Literature Database Entry


T. Derrmann, R. Frank, F. Viti and T. Engel, "How Road and Mobile Networks Correlate: Estimating Urban Traffic Using Handovers," IEEE Transactions on Intelligent Transportation Systems, pp. 1–10, 2019.


We propose a novel way of linking mobile network signaling data to the state of the underlying urban road network. We show how a predictive model of traffic flows can be created from mobile network signaling data. To achieve this, we estimate the vehicular density inside specific areas using a polynomial function of the inner and exiting mobile phone handovers performed by the base stations covering those areas. We can then use the aggregated handovers as flow proxies alongside the density proxy to directly estimate an average velocity within an area. We evaluate the model in a simulation study of Luxembourg city and generalize our findings using a real-world data set extracted from the LTE network of a Luxembourg operator. By predicting the real traffic states as measured through floating car data, we achieve a mean absolute percentage error of 11.12%. Furthermore, in our study case, the approximations of the network macroscopic fundamental diagrams (MFD) of road network partitions can be generated. The analyzed data exhibit low variance with respect to a quadratic concave flow-density function, which is inline with the previous theoretical results on MFDs and are similar when estimated from simulation and real data. These results indicate that mobile signaling data can potentially be used to approximate MFDs of the underlying road network and contribute to better estimate road traffic states in urban congested networks.

Quick access

Original Version DOI (at publishers web site)
BibTeX BibTeX


T. Derrmann
R. Frank
F. Viti
T. Engel

BibTeX reference

    author = {Derrmann, T. and Frank, R. and Viti, F. and Engel, T.},
    doi = {10.1109/TITS.2019.2901373},
    issn = {1524-9050},
    journal = {IEEE Transactions on Intelligent Transportation Systems},
    pages = {1--10},
    publisher = {Institute of Electrical and Electronics Engineers},
    title = {{How Road and Mobile Networks Correlate: Estimating Urban Traffic Using Handovers}},
    year = {2019},

Copyright notice

Links to final or draft versions of papers are presented here to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted or distributed for commercial purposes without the explicit permission of the copyright holder.

The following applies to all papers listed above that have IEEE copyrights: Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

The following applies to all papers listed above that are in submission to IEEE conference/workshop proceedings or journals: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.

The following applies to all papers listed above that have ACM copyrights: ACM COPYRIGHT NOTICE. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or

The following applies to all SpringerLink papers listed above that have Springer Science+Business Media copyrights: The original publication is available at

This page was automatically generated using BibDB and bib2web.