Literature Database Entry


L. Xie, Y. Ding, H. Yang and X. Wang, "Blockchain-Based Secure and Trustworthy Internet of Things in SDN-Enabled 5G-VANETs," IEEE Access, vol. 7, pp. 56656–56666, January 2019.


The modern intelligent transportation system brings not only new opportunities for vehicular Internet of Things (IoT) services but also new challenges for vehicular ad-hoc networks (VANETs). Apart from enhanced network performance, a practical and reliable security scheme is needed to handle the trust management while preserving user privacy at the same time. The emerging 5G mobile communication system is viewed as a prominent technology for ultra-reliable, low-latency wireless communication services. Furthermore, incorporating software-defined network (SDN) architecture into the 5G-VANET enables global information gathering and network control. Hence, real-time IoT services on transportation monitoring and reporting can be well supported. Both pave the way for an innovative vehicular security scheme. This paper investigates the security and privacy issue in the transportation system and the vehicular IoT environment in SDN-enabled 5G-VANET. Due to the decentralized and immutable characteristics of blockchain, a blockchain-based security framework is designed to support the vehicular IoT services, i.e., real-time cloud-based video report and trust management on vehicular messages. This paper explicitly illustrates the SDN-enabled 5G-VANET model and the scheduling procedures of the blockchain-based framework. The numerical simulation results also show that malicious vehicular nodes or messages can be well detected while the overhead and impact on the network performance are acceptable for large-scale scenarios. Through case studies and theoretical analysis, we demonstrate our design substantially guarantees a secure and trustworthy vehicular IoT environment with user privacy preserved.

Quick access

Original Version DOI (at publishers web site)
BibTeX BibTeX


L. Xie
Y. Ding
H. Yang
X. Wang

BibTeX reference

    author = {Xie, L. and Ding, Y. and Yang, H. and Wang, X.},
    doi = {10.1109/ACCESS.2019.2913682},
    issn = {2169-3536},
    journal = {IEEE Access},
    month = {1},
    pages = {56656--56666},
    publisher = {IEEE},
    title = {{Blockchain-Based Secure and Trustworthy Internet of Things in SDN-Enabled 5G-VANETs}},
    volume = {7},
    year = {2019},

Copyright notice

Links to final or draft versions of papers are presented here to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted or distributed for commercial purposes without the explicit permission of the copyright holder.

The following applies to all papers listed above that have IEEE copyrights: Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

The following applies to all papers listed above that are in submission to IEEE conference/workshop proceedings or journals: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.

The following applies to all papers listed above that have ACM copyrights: ACM COPYRIGHT NOTICE. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or

The following applies to all SpringerLink papers listed above that have Springer Science+Business Media copyrights: The original publication is available at

This page was automatically generated using BibDB and bib2web.