Literature Database Entry


K.J. Ahmed, M.J. Lee and Jie Li, "Layered scalable WAVE security for VANET," Proceedings of IEEE Military Communications Conference (MILCOM 2015), Tampa, FL, October 2015, pp. 1566–1571.


We are proposing a layered and scalable WAVE (Wireless Access for Vehicular Environments) security structure for VANET (Vehicular Ad hoc Network) network. The scalability and variable message delivery are provided by using both asymmetric and symmetric encryption algorithm. The whole region is divided into different security domains and the security related load of each domain is distributed evenly. At the top Regional Transportation Authority (RTA) generates keys and store information of Master and Edge RSU (MRSU/ERSU), which in turn store the keys and information of RSU. MRSU/ERSU also provide the pseudonym seeds and store information of vehicles. RSU is used only as access point for contacting transportation authority or access internet. High priority emergency message delivery is expedited by using symmetric key cryptography. Besides, the simulation comparison shows that our scheme also provide significantly improved network throughput without compromising security goals.

Quick access

Original Version DOI (at publishers web site)
BibTeX BibTeX


K.J. Ahmed
M.J. Lee
Jie Li

BibTeX reference

    address = {Tampa, FL},
    author = {Ahmed, K.J. and Lee, M.J. and Li, Jie},
    booktitle = {IEEE Military Communications Conference (MILCOM 2015)},
    doi = {10.1109/MILCOM.2015.7357668},
    month = {10},
    pages = {1566--1571},
    publisher = {Institute of Electrical and Electronics Engineers},
    title = {{Layered scalable WAVE security for VANET}},
    year = {2015},

Copyright notice

Links to final or draft versions of papers are presented here to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted or distributed for commercial purposes without the explicit permission of the copyright holder.

The following applies to all papers listed above that have IEEE copyrights: Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

The following applies to all papers listed above that are in submission to IEEE conference/workshop proceedings or journals: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.

The following applies to all papers listed above that have ACM copyrights: ACM COPYRIGHT NOTICE. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or

The following applies to all SpringerLink papers listed above that have Springer Science+Business Media copyrights: The original publication is available at

This page was automatically generated using BibDB and bib2web.