Literature Database Entry

shaghaghi2017adaptive


Erfan Shaghaghi, Mohammad Reza Jabbarpour, Rafidah Md Noor, Hwasoo Yeo and Jason J. Jung, "Adaptive green traffic signal controlling using vehicular communication," Frontiers of Information Technology & Electronic Engineering, vol. 18 (3), pp. 373–393, March 2017.

Abstract

The importance of using adaptive traffic signal control for figuring out the unpredictable traffic congestion in today’s metropolitan life cannot be overemphasized. The vehicular ad hoc network (VANET), as an integral component of intelligent transportation systems (ITSs), is a new potent technology that has recently gained the attention of academics to replace traditional instruments for providing information for adaptive traffic signal controlling systems (TSCSs). Meanwhile, the suggestions of VANET-based TSCS approaches have some weaknesses: (1) imperfect compatibility of signal timing algorithms with the obtained VANET-based data types, and (2) inefficient process of gathering and transmitting vehicle density information from the perspective of network quality of service (QoS). This paper proposes an approach that reduces the aforementioned problems and improves the performance of TSCS by decreasing the vehicle waiting time, and subsequently their pollutant emissions at intersections. To achieve these goals, a combination of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications is used. The V2V communication scheme incorporates the procedure of density calculation of vehicles in clusters, and V2I communication is employed to transfer the computed density information and prioritized movements information to the road side traffic controller. The main traffic input for applying traffic assessment in this approach is the queue length of vehicle clusters at the intersections. The proposed approach is compared with one of the popular VANET-based related approaches called MC-DRIVE in addition to the traditional simple adaptive TSCS that uses the Webster method. The evaluation results show the superiority of the proposed approach based on both traffic and network QoS criteria.

Quick access

Original Version DOI (at publishers web site)
BibTeX BibTeX

Contact

Erfan Shaghaghi
Mohammad Reza Jabbarpour
Rafidah Md Noor
Hwasoo Yeo
Jason J. Jung

BibTeX reference

@article{shaghaghi2017adaptive,
    author = {Shaghaghi, Erfan and Jabbarpour, Mohammad Reza and Md Noor, Rafidah and Yeo, Hwasoo and Jung, Jason J.},
    doi = {10.1631/FITEE.1500355},
    issn = {2095-9230},
    journal = {Frontiers of Information Technology & Electronic Engineering},
    month = {3},
    number = {3},
    pages = {373--393},
    publisher = {Springer},
    title = {{Adaptive green traffic signal controlling using vehicular communication}},
    volume = {18},
    year = {2017},
   }
   
   

Copyright notice

Links to final or draft versions of papers are presented here to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted or distributed for commercial purposes without the explicit permission of the copyright holder.

The following applies to all papers listed above that have IEEE copyrights: Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

The following applies to all papers listed above that are in submission to IEEE conference/workshop proceedings or journals: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.

The following applies to all papers listed above that have ACM copyrights: ACM COPYRIGHT NOTICE. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.

The following applies to all SpringerLink papers listed above that have Springer Science+Business Media copyrights: The original publication is available at www.springerlink.com.

This page was automatically generated using BibDB and bib2web.