Literature Database Entry

lee2009to-go


Kevin C. Lee, Uichin Lee and Mario Gerla, "TO-GO: TOpology-assist Geo-Opportunistic Routing in Urban Vehicular Grids," Proceedings of 6th IEEE/IFIP Conference on Wireless On demand Network Systems and Services (WONS 2009), Snowbird, UT, February 2009, pp. 11–18.


Abstract

Road topology information has recently been used to assist geo-routing, thereby improving the overall performance. However, the unreliable wireless channel nature in urban vehicular grids (due to motion, obstructions, etc) still creates problems with the basic greedy forwarding. In this paper, we propose TO-GO (TOpology-assisted geo-opportunistic routing), a geo-routing protocol that exploits topology knowledge acquired via 2-hop beaconing to select the best target forwarder and incorporates opportunistic forwarding with the best chance to reach it. The forwarder selection takes into account of wireless channel quality, thus significantly improving performance in error and interference situations. Extensive simulations confirm TO-GO superior robustness to errors/losses as compared to conventional topology-assisted geographic routing.

Quick access

Original Version DOI (at publishers web site)
BibTeX BibTeX

Contact

Kevin C. Lee
Uichin Lee
Mario Gerla

BibTeX reference

@inproceedings{lee2009to-go,
    author = {Lee, Kevin C. and Lee, Uichin and Gerla, Mario},
    doi = {10.1109/WONS.2009.4801842},
    title = {{TO-GO: TOpology-assist Geo-Opportunistic Routing in Urban Vehicular Grids}},
    pages = {11--18},
    publisher = {IEEE},
    address = {Snowbird, UT},
    booktitle = {6th IEEE/IFIP Conference on Wireless On demand Network Systems and Services (WONS 2009)},
    month = {2},
    year = {2009},
   }
   
   

Copyright notice

Links to final or draft versions of papers are presented here to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted or distributed for commercial purposes without the explicit permission of the copyright holder.

The following applies to all papers listed above that have IEEE copyrights: Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

The following applies to all papers listed above that are in submission to IEEE conference/workshop proceedings or journals: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.

The following applies to all papers listed above that have ACM copyrights: ACM COPYRIGHT NOTICE. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.

The following applies to all SpringerLink papers listed above that have Springer Science+Business Media copyrights: The original publication is available at www.springerlink.com.

This page was automatically generated using BibDB and bib2web.