication is available at

This page was automatically generated using BibDB and bib2web.